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1 Abstract1

In this study, we aim at developing a new method of bias correction using data assimilation.2

This method is based on the stochastic forcing of a model to correct bias by directly including3

an additional source term into the model equations. This method is first presented and tested4

with a twin experiment on the fully controlled Lorenz ’96 model. It is then applied to the lower-5

resolution global circulation NEMO-LIM2 model, with both a twin experiment and a realistic case6

experiment. Sea surface height observations are used to estimate a forcing aimed at correcting the7

poorly located currents. Validation is then performed through the use of other variables such as8

sea surface temperature and salinity. Results show that the method is able to consistently correct9

a part of the model bias for the twin experiment, and shows the encountered difficulties for the10

realistic experiment. The bias correction term is presented and is consistent with the limitations11

of the global circulation model causing bias on the oceanic currents.12

2 Introduction13

Bias is commonly defined as a systematic error with a non-zero mean. Whether it originates from14

the model itself, from the observations, or from the assimilation scheme, the effects of bias can15

significantly deteriorate the solution of the model. In numerical modelling, a current limitation16

arises from the finite computational power available, which, in ocean models, results in limited res-17

olution. This causes poorly resolved vertical mixing and poor specification of atmospheric fluxes to18

be a leading term for bias (Gerbig et al., 2008). Our limited knowledge of the system also leads to19

the imperfect specification of boundary conditions, and a poor representation of subgrid physical20

processes (Baek et al., 2009). Those differences between the numerical model solution and the21

dynamics of the real ocean induce systematic errors in the numerical forecasts. When used for22

prediction or long-term simulations with a limited number of available observations, those system-23

atic errors cause the model to exhibit significant differences in climatologies when compared to the24

reality. In some circumstances, they can even be comparable or larger than the non-systematic25

error of the solution of the model. While the random part of the model error has been reduced26

thanks to several advances in numerical modelling, it has become increasingly necessary to ad-27

dress the systematic model error (Keppenne et al., 2005). Bias in climate modelling can be so28

large that only variations and anomalies are studied, rather than the absolute results of the model29

(Zunz et al., 2013).30

31

To reduce the error of the model, observations can be taken into account to correct the model32

state by using data assimilation. However, a critical assumption for data assimilation analysis33
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schemes is that the mean of the background error is zero. This hypothesis is by definition violated34

in the presence of bias. Data assimilation schemes that are designed to use non-biased observations35

to correct random errors with zero mean in a model background estimate are called bias-blind. In36

the presence of bias, those analysis schemes are suboptimal and can generate spurious corrections37

and undesired trends in the analysis (Dee, 2005). Most data assimilation schemes are designed38

to handle small, random errors and make small adjustments to the background fields which are39

consistent with the spatial structure of random errors (Dee, 2005). Bias-aware data assimilation40

schemes are designed to simultaneously estimate the model state variables and parameters that41

are set to represent systematic errors in the system. However, assumptions need to be made about42

the error covariance of the bias and its attribution to a particular source. It also needs to be43

represented and expressed in a set of well-defined parameters.44

45

Model-bias estimation was first introduced by Friedland (1969), and more deeply described46

by Jazwinski (1970); Gelb (1974). Friedland suggested a scheme in which the model state vector47

should be augmented with a decoupled bias component that can be isolated from the other state48

vector variables. This allows the estimation of the bias prior to the estimation of the model.49

50

The most known and referred to algorithm for online bias estimation and correction in se-51

quential data assimilation was introduced in Dee and Da Silva (1998). Bias is estimated during52

the assimilation by adding an extra and separated assimilation step. It was successfully applied53

in Dee and Todling (2000) to the global assimilation of humidity observations in the Goddard54

Earth Observing System. A simplified version of this algorithm using a single assimilation step55

(where Dee and Da Silva (1998) needed two) was applied by Radakovich et al. (2001) to land-56

surface temperature assimilation, and by Bell et al. (2004) for the online estimation of subsurface57

temperature bias in tropical oceans. It was also used for model bias estimation by Baek et al.58

(2006), and observation-bias correction in Fertig et al. (2009). Other examples are Carton et al.59

(2000); Keppenne et al. (2005); Chepurin et al. (2005); Nerger and Gregg (2008).60

61

Bias-correction approaches can be classified as follows (Keppenne et al., 2005; Chepurin et al.,62

2005). In offline methods, bias is estimated from the model mean and the climatology, using a63

preliminary model run. Offline methods are simple to implement and have a small computational64

cost. In online methods, the bias is updated during the data assimilation step, resulting in an65

analysed bias.66

67

However, most methods of bias correction need a reference dataset which is defined as bias68

free, from which a bias estimation can be provided. In practice, it can be difficult to find such a69
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dataset. The bias also needs to be characterised in terms of some well-defined set of parameters.70

While this is obvious for bias estimation, it is a critical condition when attempting bias correction.71

The attribution of a bias to an incorrect (unbiased) source will force the assimilation to be con-72

sistent with the now biased source. In some cases, the bias correction would even deteriorate the73

assimilation procedure, and perform worse than a classic, bias-blind assimilation (Dee, 2004).74

75

The effect of bias on the model climatology can not be neglected. The necessity of removing,76

or at least, reducing the effects of bias on the model has driven to the development of methods77

allowing to force the model towards a non-biased climatology. Addressing systematic model errors,78

such as oceanographic biases, is even more tricky, since a representation of the bias itself, or the79

generation mechanism, is needed. The bias in the background field can be directly modelled by80

assuming some kind of time behaviour such as persistence (Dee, 2005; Chepurin et al., 2005). As81

background errors are observable, it is relatively straightforward to formulate a consistent bias-82

estimation scheme. Suppressing the bias generation during the integration of the model rather83

than correcting it afterwards would however be preferable.84

85

For example in Derber and Rosati (1989), a variational continuous assimilation technique is86

applied under the form of a modification of the adjoint technique. A correction term then is added87

to the equations. The technique aimed at optimally fitting the data throughout the assimilation88

period, rather than relaxing the solution towards the values at observation times. It has been89

applied to radiative transfer model in Derber and Wu (1998).90

91

Another example was discussed by Radakovich et al. (2004), where the model is so heavily92

affected by bias that a classic bias-aware assimilation scheme (Dee and Da Silva, 1998) is insuf-93

ficient. The bias-correction term is only applied during the assimilation, but due to the model94

characteristics, the model solution quickly slips back to its biased state and dissipates the correc-95

tion term. In that study, an adapted bias correction term was applied during the model run which96

was proportional to the initial term and the time separating two analysis steps.97

98

In the present work, the problem of model-bias correction is tackled by developing a new99

method, which combines stochastic forcing and data assimilation. Data assimilation is used here100

to estimate, create and define analysed stochastic forcing terms from which a deterministic forcing101

term (estimated by the the ensemble mean) is used to reduce the model bias.102

103

Most of the previously developed and existing methods correct bias in the model results and104

leave its source uncorrected. Some studies have however tackled the bias-correction problem di-105

4



rectly, such as in Leeuwenburgh (2008), where an estimation and correction of a surface wind-stress106

bias was performed through the modification of the bias scheme of Dee and Da Silva (1998) with107

an Ensemble Kalman filter modification.108

109

The objective of this paper is to correct the effects of the bias by applying a stochastic forcing110

into the model equation, where the bias is supposed to be generated. An Ensemble Transform111

Kalman Filter (ETKF) is used to find an optimal forcing term which is directly injected into the112

modified model equations. The aim is to provide a continuous bias correction by forcing the model113

towards a non-biased climatology.114

115

The forcing term introduced here does not yet exist in the model equations and the method is116

only partly similar to a classic parameter estimation problem (Annan et al., 2005; Massonnet et al.,117

2014). Indeed, we do not aim at optimising an already existing forcing term as in Broquet et al.118

(2011) (where a weak constraint ocean 4DVAR scheme is used to correct ocean surface forcing), but119

rather add a new term which itself is optimised. Moreover, as the forcing term optimisation covers120

the whole time period, our method differs by the fact that it can be considered as an ensemble121

smoother.122

123

This paper is divided into the following sections: In section 3, the method principle is pre-124

sented and detailed. In section 4, the Lorenz ’96 model is studied with a particular point of view125

related to the model mean and its global behaviour. In section 5, this novel approach is then126

tested and implemented with a classic twin experiment on the Lorenz ’96 model (Lorenz, 1996;127

Lorenz and Emanuel, 1998). The efficiency and results of this method are presented. In section128

6, this new method is then applied and tested on the realistic sea-ice NEMO-LIM2 ocean model.129

Again, it is first tested with a twin experiment to control the behaviour of the model. It is af-130

terwards tested with real observations from the mean dynamic topography (MDT) of the CNES131

(centre national d’études spatiales) (Rio et al., 2011). Section 7 closes this work with a discussion132

of results and possible extensions of this work.133

3 Method134

This work aims at developing a new method of bias correction for numerical modelling using data135

assimilation. While most previously developed and existing methods correct bias in the model re-136

sults, our objective is to estimate a deterministic bias-correction forcing term from a set of model137

runs with a stochastic forcing applied to the model equation.138

139
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Consider the following nonlinear stochastic discrete-time dynamical system140

x(m) = M(m)

(
x(m−1)

)
, (1)

where m = 1, ...,mmax is the time index, x(m) the n dimensional model state and M(m) the141

forward model operator. The real dynamical system is described as follow, were we assume the142

additive model error presented in Evensen (2007)143

xt(m) = Mt
(m)

(
xt(m−1)

)
+ β(m). (2)

Here, xt(m) is the n dimensional true state, Mt
(m) the true model forward operator, and β(m)

144

the stochastic error. This model error can be split into two parts, namely a random part whose145

average is zero: < β̃
(m)

>= 0, and a systematic error, or bias: b (Dee, 2005). One can write that146

β(m) = β̃
(m)

+ b. (3)

Note that we consider the bias to be constant in time. If necessary, this assumption can be re-147

laxed to handle time-varying bias such as seasonal biases. Although finding an adequate correction148

would prove more difficult and computationally more costly, the principle of the method would re-149

main identical. It is not, however, the objective of this paper and we assume the bias to be constant.150

151

We aim here at handling the bias using an ensemble smoother. To do so, an ensemble of N152

model trajectories is defined following van Leeuwen (2001); Hunt et al. (2004), with i = 1, . . . , N ,153

as154

xi =




x
(1)
i

x
(2)
i

...

x
(mmax)
i



. (4)

A clear difference is made here between the bias to be corrected b, and the estimator of the155

bias-correction term b̂i, which can be seen as a parameter to be estimated (Barth et al., 2010;156

Sakov et al., 2010). The state vector is augmented with an estimator of the bias correction term157

b̂i and one obtains158
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x′

i =




x
(1)
i

x
(2)
i

...

x
(mmax)
i

b̂i




. (5)

One can then write the update of the state vector after the analysis with the Ensemble Trans-159

form Kalman filter (Bishop et al., 2001) as160

x′a = x′f +K′

(
yo −H′x′f

)
, (6)

where161

x′a =
1

N

N∑

i=1

x′a
i , x′f =

1

N

N∑

i=1

x′f
i , (7)

K′ =P′fH′T
(
H′P′fH′T +R

)
−1

. (8)

Here, yo is the mean state of the observations. Hereafter, the absence of ensemble index i in162

the equation will refer to the use of the ensemble mean. The observation operator H′ applied to163

the trajectory x′ also includes a time average and an extraction operator H of the observed part164

of the model state165

H′x′ =

mmax∑

m=1

Hx(m) = Hx, (9)

x =
1

mmax

mmax∑

m=1

x(m), (10)

where x is the time average of the model state vector. Since we are only interested in the clima-166

tology of the model and the estimator of the bias correction term, the complete model trajectory167

is not needed. The average state of the model is sufficient, and it is computationally much more168

interesting to only deal with the latter: to do so, one uses a state vector consisting only of the169

model mean state and the estimator of the bias correction term170
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x′′ =


x
b̂


 , (11)

and an observation operator defined as171

H′′x′′ = Hx. (12)

One can show that the analysis using the average model state (Eq. (13)) provides the same172

analysed bias-estimator correction term b̂a as when the full trajectory is included in the estimation173

vector (Eq. (6)), which is written as174

x′′a = x′′f +K′′

(
yo −H′′x′′f

)
. (13)

The mathematical demonstration of this property is given in the appendix. In practice, the175

assimilation of observations of the climatology of the model x allows the update and optimisation of176

the bias-estimator correction b̂a through the Kalman filter/smoother equations. The model is then177

rerun with the optimal bias-correction term, providing us with a bias-corrected model trajectory178

xr(m), expressed as179

xr(m) = M(m)

(
xr(m−1)

)
− b̂a. (14)

The interest of this method is that when the model is rerun, it provides a new model trajectory180

xr(m). This new trajectory, hence its average xr, is different from the analysis x′′a. Indeed, the181

former results from a new run fully governed by the corrected equations of the model (Eq. (14)),182

whereas the latter results directly from the analysis (Eq. (13)). If the model was completely linear,183

the analysis provided by the ETKF scheme would be equal to the model bias-corrected run.184

185

To summarise, it is common for bias-correction schemes to estimate the bias during the model186

run (be it online or offline) using a dynamic model for the bias. This is different from the present187

approach optimizing the bias-correction term. Also, since the bias estimation with the analysis188

uses all available information, one can consider this method as a smoother which provides us with189

a bias-correction term b̂a aimed at modifying the model. This can be used to run a corrected190

model, either in forecast or reanalysis mode. A schematic view of the method is shown on Fig. 1.191
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Create ensemble of 

parametrised bias
Run ensemble of 

trajectories

Assimilate 

observations

Extract analysed bias
Rerun model with 

correction term

Validate correction term 

with external data

correction estimator

correction estimator

Figure 1: Schematic of the method.

In the next sections of this paper, the reference run (also called true run) corresponds to xt (Eq.193

(2)), and the free run to xm (Eq. (1)). The ensemble before analysis, created with an ensemble194

of guessed estimators b̂i, is noted x′′f
i . The analysed ensemble, after assimilating the observations195

yo, is noted x′′a
i (Eq. (13)). Finally, the corrected run or rerun will correspond to xr(m) (Eq. (14))196

with the bias correction b̂a provided by the analysis (Eq. (13)).197

4 Lorenz ’96 Model198

We first test our approach on a fully controlled mathematical model. In 1963, Edward Lorenz199

developed a simplified mathematical model aimed at reproducing atmospheric convection. It is200

notable for having chaotic solutions for certain parameter values and initial conditions (Lorenz,201

1963). Originally, it consisted of a system of three differential equations. In 1996, it was updated in202

its 40-variables form, known as the Lorenz ’96 model (Lorenz, 1996; Lorenz and Emanuel, 1998).203

It models a circular closed boundaries system with advection and diffusion properties. The system204

is described by205

dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + Fk, (15)

where we slightly modify the original version by taking a spatially changing forcing parameter206

Fk instead of a constant one for all the variables.207

208

This model has been widely used to test and improve data-assimilation methods, ensemble209

filters or parameter estimation (Li et al., 2009; Anderson, 2009; van Leeuwen, 2010). Indeed, de-210

veloping new methodologies relies on multiple specific procedures which need to be tested. This211
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preparation work is better done beforehand on a very small model which, even if it does not stand212

comparison with the complexity of realistic models, still enables us to address the multiple issues213

we will be facing later on. Also, even if the Lorenz ’96 model is not particularly complex, it still214

shows similarities with the ocean, in particular, its chaotic behaviour makes forecasting a real issue.215

216

We will use this model in a different way than previous studies. The latter focused generally217

on the value of each variable during the model run. Since our aim is not to correct the specific218

value of the variables, but rather correct the bias that affects those variables, we will look instead219

at the mean value of those variables over a period of time. This choice is motivated by the fact220

that, in some sense, bias is defined as a systematic error over a period of time.221

222

Therefore, we first look at the general behaviour of the model when launched with a set of223

different initial conditions and different Fk values. It is interesting to note that, even though the224

model does show a chaotic behaviour which highly depends on the initial conditions and the Fk225

values, the model mean tends to stabilise itself after a certain amount of time. Lorenz and Emanuel226

(1998) already noted that if F < 4, the waves can extract energy fast enough to offset the effect227

of the external forcing. When F > 4, the model becomes completely chaotic over time and shows228

spatially irregular patterns. Even more, when F > 15, the model becomes totally unstable and229

diverges.230

231

We look at the mean value of the model variables over a certain period of time. We note that232

there is a significant relationship between the variables’ mean over time and the forcing parameter233

Fk. Parameters are set to k = 1, .., 40 (index covering space), and a time step of 0.05, which cor-234

responds to about 6 hours in the atmosphere (Lorenz and Emanuel, 1998). 30 evenly distributed235

values are chosen for 0 < Fk < 10. The model is then run with 450 different initial conditions for236

each Fk, over 1000 time steps. The 200 first time steps are sufficient for the model to stabilise237

itself. The mean of the model variables is taken for the last 800 time steps and averaged over the238

40 variables to obtain the model mean state.239

240

Two cases are studied: in the first, the Fk are constant relatively to k for all the variables:241

Fk = F (Fig. 2a). In the second, we add a random, spatially-correlated noise on the forcing242

parameter in order to obtain a different Fk for each k (Fig. 2b). That new forcing parameter is243

described by244

Fk = F+ SPzk, (16)
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245

Pi,j = 0.3e
−(i−j)2

15 . (17)

Here, SP is the Cholesky decomposition of the covariance matrix P (P = SPSP
T ), and zk is a246

random vector of 40 variables with a normal distribution zk ∼ N (0, I).247
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Figure 2: Lorenz ’96 model mean state as a function of a constant forcing parameter F (Fig. 2a),
and as a function of the average of the spatially variable forcing parameter Fk as defined by Eq.
(16) (Fig. 2b). The X-axis represents the 30 different 0 < F < 10 tested. For Fig. 2b, only the
mean part corresponding to F is plotted for more readability. The Y-axis represents the model
mean state for the 450 initial conditions as a function of F

We can clearly see from Fig. 2a and 2b that there is a monotonic relationship between the248

system mean and the forcing parameter, whether the latter is constant or not. This encourages249

the working hypothesis that even a fully non-linear system in each of its variable can be expected250

to show a simple global behaviour, as long as the system does not include a regime shift. This also251

confirms that even though the model state at a specific point in time depends on the initial condi-252

tions, the time average of the model over the last 800 time steps only has a minimal dependence253

on the initial conditions. This is important since our aim is not to predict the exact value of the254

system at a given point in time. We only aim at correcting the model forcing parameter and the255

bias it causes on the model mean state.256

5 Lorenz ’96 Model twin experiment257

We test our method with a Lorenz ’96 model twin experiment. As shown before, the forcing258

parameter Fk can be considered to be directly linked to the model mean over a period of time.259

First, a random, but spatially correlated Ft
k parameter is created following Eq. (16), with a mean260

Ft = 4. The model is then run once over mmax = 1000 time steps, with lmax = 15 different initial261
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conditions. It is then averaged over the initial conditions and over time while ignoring the first262

200 time steps to avoid the initial conditions to strongly influence the model mean. This provides263

the reference (or true) solution Xt
k, obtained from the full model trajectory X′t

k,l,m as follow:264

Xt
k =

1

lmax

lmax∑

l=1

1

mmax

mmax∑

m=200

X′t
k,l,m. (18)

We follow the exact same procedure to generate an ensemble of imax = 100 different Ff
k,i. Each265

one is also run over 1000 time steps, with 15 initial conditions, and averaged without the first 200266

time steps, producing an ensemble of model solutions noted X
f
k,i.267

268

In the context of a classic twin experiment, we want to assimilate observations yo
k from the ref-269

erence run mean Xt
k. In order to reproduce the behaviour and difficulties of a realistic experiment,270

noise is added to the reference run mean Xt
k and observations are created following271

yo
k = Xt

k + βsXt
k
zk. (19)

Here z(k) ∼ N (0, I) is a random vector, sXt
k
is the standard deviation of Xt

k, and β = 0.1.272

An Ensemble Transform Kalman Filter (ETKF) analysis scheme is then used (Bishop et al., 2001;273

Hunt et al., 2007), where xf is the model forecast with error covariance Pf , K the Kalman gain,274

yo the observations with error covariance R. The best linear unbiased estimator (BLUE) is then275

given by xa. The scheme is described by276

xa = xf +K
(
yo −Hxf

)
, (20)

K = PfHT
(
HPfHT +R

)−1
, (21)

Pa = Pf −KHPf , (22)

where H is the observation operator extracting the observed part of the state vector, and Pa
277

is the error covariance of the model analysis xa. We can rewrite and express Pa = SaSaT in terms278

of square-root matrices, which is possible with the following eigenvalue decomposition279

(HSf )TR−1HSf = UΛUT . (23)
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This helps to avoid forming Pa explicitly, thus removing the need to handle very large matrices280

in real applications. Hence, Sa is given by281

Sa = SfU(I +Λ)
−1/2

UT , (24)

where Λ is diagonal and UUT = I. We then compute the Kalman gain and the model analysis282

with283

K = SfU(I+Λ)−1
UT (HSf )

T
R−1, (25)

xa(k) = xa +
√
N − 1Sa(k). (26)

Note that no inflation factor is used for this experiment.284

285

Using this ETKF scheme, we extend our state vector, which consists of the ensemble model286

mean X
f
k,i, with the ensemble Ff

k,i (Eq. 11). After the analysis step, we obtain a new and updated287

vector of forcing parameter: Fa
k,i. We then rerun the model with this updated forcings, and expect288

the ensemble model mean reruns Xa
k,i to improve and come closer to the reference run. The results289

of this procedure are shown in Fig. 3a, 3b, 4a and 4b.290

291
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Figure 3: Lorenz ’96 model Fk value (Y-axis) for each k = 1, .., 40 (X-axis). The reference run
is shown in black: Ft

k. The ensemble mean before assimilation, representing 100 members, is

shown in red: Ff
k . The ensemble mean after assimilation is presented in blue: Fa

k. The light and
darker areas represent then 25% and 50% percentile of the corresponding colored ensemble before
assimilation (a) and after assimilation (b).
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Figure 4: Lorenz ’96 model Xk model mean state (Y-axis) for each k = 1, .., 40 (X-axis). The
reference run is shown in black: Xt

k. The ensemble mean before assimilation, representing 100

members, is shown in red: X
f
k . The ensemble mean after assimilation is presented in blue: Xa

k.
The light and darker red areas represent then 25% and 50% percentile of the corresponding colored
ensemble before assimilation (a) and after assimilation (b).

In this experiment, the whole ensemble with assimilated forcings is used for the final run. Fig.292

3a and 3b show the forcing ensemble enveloppe before (Ff
k) and after (Fa

k) assimilation respec-293

tively. Figures 4a and 4b show the model mean before (Xf
k) and after (Xa

k) assimilation respectively.294

295

The assimilation of observations on the model mean Xt
k allowed the correction of the bias on296

F
f
k (Fig. 3b). The root mean square error (RMSE) on F

f
k before assimilation was 0.653. After the297

assimilation, it has been reduced to 0.323 for Fa
k, and it is already able to reproduce the global298

shape of the reference run. We also need to look at the model mean (Fig. 4b). The RMSE on the299

ensemble mean X
f
k is 0.099. However, we can clearly see that the model rerun with the assimilated300

Fa
k gives much better results. The RMSE on Xa

k is only 0.037, and reproduces much better the301

shape of the observations. Thus, not only does the assimilation show an improvement on the302

forcing parameter of the model, but its mean climatology is also improved by effectively correcting303

the source of its bias.304

6 NEMO-LIM2305

The primitive equations model used in this study is NEMO (Nucleus for European Modelling306

of the Ocean, Madec (2008) ), coupled to the LIM2 (Louvain-la-Neuve Sea Ice Model) sea ice307

model (Fichefet and Maqueda, 1997; Timmermann et al., 2005; Bouillon et al., 2009). The global308

ORCA2 implementation is used, which is based on an orthogonal grid with a horizontal resolution309

of the order of 2◦ and 31 z-levels (Mathiot et al., 2011; Massonnet et al., 2013). The hydrodynamic310
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model is configured to filter free-surface gravity waves by including a damping term. The leap-frog311

scheme uses a time step of 1.6 hours for dynamics and tracers. The model is forced using air312

temperature and wind from the NCEP/NCAR reanalysis (Kalnay et al., 1996). Relative humidity,313

cloud cover, and precipitation are based on a monthly climatological mean. The sea surface salinity314

is relaxed towards climatology with a freshwater flux of -27.7 mm/day times the salinity difference315

in PSU.316

317

Because of its low resolution of 2◦, the NEMO-LIM2 model is subject to strong bias due to318

poorly located currents in the ocean. This leads to a poorly represented heat transport around319

the globe and causes bias on other variables in the model, such as on the sea surface height and320

temperature. As announced in section 3, we assume that these bias are constant in time but may321

have a spatial structure.322

323

We aim here at estimating a forcing term which will correct the oceanic currents of the model.324

This forcing will be, in practice, a constant acceleration term directly injected into the momentum325

equations of the ocean-dynamics part of the model. These added constant forces on water masses326

will create currents correcting the model bias also for other variables. Although the term ”forcing”327

usually refers to external forcings such as atmospheric wind stress, the forcing term here refers thus328

to an additional source term in the momentum equations. It does not have an external origin, but329

rather aims at correcting the model error such as those arising from poorly represented physical330

processes.331

332

However, since the NEMO-LIM2 model is a realistic model, specific constraints need to be im-333

posed to the forcing term in order to maintain a physical and realistic model behaviour. To create334

a constrained random forcing term, we use DIVA-ND, which is a Data-Interpolating Variational335

Analysis in N dimensions (Barth et al., 2009, 2014). This tool will allow to generate a random,336

spatially correlated streamfunction Ψ(x, y). Meridional and zonal forcing fields for the currents337

can then be derived from Ψ(x, y). However, this could produce currents which are perpendicular338

to the coasts. In order to avoid such physically impossible currents, an additional constraint is339

applied when generating the random field Ψ. We subject the generated streamfunction to the340

strong constraint ∇Ψ • t = 0 where t is the vector tangent to the coast.341

342

DIVA-ND defines a cost function J(Ψ), which is expressed as343

J(Ψ) =

∫

Ω

L4(∇2Ψ)2 + 2L2(∇Ψ)2 +Ψdx, (27)

15



where Ψ = Ψ(x, y) is the random field and Ω the domain on which it is built. This cost function344

penalises abrupt variations over a given length-scale L, and decouples disconnected areas based on345

topography. The Hessian matrix of this discretized cost function is used to create random fields346

taking the periodicity in the model domain into account, with347

J(xΨ) = xT
ΨP

−1
Ψ xΨ, (28)

x
(n)
Ψ = P

1/2
Ψ z(n), (29)

z(n) ∼ N (0, I). (30)

Here, xΨ is the discretized random field on the model grid, P−1
Ψ the Hessian matrix, and z(n)348

a random vector with a normal distribution N (0, I). More extensive information can be found in349

Barth et al. (2009).350

351

We observed that additional filtering is needed on the obtained field Ψ in order to remove very352

small scale signals when calculating the first derivatives of Ψ. This filtering improves the stability353

of the NEMO-LIM2 model when it is forced. Since we also want to create currents only in the354

upper layers of the ocean, but avoid modifying the global circulation in depths, the forcing is355

extended vertically as follow356

Ψ(x, y, z) =
Ψ(x, y)

1 + exp( z−T (x,y)
L )

, (31)

where T (x, y) is defined as the yearly average ocean mixed-layer thickness. The resulting field357

is used as a streamfunction from which zonal and meridional divergence-free forces are derived as358

Fu(x, y, z) = −∂Ψ(x, y, z)′

∂y
, (32)

Fv(x, y, z) =
∂Ψ(x, y, z)′

∂x
. (33)

We can directly add this stochastic forcing terms into the momentum equations of NEMO-359

LIM2, where Fu(x, y, z) and Fv(x, y, z) are zonal and meridional components respectively. One360

then has361

du

dt
= −1

ρ

∂p

∂x
+ fv +

1

ρ

∂τx

∂z
+ Fu, (34)
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dv

dt
= −1

ρ

∂p

∂y
− fu+

1

ρ

∂τy

∂z
+ Fv. (35)

Eq. (34) and (35) provide a set of bias-corrected ocean-dynamics equations governing the362

NEMO-LIM2 model by applying a forcing term on the ocean currents while the model is running.363

The forcing term is a physically coherent correction that will remove some part of the bias of the364

model. It has been calibrated such that the variability of the sea surface height (SSH) caused by365

the forcing is about 28 cm, which can be compared to the root mean square error between the366

NEMO-LIM2 model and the CNES mean dynamic topography of 20 cm (Rio et al., 2011).367

6.1 Twin Experiment368

The next step to test the efficiency of our method is to apply it to the realistic ocean model NEMO-369

LIM2. We proceeded with a twin experiment, using a similar procedure to the one presented in370

the Lorenz ’96 section.371

372

First, a random forcing is generated, with a correlation length of 5000 km. It is afterwards373

referred to as the truth or the reference forcing. The correlation length is chosen in order to be374

sufficiently large enough compared to the ORCA2 grid size (about 200 km at the equator). Longer375

correlation length (up to 10000 km) however did not give a large enough variability in the ensemble.376

This reference forcing is then used with the NEMO-LIM2 model over one year.377

378

Direct measurements of currents are too sparse. However, climatologies of the sea surface height379

(SSH) are available, which are inherently related to the currents in the oceans. For the realistic380

case (see next section), we will thus be using real SSH fields which represents time averages. Due381

to the geoid problem, SSH altimetry data is represented as anomalies without any information382

about the mean state. If one would average SSH altimetry data, one would simply obtain zero (or383

a quantity close to zero). The mean dynamic topography is thus derived by other means, such as384

drifter and gravimetric measurements. Hence, the observations already represent an average. We385

will thus create our observations for the twin experiment by taking the mean SSH of the reference386

run over one year. When we average the model SSH, the reduction in observational error due to387

this time averaging is already taken into account, since every ensemble member is averaged in time,388

causing short time-scale variability to be filtered out.389

390

We then create an ensemble of 100 random forcings and run each of them separately. This391

provides us with an ensemble of yearly mean SSH. We use the Ocean Assimilation Kit (OAK) for392

the analysis step (Barth et al., 2015). A local assimilation scheme is used with an assimilation393
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length equal to the correlation length of the perturbations (5000 km). The mean SSH from the394

reference run (Fig. 5b) are taken as the observations. Our state vector (Eq. 11) consists of our395

ensemble of mean SSH (Fig. 5a), and is extended with its corresponding forcings396

x′′ =




SSH

F̂u

F̂v


 . (36)
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Figure 5: (a) yearly mean sea surface height (SSH) of the ensemble mean runs (in m). The
correlation length of the perturbation is 5000 km. (b) yearly mean sea surface height (SSH) of the
twin experiment true run (in m).

Similarly to the Lorenz ’96 case, we aim at finding the true forcing from the reference run.397

Noise is added to the observations, with a value representing 10% of the local SSH variability of398

the ensemble, in order to have strong noise signal in high variability areas, and low noise in low399

variability area. We expect here that the assimilation will provide us with a satisfying analysis if400

the relationship between Fu,Fv and the SSH can be captured by a linear covariance. Addition-401

ally, the observations used for the assimilation could contain redundancy. This is expressed by a402

redundancy factor α =
√
r. It can be shown (Barth et al., 2007) that the error variance must be403

multiplied by the number of redundant observations r : R = rµI, where µ is the error variance,404

and I the identity matrix. αRMSE is thus the square root of the diagonal of R. Hereafter, we405

refer to αRMSE as the adjusted RMSE (ARMSE). Also, all the model errors are not taken into406

account, which justifies the increase of the ARMSE.407

408

The choice of the value of the error variance is critical. Indeed, in the case of an underesti-409

mated error variance, the analysis deteriorates unobserved variables. However, if overestimated,410

the information contained in the observations is not sufficiently transferred into the model.411

412
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We perform therefore assimilation with ARMSE values between 10−5m < ARMSE < 102m,413

in order to test the sensitivity and efficiency of the assimilation scheme (Fig. 6a). Indeed, a too414

small ARMSE on the observations would overconstrain the analysis, and a too large ARMSE415

would not allow the assimilation scheme to apply a sufficiently large correction. From Fig. 6a, we416

see that ARMSE = 4.6 cm (x-axis) gives the lowest RMSE on the SSH (y-axis) for the assimila-417

tion. The corresponding analysed ensemble mean of yearly mean SSH is shown in Fig. 6b. When418

compared to Fig. 5a, we see that the analysis is satisfactory and is able to retrieve the pattern of419

the reference run.420
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Figure 6: (a) RMSE on SSH from Ensemble Mean before and after analysis, with True Run. (b)
Sea surface height of the ensemble mean after assimilation (in m).

However, this is only the first step of our procedure. What we are really interested in is not the422

direct analysis of the ensemble SSH, but rather the analysis of the zonal and meridional forcings423

with which we augmented the state vector. Since we considered not to have any information about424

the true forcing, the initial background estimate (or prior guess) of the forcing is zero. The analysis425

of the zonal and meridional currents are shown respectively in Fig. 7a and Fig. 7c, and must be426

compared to the true forcing in Fig. 7b and Fig. 7d. We note that the analysed forcings are427

convincingly reproducing the structure of the true forcings that we aimed to find.428
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Figure 7: (a) Zonal Forcing ensemble mean after analysis (in ms−2). (b) Zonal Forcing from the
true run (in ms−2). (c) Meridional Forcing ensemble mean after analysis (in ms−2). (d) Meridional
Forcing from the true run (in ms−2).

Using our twin experiment, and the perfect knowledge that we have on the reference run, we429

can also look at the RMSE between the analysed forcings and the reference run. This is shown in430

Fig. 8a and Fig. 8b for the zonal and meridional forcings respectively, with different ARMSE on431

the SSH observations. We can see that our previous choice of ARMSE = 4.6 cm on the observa-432

tions indeed gives us nearly the best possible results. Since this choice was made solely based on433

the efficiency of the SSH analysis, we are confident in the relationship between the forcings and434

the yearly mean SSH of the model.435

436
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Figure 8: (a) RMSE on Zonal Forcing from Ensemble mean before and after Analysis, with True
Run. (b) RMSE on Meridional Forcing from Ensemble mean before and after Analysis, with True
Run.

One can also compare the total analysed forcing by combining the zonal and meridional com-437

ponents into a vector form in Fig. 9 with the geostrophic currents derived from the SSH bias438

between the twin experiment reference run and the free model run in Fig. 10. Because of the439

non-geostrophic balance near the equator, where the horizontal Coriolis force tends to zero, a 5◦440

region around the equator has been removed for this comparison. One can see on Fig. 10 that441

the geostrophic current derived from the SSH bias is not directly linked to the reference forcing442

from Fig. 9. This stems from the fact that the forcing affects the model globally, whereas the443

geostrophic current has a more local origin.444
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Figure 9: Total forcing ensemble mean after analysis (in ms−2).
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Figure 10: Geostrophic current derived from the SSH bias between the twin experiment reference
run and the model free run (in ms−1).

The last step to take is to rerun the model. The forcing from the reference run is considered446

as the source of the bias acting on the model, and the analysed forcings from the assimilation447

as the bias correction term to apply to the model. The model is rerun a single time with the448

analysed ensemble mean forcing, which corresponds to the analysed bias estimator b̂ from Eq.449

(14). Without this correction, the model free run without any forcing would be biased. The result450

of the model rerun with bias correction is shown in Fig. 11a, and can be compared with the451

true run, displayed in Fig. 5b. Like for the Lorenz ’96 case, Fig. 11a is not the result of the452

assimilation of observations from the true run. It is the rerun of the model with the analysed453

forcing, obtained from the augmented state vector used during the assimilation procedure. The454

rerun with bias correction is able to reproduce patterns in the SSH that are particular to the455

reference run, produced by the true forcing. The last validation of the bias correction term forcing456

the model is shown in Fig. 11b, where the RMSE on the SSH between the rerun of the model457

and the true run is compared to the initial ensemble mean and the analysis. One can note that a458

significant part of the model bias has been removed.459
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Figure 11: (a) Sea surface height (SSH) of the rerun with analysed forcing (in m). (b) RMSE on
SSH from Ensemble Mean before and after analysis, and Rerun, with True Run

Further validation of this procedure is done by the comparison of the model forced rerun with460

the reference run on independent variables. Sea surface temperature (SST) and salinity (SSS)461

are chosen for their relationship to the currents in the ocean through specific mixing and redis-462

tribution of salinity and heat in the ocean. The bias on the currents that this method aims to463

correct has a direct effect on the SST and SSS. The yearly average SST is shown in Fig. 12a464

for the ensemble mean, in Fig. 12d for the reference run, and in Fig. 12b for the model rerun465

with analysed forcing. Fig. 13a, Fig. 13d and Fig. 13b show the SSS for the same runs respectively.466

467

It is clear that typical structures on the SST and SSS fields from the reference run are reproduced468

by the rerun, and are completely absent on the ensemble mean. One can also note from Fig. 12c469

and Fig. 13c that the RMSE on the SST and SSS shows a similar behaviour to the RMSE on470

SSH from Fig. 11b. However, whereas there is a systematic improvement on the SSH reruns with471

analysed forcings, the analysed forcings appear to be deteriorating the SST and SSS for a specific472

set of parameters, in particular when the ARMSE on the SSH is large.473
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Figure 12: (a) Yearly mean sea surface temperature (SST) of the ensemble mean (in degrees
Celsius). (b) Sea surface temperature (SST) of the rerun with analysed forcing (in degrees Celsius).
(c) RMSE on SST from Ensemble Mean after analysis, and Rerun, with True Run. (d) Yearly
mean sea surface temperature (SST) of the twin experiment true run (in degrees Celsius).
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Figure 13: (a) Yearly mean sea surface salinity of the ensemble mean (in PSU). (b) Sea surface
salinity of the rerun with analysed forcing (in PSU). (c) RMSE on sea surface salinity from En-
semble Mean after analysis, and Rerun, with True Run. (d) Yearly mean sea surface salinity of
the twin experiment true run (in PSU).

6.2 Realistic case474

The efficiency of this bias correction method has been successfully tested on a twin experiment475

test case in the previous section. The following covers the results of this method in a realistic case476

experiment.477

478

The same setup as the twin experiment is taken for the NEMO model configuration. Obser-479

vations are however taken from the mean dynamic topography (MDT) of CNES (Centre National480

d’Etudes Spatiales) (Rio et al., 2011). The SSH provided by the MDT of CNES is interpolated481

on the ORCA2 grid. Again, an ensemble of forced model runs is created. The observations are482

assimilated with a range of RMSE fields to find the best compromise between the ensemble and483

the observations. This procedure provides a forcing which is used to rerun the model. The same484

parameters as for the twin experiment are taken: a correlation length of 5000 km, 100 ensemble485

members, and an ARMSE on the SSH observations of 4.6 cm.486

487
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The different relevant RMSE are shown in Fig. 14. One can notice that the RMSE between the488

ensemble mean and ensemble members shows a sufficient enough variability on the model to cover489

the RMSE between the model free run and the CNES observations. Like in the previous section,490

the RMSE of the analysed SSH field is significantly reduced compared to the RMSE between the491

ensemble mean before analysis and the CNES observations. Finally, the rerun of the model with492

the assimilated forcing shows a significant improvement on the SSH RMSE when compared to the493

free run. This means that the analysed forcing effectively removes a part of the error of the model494

on the SSH, through the forcing on the zonal and meridional currents.495

496
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Figure 14: RMSE on SSH from the ensemble mean before and after analysis with CNES observa-
tions, from the forced rerun with the observations, from the model free run with the observations,
and the internal variability of the ensemble.

More extensive results are shown in the following figures. Fig. 15a shows the interpolated yearly497

mean SSH of the CNES observations on the ORCA2 grid. Fig. 15b show the yearly mean SSH498

of the model free run, for the year 1984-1985. in Fig. 15c, the yearly mean SSH of the ensemble499

mean is shown. One can notice the differences between the model free run and the ensemble mean500

of forced runs on the yearly mean SSH. This is due to the fact that, even though the ensemble of501

zonal and meridional forcings has a close to zero mean, the presence of those forcings do increase502

the currents in the ocean, producing a non-zero mean SSH modification. Finally, 15d shows the503

yearly mean SSH of the rerun with the analysed forcing.504

505

When comparing figures 15a, 15b and 15d, one can notice the differences on the SSH between506

the observations, the free model run and the forced rerun. The SSH of the model free run appears to507

be very smooth and does not show the same variability as the CNES observations. This property,508

directly influenced by strong, localised, currents, shows to be improved in the forced rerun. In509

particular, the SSH variations caused by the Gulf Stream are absent from the free run but present510
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in the forced run. Other similar improvements are present around the Cape of Good Hope and511

along the coast of Chili.512
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Figure 15: (a) Yearly mean SSH of the CNES observations (in m). (b) Yearly mean SSH of the
model free run (in m). (c) Yearly mean SSH of the ensemble mean (in m). (d) Yearly mean SSH
of the lowest RMSE model forced rerun (in m).

The final forcing field produced by this procedure is shown in Fig. 16, in vector form. It is513

the optimal forcing resulting from the analysis with the CNES SSH observations, applied to the514

rerun of the NEMO model, a single time, producing the rerun SSH field from Fig. 15d. One must515

remember that even though the initial perturbations did contain some specific physical constraints,516

especially regarding the currents perpendicular to the coasts, the correlation lengths and the depth517

of the forcing, no other properties of the oceanic currents was present in the ensemble of forcings.518

However, Fig. 15a clearly shows some specific real currents, like the Gulf Stream in the North519

Atlantic Ocean, the Humboldt Current, in the South Pacific Ocean, or the Antartic Circumpo-520

lar current. This result is coherent with the limitations inherent with the low resolution of the521

NEMO model, which tends to underestimate the strength of those strong currents. The forcing522

reinforces those currents with a specific correction, effectively accounting for the limitations of the523

non-corrected model. This forcing, intended to correct current biases in the NEMO model, could524

thus be used in the future as an additional forcing on the currents to provide a better and more525

realistic ocean dynamic climatology for NEMO.526

527
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Figure 16: Analysed forcing from CNES observations, used to rerun the model (in ms−2).

In order to validate the final correction field from Fig. 16, the model rerun mean SST is com-528

pared against a mean SST climatology (hence observations) from NODC-WOA94 data provided529

by the NOAA-OAR-ESRL PSD, Boulder, Colorado, USA (Levitus and Boyer, 1994). The RMSE530

of the model free run, the ensemble mean before assimilation, and the model rerun are shown on531

Fig. 17a. One can see that the optimal forcing from Fig. 16 does deteriorate the SST. The origin532

of this behaviour lies in the origin of the model bias. In this work, the bias is only corrected for the533

ocean circulation, whereas in reality multiple other bias sources also affect the model and the SST.534

However, with other parameters for the bias correction on the ocean currents, in particular with535

weaker currents forcing and a correlation length of 10000 km, the effect on the SST climatology536

of the model rerun shows slight improvements, with RMSE as low as on Fig. 17b. Those results537

show that a slight improvement can be obtained on other non-assimilated variables, but the com-538

plicated relations between the different variables and the model bias renders those improvement539

particularly difficult to obtain.540
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Figure 17: RMSE on SST from Ensemble Mean after analysis, Model Free Run, and Rerun, with
Levitus observations. (a) are values for the optimal SSH correction from Fig. 16, (b) are the best
obtained results for the SST with weaker forcing and a 10000 km correlation length.

7 Summary and conclusions541

In this study, a new method of bias correction through stochastic forcing using data assimilation542

has been developed. It has first been developed and tested in a fully controlled environment with543

the Lorenz ’96 model. Some properties of this model have also been studied in order to test its544

responsiveness and the behaviour of the model mean. Due to the successful results, this method545

was then applied to a twin experiment using the NEMO-LIM2 model with the ORCA2 grid. An546

effective method for constructing a physically constrained forcing term was used. The assimilation547

method used allowed the reconstruction of the reference forcing, which showed the efficiency and548

stability of the assimilation procedure. The method also showed significant improvements on vari-549

ables that were not included in the assimilated observations.550

551

Finally, this method was tested with real observations on the NEMO-LIM2 model, in order to552

improve the classic configuration of the model. The assimilation procedure provided a significant553

improvement on the free run, introducing more variability in the SSH structure, especially around554

the Gulf Stream. The specific and physical structure of the forcing resulting from the analysis555

shows the ability of the assimilation procedure to extract, reproduce and correct existing currents556

on which the NEMO-LIM2 model induces errors. However, those corrections deteriorated other557

variables, such as the SST.558

559

The encouraging results of both twin experiments shows that as long as the model is able to560

reproduce the behaviour of the pseudo-observations, the bias correction term is able to effectively561
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improve and diminish the model bias. It is however no longer the case when confronted with real562

observations due to the model inability to reproduce realistic behaviours. The limitations of the563

structure of the forcing, as well as the calibration of the different parameters has been pointed out.564

565

One must note though that is was not the objective of this work to find optimal parameters for566

the bias correction, but rather prove the feasibility of this method. A specific search for optimal567

parameters, in particular for the real experiment using the CNES MDT and independent SST568

validation, should provide better results.569

570

Subsequent studies should concentrate on the possibility of assimilating other variables, as well571

as creating spatially more complex or time-varying forcings to improve the forcing structure. The572

forcings should also be interpreted in terms of physical processes. The effect of the forcing both573

on the assimilated and independent variables needs to be examined. This method should also be574

coupled with other traditional bias estimation schemes of high-frequency variability to provide a575

dual-estimation of the correction to apply.576
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9 Appendix713

One can show that the analysis using the average model state (Eq. (13)) provides the same anal-714

ysed bias b̂a as when the full trajectory is included in the estimation vector (Eq. (6)).715

716

Using i = 1, . . . , N to refer to the ensemble members, the forecast of the model trajectory can717

be defined as718

x′f
i =




x
f(1)
i

x
f(2)
i

...

x
f(mmax)
i

b̂
f
i




, x′a
i =




x
a(1)
i

x
a(2)
i

...

x
a(mmax)
i

b̂a
i




. (37)

The analysis is provided by719

x′a = x′f +
1

N − 1
X′f (X′f )TH′T (H′P′fH′T +R)−1(yo −H′x′f )︸ ︷︷ ︸

W′

, (38)

where720

x′f =
1

N

N∑

i=1

x′f
i , x′a =

1

N

N∑

i=1

x′a
i , (39)

P′f =
1

N − 1

N∑

i=1

(x′f
i − x′f )(x′f

i − x′f )T (40)

=
1

N − 1
X′f (X′f )T . (41)

The observation operator H′ applied to the trajectory x′ also includes a time average and an721

extraction operator H of the observed part of the model state722

H′x′ =

mmax∑

m=1

Hx(m) = Hx, (42)

x =
1

mmax

mmax∑

m=1

x(m). (43)
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Hence, the ensemble mean of the analysed bias correction term b̂′a is contained in the analysed723

model trajectory x′a. One can also first take the time average of the trajectory, defined as724

x′′f
i =


x

f
i

b̂
f
i


 , x′′a

i =


x

a
i

b̂a
i


 . (44)

The analysis is then given by725

x′′a = x′′f +
1

N − 1
X′′f (X′′f )TH′′T (H′′P′′fH′′T + R)−1(yo −H′′x′′f )︸ ︷︷ ︸

W′′

, (45)

where726

x′′f =
1

N

N∑

i=1

x′′f
i , x′′a =

1

N

N∑

i=1

x′′a
i , (46)

P′′f =
1

N − 1

N∑

i=1

(x′′f
i − x′′f )(x′′f

i − x′′f )T (47)

=
1

N − 1
X′′f (X′′f )T . (48)

The ensemble mean of the analysed bias correction term b̂′′a is contained in the analysed mean727

model state x′′a. Given that728

H′x′ = H′′x′′, (49)

it follows that W′ = W′′. Hence, b̂′′a = b̂′a, since they are both constrained by the same729

linear combination of b̂f
i .730
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