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ABSTRACT

The present PhD thesis is dedicated to the characterisation of hollow section shapes’
rotational capacity. More precisely, the effort was made towards suggesting new ways to
resort to plastic analysis, by defining a new and accurate proposition to characterise the
rotation capacity Reqp of sections, which could be associated with the rotation demand of a
structure Rdsem. Therefore, the purpose of this thesis is to establish a direct dependence of the
rotation capacity Reqp With a newly defined cross-section slenderness Acs. Hence, current
design standards disregard the rotation demand of the structure and allow plastic analysis

based on a plate slenderness limit.

To achieve this purpose, an experimental campaign was performed consisting in 23 bending
tests on square and rectangular hollow sections tested in bending, in addition to 8 stub
columns. Then, a numerical model based on the finite element software FINELg was
calibrated to well represent these experimental tests, as well as cold-formed bending tests
from literature. Based on these results, a good agreement between experimental and

numerical results was shown and the numerical software was therefore validated.

Accordingly, since the numerical software was proved to well represent the bending
behaviour of hollow beams, around 8000 finite element simulations were performed while
varying sections dimensions, material properties and loading configuration. These results
reported that actual standards limitations were inappropriate, and stricter values were
proposed. Moreover, based on the numerical computations, a continuous curve capable of
describing the rotation capacity of sections as a function of the cross-section slenderness was
proposed. The production route, loading application and yield strength were identified as key
parameters having a major impact on the rotation capacity of sections. Consequently,
different curves were proposed for each parameter; based on these curves, the rotation
capacity of the section could be compared to the rotation demand of a structure in order to

obtain a practical, safe, and reliable design calculation.
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Introduction

1 INTRODUCTION

Steel hollow sections are being more and more used in structural applications. This is due to
both their aesthetic and static properties. Hence, hollow structural sections require less paint
than open profile and also less maintenance cost since, for example, the water cannot
accumulate on the flanges... Moreover, hollow sections possess a high torsional stiffness

compared to that of wide flange beams and thus require less lateral-torsional restraints.

Nowadays, in order to take advantage of the full capacity of a structure, plastic design is
starting to be more and more exploited mainly in the U.K. and North America. Structures
loaded in bending, and where deflections are not significant, are the structures that benefit the

most from plastic design.

Plastic analysis requires that a beam is able to attain its plastic moment M, and maintain it
through a range of deformations, in order for the moment to be redistributed. This will allow

a collapse mechanism to form without exhibiting local buckling in the cross sections.

This thesis is related to the rotational capacity of rectangular and square hollow sections. The
main aim of this research work is to investigate new ways of defining the possibility to resort
to a plastic analysis in practical design, and to improve current procedures and

recommendations, in order to obtain a more consistent and mechanical approach.

Nowadays, major design standards allow designers to resort to a so-called “plastic analysis
and design” on the sole (direct or indirect) determination of the rotation capacity of a section
while disregarding the rotation demand of the structure. Furthermore, most codes suggest
individual b/ ¢ ratios of the individual plates comprised within the section to give the cross-
section overall response, regardless of many parameters such as moment distribution
(gradient), level of shear, ultimate-to-yield stress, height-to-length ration, ductility
reserves.... In addition, the section’s constituent plates are being considered under ideal

support conditions, i.e. webs and flanges are assumed as pinned-pinned.

Current developments take place in the context of the development of the Overall Interaction
Concept (O.1.C.) [1]. One of the main features of the O.1.C. is the generalised overall relative
slenderness Ar; (Equation 1.1), that allows to account for the behaviour of the whole cross-

section, therefore taking into account its constituents’ plates interaction.
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Rresist represent the factor by which the initial loading has to be multiplied to reach the pure
resistance limit, and Rs74s is the factor used to reach the buckling load of the ideal member

(stability limit).

The O.I.C. is a new design approach that aims at a straightforward design check of the
stability and resistance of steel members. Based on the use of a generalized relative
slenderness - and so-called interaction buckling curves, it can be applied in a similar
manner to cross-section and to member verifications. The relative slenderness value Are
would lead to the determination of a y value called “reduction factor” that represents the
penalty due to instability effects on the pure resistant behaviour. The O.L.C. steps and

procedure is represented in Figure 1.1.

The O.I.C., among other things, is meant to remove the preliminary ‘“Cross-section
classification” design step, i.e. the classification of the cross-section into plastic (so-called
“class 1” in European standards Eurocode 3), compact (class 2), semi-compact (class 3) or
slender (class 4). This is achieved within the O.1.C. through the generalised overall relative
slenderness 4., and through associated cross-section interaction curves that lead to a smooth
and continuous definition of the cross-sectional capacity. Consequently, the classification
step becomes obsolete and disappears in the O.I.C. approach, avoiding many practical

difficulties, inaccuracies and inconsistencies.
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Figure 1.1 — OIC steps; ycs represents the cross-section reduction factor; ycs+mp represents the member
reduction factor; y»s and @ represent safety factors
With the disappearance of the classification system, the criterion allowing the designer to
perform a plastic analysis (formerly allowed for class 1 sections) disappears as well.

Therefore, the need to “re-introduce” such a criterion is clear, and is dealt with in this thesis.

In current work, the generalised overall relative slenderness Arr will be referred to as the
cross-section slenderness Acs, since only the cross section behaviour of hollow sections is
studied in simple bending. Acs therefore constitutes a measure of the cross-section sensitivity

to local buckling.

The basic idea developed in the present thesis consists in an extended use of Acs factor to

define two families of sections:

= sections allowing for plastic analysis and design (“class 17 sections, possessing

sufficient rotational capacity for a plastic failure mechanism to develop);
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= other sections for which the extent of local buckling precludes the attainment of
sufficient ductile deformation for the development of a plastic mechanism, so that

plastic analysis is to be avoided.

In other words, this thesis addresses the possibility to define limit values of Acs as a function
of key parameters in order to replace the Raem Vs. Rcap criterion (see Figure 1.2), where Rdem 1S

the rotation demand and Rcqp is the rotation capacity.

Rotation Capacity Reap Rotation Demand Rdem

Recommendations, codes, charts Structural analysis software

Plastic analysis not allowed

A 4

Plastic analysis allowed |«

Figure 1.2 — Criterion to allow for plastic analysis

In this respect, the state of the art of present research will be presented along with current
codes shortcoming to justify the aim of this thesis. Then, an experimental campaign to
characterise the rotation capacity of beams will be detailed, and the numerical software will
be calibrated against these tests, in order to use it extensively in a numerical campaign. The
numerical campaign will aim at characterizing the cross-section rotational capacity for which
many parameters play a significant role such as section slenderness, shear, yield strength,
L/ h ratio... After defining trends and lead parameters, the rotation capacity will be linked to
the cross section slenderness Acs. In that way, sections that are capable to maintain their
plastic moment to the minimum rotation requirements will be selected, i.e. depending on the

rotation demand of a structure.

—-21 -



State of the art

2 STATE OF THE ART

2.1 Plastic resistance

2.1.1 Brief review on the history of plastic behaviour of steel

In the nineteenth century, the design concept of steel structures was only based on the theory
of elasticity. The basis of elastic design is attributed to Hooke’s law (1635-1703), which

states that stress is proportional to strain.

First tests were performed in order to affirm the elastic behaviour of steel beams, and the first
yielding was considered as the limit load. According to Lay’s notes [2], the theory of
elasticity was confirmed due to two factors. The first factor being that the non-linear
(inelastic) behaviour of the beam (after it reached its yield moment) was regarded as the
beam failure. Hence, the point when first yielding occurred was considered as the limit load.
On this subject, Lyse and Godfrey (1934) [3] wrote: “Since the usefulness of beams is
determined by the maximum load it can contain without excessive deflection, the
determination of its yield point becomes the most important factor in testing.... The ultimate
load has little significance beyond the fact that it is a measure of the toughness of the beam
after it has lost its usefulness.... The yield point strength of the beam was used as the criterion
for its load-carrying capacity”. The second factor that led to confirm the elastic theory was
that since open section were preliminary tested, the specimen was insufficiently braced
against lateral torsional buckling which resulted in premature yielding (before the beam

reached the plastic moment).

In order to demonstrate the applicability of plastic analysis to structural design problems,
intensive research, both theoretical and experimental, was performed worldwide. The
experimental work conducted was mainly on prototype structures mostly constituted by

standard wide flange and I sections made from structural steel.

Ewing (1899) [4] was the first to mention the plastic theory and suggested a plastic
distribution of the stress along the section. His suggestion remained a theory since no
recorded tests were performed to confirm it. He stated that if the bending moment was
increased beyond the elastic moment M., then: “the outer layers of the beam are taking

permanent set [yielding] while the inner layers are still following Hooke’s Law... and any
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small addition to the stress produces a relatively very large amount of strain”. Ewing [4] also
determined the full plastic moment of a rectangular cross-section to be equal to ba*/4 f,

where b represents the width of the section, / the height and f; the yield stress.

Probably, Meyer (1908) [5] conducted the first experiments to evidence the plastic behaviour
of beams. Meyer tested simply supported beams of rectangular cross section with single point
loads and noticed that once the plastic moment M, is reached, the deflection increases

rapidly.

Kazinczy (1914) [6] may have been the first to suggest that due to the section plastification, a
plastic hinge is developed. He tested H-shaped beams loaded uniformly and fixed on both
ends by encasing them in concrete. He concluded that the system ultimate load is not reached
until three plastic hinges are formed. He proposed to analyse static indeterminate structures

with the use of a ‘plastic solution’.

Kist (1920) [7] proposed the elastic-perfectly plastic law material (which is still used
nowadays for hot formed steel) in order to calculate the ultimate load. In 1926, moment

redistribution and the ultimate load theory was developed theoretically by Griining (1926)
[8].

The most known of the early researchers on plastic behaviour of beams was Maier-Leibnitz
(1928, 1929) [9], [10]. He performed tests on simple, continuous and fixed-end beams and
observed a considerable ductile behaviour. He then underwent some theoretical investigations

based on the ideal plastic material law.

In 1930, Fritsche [11] was the first to derive equations for the plastic bending moment My of
rectangular and H-shaped cross-sections in the case of pure bending. He also concluded that
for hot formed sections, no strain hardening is to be expected at low levels of strains and that
99% of the plastic moment M, is reached at a strain of 4-5%. Moreover, based on test by
Meyer (1908) [5], Maier-Leibnitz (1928) [9] and Schaim (1930) [12], Fritsche concluded that
the yield stress of mild steel represents the most critical parameter for the calculation of the

ultimate load.

In 1931 and 1932, Girkmann [13] suggested a plastic design method for indeterminate
frameworks that were based on his own tests, and wrote: ‘Apart from the savings in weight

that can be achieved, the use of this method makes it possible to reduce the maximum
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moments, to even out the differences in the thicknesses of the cross-sections required and

hence to simplify the construction details and reduce their costs’.

Being inspired by the ultimate load test performed by Maier-Leibnitz, Baker and Roderick
(1938, 1940) [14], [15] extended plastic analysis to complete structures, and tested small
scales portal frames. They found that portal frames had a big reserve in strength compared to
the point were the first yield is developed, and that large deflections only occur after a
mechanism is formed. Their research resulted in the incorporation of the design of steel

structures according to the ultimate load method in the British standard 449 in 1948.

Research into plastic design continued in Cambridge after World War 2. The first book on
plastic theory of structural steel work was then published in 1956 by Baker &al [16]. This
book summarised 10 years of research in the Cambridge University, the fundamental theorem
of the ultimate load theory and provided a large list of references. By 1960, the plastic design
method was widely accepted by the engineering community although some critics still

remained.

In the 1970s, and even while some critics remained, the plastic theory was solid enough, and
was promoted in the European recommendations for the plastic design of structural steel

structures, mainly by Massonnet (1976) [17].

In the United States and at Lehigh University, a wide scope of investigation on plastic design
of structures constructed from I-sections was performed in 1940-1960. The research program
included tests on beams, large scale multi-story braced and unbraced frames, and developed
design aids for use in plastic design. Results are mainly summarised by Driscoll et al. (1965)
[18] and Galambos (1968) [19]. The Lehigh research forms the basis of the plastic design

rules found in many steel design specifications in America and in Australia.

2.1.2 Plastic moment calculation:

When a beam is tested in bending, its deformation induce beam rotation denoted 6, curvature
x and strains ¢. All these values that quantify the beam deformation are proportional and can
be linked altogether. These deformations result in internal forces within the beam such as

bending moments.

The plastic moment denoted M) is defined as the moment at which the entire cross section

has reached its yield stress. As seen in Figure 2.1 for the case of a symmetrical cross-section
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tested in bending, when strain hardening is reached, the plastic moment is exceeded. For hot-
formed sections, strain hardening is initiated at high rotations values (also high strains and
high curvatures); it is at this moment that the stress can exceed the yield stress. In the case of
cold-formed RHS, strain hardening is reached directly after yielding; since there is no plastic

plateau, the stress increases beyond the plastic moment M, at low strains.

In this thesis, for determining the plastic moment, steel is idealised as an elastic-perfectly

plastic material for both hot-formed and cold-formed material law.

Idealisation of a section structural
behavior for a cold-formed material law

Moment M
A
. . £<¢gy > >

Theorectical plastic — - Y £ & €7 &
moment assumption m

I s Z Z

/ Idealisation of a section structural
behavior for hot-finished material law G <0y G >0y G >Gu

7 j j\ Strain hardening

Elastic-plastic-strain harderning idealisation
of a hot-finished hollow cross-section
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»
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Figure 2.1 — Idealised moment-strain behaviour of a hollow cross-section

2.1.3 Elastic and inelastic behaviour of plates

To determine the ultimate capacity of a section, two primary concerns should be investigated:
the first one deals with the strength of the section, i.e. the section plastic resistance defined in
§ 2.1.2; the second one deals with the ability of the section to support a specified load without
undergoing instabilities. A brief review on the elastic and inelastic behaviour of plates is

described hereafter.

To determine the elastic local buckling of thin rectangular plate, we can consider a long plate

of width b and thickness ¢, with in plane stress N_, as shown in Figure 2.2. The plate can

buckle out-of-plane, with out-of-plane deflections w as represented in Figure 2.2.
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Figure 2.2 — Local buckling of a rectangular plate

The differential equation for elastic local buckling of the plate is given by Bryan (1891) [20],

where F is the modulus of elasticity, v is poisson’s ratio:

Er o'w o'w  O'w o’w
2 el A2 T A |T Va3 2.1
12(1-v7){ ox ox oy 0Oy ox
The solution for the elastic local buckling stress o, is given by:
2 2
o = kn°E _ H 22

To2(1-0)(b/t) (b/t)

Where £ is the plate buckling coefficient which depends on the nature of the stress
distribution across the plate and on the support conditions of the plate. Figure 2.3 shows the k£
values for simply supported plates subject to compression or bending. These two loading
cases represent the cases of flanges and webs of rectangular and square hollow sections (RHS

and SHS).
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Figure 2.3 — Plate buckling coefficient

During the yielding process the material is heterogeneous since yielding takes place in so-
called slip bands; the strain jumps from the yield strain to that at the beginning of strain
hardening. Because of the yielding process, the material cannot be expected to remain
isotropic. Therefore, general expressions for the buckling strength are derived assuming the
material to have become orthogonally anisotropic [21]. When all the material has been
strained to the strain hardening range, the material again becomes homogeneous. The
differential equation that describes the inelastic local buckling load for thin rectangular plate
subject to compression in the x direction may be written as given in Equation 2.3:

4 4 2
r—+2f 62 a—ff +ﬂa—vf=o 2.3
ox*oy* Oy D ox

Where 7 =E, / E (E, is the tangent modulus of steel), and D = %
There are many other sources of information on elastic and inelastic local buckling of plates.
Bleich (1952) [22], Haaijer (1956) [21], Galambos (1968) [19], Johnston (1976) [23],
Ostapenko (1983) [24], and Timoshenko & Gere (1969) [25] provide significant summaries

of plate local buckling.
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2.1.4 Definition of rotation capacity

The capacity of a section has been exposed before; here, ways to define their reserve in
ductility are investigated. This is made through the definition of the rotation capacity Rcqp of a

section, which is a mean to quantify the reserve in ductility of a section.

In the practice of plastic design of structures, ductility is defined as the capacity of a structure
to undergo deformations after reaching its initial yield without any significant reduction in its
ultimate strength. Hence, a steel beam cannot sustain infinite curvature, so, at a certain
curvature, failure occurs. The most common mode of failure is local instability (buckling) of
the plate elements in the section. The rotation capacity Rcqp is defined as in Equation 2.4,
where 6 represents the beam end sections’ rotation and its limit values 6, € and 6,12 are
defined in Figure 2.4 below. 62 is the limiting rotation at which the moment drops below

Mpl.

- o
_ pL__pr2 4 2.4

Rotation @

Figure 2.4 — Generalized moment-rotation curve and definition of the rotation capacity

Moreover, some beams may fail before reaching the yield moment or the plastic moment.
The rotation capacity Rcsp is only calculated once the plastic moment is reached. It is a
measure of how much the plastic hinge can rotate before failure occurs. Figure 2.5 exhibits
typical normalised moment-rotation curves for different sections. These sections are
classified into groups depending on their behaviour under bending according to EC3 cross-

section classification system. From Figure 2.5 we can see that a section is classified as
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“class 2” if it can reach its plastic moment, but fail to attain a rotation capacity of 3; whereas

a section is classified as “class 17 if it can reach a rotation capacity that is larger than 3.
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Figure 2.5 — Moment-rotation curve for different sections with the EC3 classification

2.2 Plastic analysis

In the previous section, we detailed the history of the plastic behaviour of steel and the cross-
section capacity in term of resistance and instability for the case of bending. In the following
section, the behaviour of simply supported beams will be detailed to explore how a beam
with known cross-section properties will behave under a specified load and distribution. Then
the basics of plastic design will be detailed along with the plastic rotation requirements for

practical indeterminate structures.

2.2.1 Behaviour of a simply supported beam:

In this section, we present a brief review of the behaviour of beams loaded under major
bending axis. Both cases of beams loaded under a moment gradient and the ones loaded
under a uniform moment are presented. The plastification process is important for steel in
plastic design, as it ensures that the plastic moments at yielded sections can be maintained for
the cross section to sustain loading beyond its elastic limit. This section was mainly

influenced by the paper of Kerfoot [26].
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2.2.1.1 Beam under uniform moment

When a beam is loaded under uniform moment, a plastified region forms. Due to the
discontinuous stress-strain relationship of steel, yielding takes place in small slip bands by a
sudden jump of strain. Therefore yield lines occur at intervals along the region of uniform
moment as shown in Figure 2.6 and additional deformation result in additional yield lines.
The occurrence of yielding at discrete points results in discontinuities in the curvature. Some
portions of the region of uniform moment are at curvature corresponding to the first yield x;

and others are at the curvature corresponding to complete yield xsr (strain hardening).
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Figure 2.6 — Beam under uniform moment

Figure 2.6 shows the case of a beam under uniform moment. The applied load is plotted as a

function of the rotation occurring on the beam end and consists in four parts:

= The elastic range (segment OA) in which the beam behaviour is linear

= The contained plastic flow region (segment AB) in which the curve becomes non-
linear because of the effect of residual stresses, and of partial yielding. For cold
formed cases, residual stresses are more important and affect the beam behaviour. For

this case, the curve departs from the predicted curve at the proportional limit, which is
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indicative of initial yielding of some fibres, and reveals a significant influence of
residual stresses at the beginning of the plastic range.

* The segment BC in which large rotation occurs with little increase in load. For the
case of the hot-formed material law, a plastic plateau is witnessed where the beam is
yielded. In this range, the theoretical plastic moment is not fully reached due to some
unyielded zones; for very stocky sections strain hardening occur, and values beyond
My are reached. For cold formed sections, and since the material law exhibit a
rounded response, the moment-rotation curve exhibit this same tendency and
moments beyond M, are reached.

* The unloading region (segment DC) where the reduction in load is accompanied by
large buckling of the individual plate elements of the section.

= For beams under uniform moment, the moment remains constant at My until the
average strain in the compressive flange reaches the strain hardening strain gsr value
along the entire region of the uniform moment. Only then can the steel strain harden

and the moment can exceed My [27].

The rotation capacity of this beam is the difference in rotation between point A and C. it is

the portion of the curve in which the plastic moment M, is exceeded.

Since hot-formed sections only achieve the plastic moment at high strains, due to their very
large yield plateau, Stranghoéner [28], Lay & Galambos [29], Sedlacek [30] and Chan &

Gardner [31] based the rotation capacity on achieving 95% of the plastic moment.

2.2.1.2 Beams under moment gradient:

The behaviour of the beam under moment gradient differs significantly from that of a
uniform moment distribution. In the moment gradient case, due to the stress strain
relationship of the material, a discontinuity of the curvature function is witnessed at the
boundaries of the yielded zone (Figure 2.7). The strain, and thus the curvature, are at excess

of the strain hardening value over the entire yielded region.
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Figure 2.7 — Beam under moment gradient

The Moment rotation curve represents the influence of residual stresses, the shape factor, and
strain hardening. Hence yielding start to occur at point A because of the presence of residual
stresses which cause a slight reduction in stiffness. Then, the rotation start to increase rapidly
once the plastic moment is reached and local buckling is observed. However, local buckling
does not induce strength degradation, but the moment continues to increase. Under a moment
gradient, yielding of the beam is confined to the region of maximum moment and cannot
spread along the length of the beam unless the moment increases. Therefore, as soon as the
plastic moment M) is reached, the steel strain hardens and the load can be increased and
yielding can spread along the length. The onset of local buckling is only initiated when the
compression flange has yielded over a length sufficient to form a buckled shape, and will

continue to increase until the yielded length is equal to a full local buckling wavelength.

2.2.2 Rotation capacity quantification and sensibility

The behaviour of beams under bending have been detailed before, and the beam response was

seen to vary depending on the load introduction, in terms of ultimate capacity and of ductility
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(i.e. rotation capacity); therefore, ways to quantify and asses the sensibility of the rotation

capacity to different parameters is investigated.

To date, many Researchers developed equations to quantify the plastic rotation capacity of
steel members. To cite a few, Lay and Galambos (1967) [32], Kemp (1984) [33], Kato (1989)
[34],, Ziemian & al (1992) [35]... proposed analytical expression for determining the plastic

rotation capacity of I and H sections.

Moreover, efforts were also made to experimentally define key parameters that affect the

rotation capacity.

In 1969, Luckey & Adams [36] identified from experimental tests that a section possess

reserve in strength even after the local buckling load has been reached.

Kuhlmann (1989) [37] indicated three governing parameters for the rotation capacity: the
flange slenderness, the web stiffness and the steepness of the moment gradient. She observed
that the flange slenderness was the most important parameter. Khulmann also stated that
higher rotation capacities were achieved for steep moment gradient. This observation was
also reported theoretically by Lay & Galambos (1967) [32] and experimentally by
Stranghoner & al (1994) [38].

Moreover, Khulmann [37], Ricles &al [39] and Wang & al [40] indicated that the yield to
ultimate strength ratio of the material (also named strain hardening modulus) improves the

postbuckling behaviour.

Wilkinson (1999) [41] assessed the plastic behaviour of cold formed rectangular hollow
sections and found that class 1 slenderness limit for RHS were unconservative and proposed a
new limit that incorporates flange-web interaction. He also found that the magnitude of the
imperfection had an unexpectedly significant impact on the rotation capacity especially for

stockier sections.

Boeraeve & Lognard (1993) [42] also stated that the initial geometrical imperfections of a
beam influence the moment rotation curve and the plastic hinge formation mainly in its

decreasing part (after the maximum bending moment has been reached).

More recently, the trend to define the rotation capacity of sections has been mainly

investigated through numerical (finite element) methods. Current developments that consist
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in determining the inelastic deformation capacity of a section are mainly developed as a

preliminary step aimed to calculate the moment capacity of a section.

Shifferaw and Schafer (2007) [43] presented a relationship between the ultimate strain & to
the yield strains & ratio and the cross-section slenderness for the case of pure bending. This
method was used for the calculation of the inelastic moment capacity of cold-formed

members, considering the influence of local buckling.

Moreover, strain based approached have also been extensively developed for stainless steel
and extended to carbon steel at Imperial college and resulted in the continuous strain method
CSM [44]. The CSM features two key components: a base curve that defines the level of
strain that a cross-section can carry and a material model that, combined with the proposed

strain curve, is used to determine the cross-section resistance.

2.2.3 Basics of plastic design

Following the characterisation of the rotation capacity of sections, the rotation demand of
indeterminate structures should be investigated in order to define recommendations to permit
the use of a plastic analysis. Sections that are capable to maintain their plastic moment to the
minimum rotation requirements would be eligible for plastic design. In this section, methods

to define the plastic demand of structures are briefly detailed.

For a statically indeterminate structure, failure does not necessarily occur when the plastic
moment is reached at a certain position. However, at this location, a plastic hinge is formed
that maintain this plastic moment and undergo rotation so that loading is transferred to other
parts of the structure. The structure fails when a collapse mechanism forms, that is when

there is a sufficient number of plastic hinges.

The general methods to find the plastic limit load of a structure are based on two fundamental
theorems: 1) the lower bound, or Static theorem, where the load factor is computed based on
an arbitrarily assumed bending moment diagram, due to external applied loading, and on the
fact that the plastic moment M, is nowhere exceeded; i1) The upper bound, or Kinematic

theorem, where the load factor is computed on the basis of an arbitrarily assumed mechanism.

The most commonly used analytical method for plastic analysis of indeterminate structures

consists in the virtual work method. This method consists in equating the external work
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(produced by loading) to the internal work (produced by the plastic moment at the plastic

hinge), during a virtual movement of the collapse mechanism.

In order to perform a plastic analysis of a structure, many assumptions are made in the virtual

work procedure:

= Jt is assumed that no instabilities can occur in term of plate buckling or global
buckling of the beams or structure.

= The elastic deformations of the beam are disregarded.

= The hinge is considered of zero width, thus, the curvature is assumed infinite at the
plastic hinge location.

= Strain hardening is disregarded. This lead to the assumption that the plastic moment is
never exceeded (the reserve in strength from strain hardening is ignored), and that
plastic hinges rotate with zero flexural stiffness. This approximation is however safe
sided and generally induces small errors as stated by Neal (1977) [45].

= The plastic moment value of a section is not influenced by normal force or by high
level of stress concentration induced by point loads.

= Second order effects due to the formation of hinges are disregarded.

= Initial geometrical imperfection are ignored.

Following these analytical and manual methods, early development of plasticity problems in
a general finite element approach started in the late sixties. Nowadays, mathematical
programming methods have become an important area of research in engineering plasticity.
However, computer programs for plastic analysis of framed structures have been written as
specialist programs and are consequently not available commercially. Therefore, very few are

being used for daily routine design [46].

2.2.4 Required rotation capacity

In this section, the rotation demand of structures is investigated. Plastic rotation starts when a
section reaches its plastic moment. Then, plastic hinges must be able to rotate a certain
amount in order to redistribute the bending moment, and eventually form a plastic collapse
mechanism in a particular structural situation. This rotation for which the plastic moment is
maintained is called the rotation capacity requirement (or rotation demand). The required

hinge rotation depends on the nature of the loading, the properties of the section, the structure
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geometry and so on. Analytical studies have been performed throughout the years to

determine maximum plastic rotation requirements for practical structures.

Kerfoot (1965) [26] analysed wide flange beams with three span and two point loadings per
span. He found that only in extreme cases a rotation capacity greater than MpuL/El, where L is
the span length, would be required to form a plastic collapse mechanism. Kerfoot replaced
the term MpiL/EI with the term 2&,SL/d in order to show that the rotation capacity required to
form a mechanism, is directly proportional to the yield strain and to the length-to-depth ratio
(where d is the height of the section, S is the shape factor defined as S = Mp/Mei and & is the
yield strain). Hence, Kerfoot showed that a beam with high strength steel would require more

rotation in order to form a plastic mechanism.

Driscoll (1958) [47] considered three span beams with distributed loads and extended the
analysis to frames. He stated that higher rotations were required for multi-span frames than
for single-span frames. This is expected in highly redundant structures, since a more

extensive redistribution of moment is required in order for many hinges to form.

Moreover, for a highly redundant structure, the load-deflection curve converges towards the
maximum load with large deflections. It happens that large rotations are sometimes required
from some of the hinges to only create small increases in the capacity of the structure.
Driscoll (1958) [47] analysed a double frame structure with dead loads and wind loads as
represented in Figure 2.8. Wilkinson [41] summarised his results and stated that: “at the
ultimate load and formation of the plastic collapse mechanism, the first hinge had to rotate
1.52 Mul/EL At 98% of the ultimate load, the first hinge had rotated 0.54 MuL/EIl In design
situations, achieving slightly under the calculated maximum load is acceptable, and therefore
the practical rotation capacity requirements can be less than the very large theoretical values

’

of rotation calculated in some highly redundant frames.’
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Figure 2.8 — Theoretical load-deflection curve for two-span pitched frame [47]

Since the required rotation capacity differ according to the loading and geometry of a
structure and since the calculation of this value for complex structures can sometimes be
complicated, time consuming and unreliable, as stated by Galambos (1968) [27] and Yura et

al. (1978) [48], a limit value that covers most common practical situations was established.

The Eurocode 3 Editorial Group [49] summaries the maximum rotation requirements for
different systems after varying a set of parameters (see Figure 2.9). They found that a value
of Raem =3 was suitable, and was therefore chosen to derive the b/ ¢ ratios for I-sections.

Yura, Galambos and Ravindra [48] also stated that the AISC specification based on Raem = 3.
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Figure 2.9 — Rotation requirement for structures as summarised in [49]

Korol and Hudoba (1972) [50] considered hollow sections and stated that in order to cover
most civil engineering structures for plastic design, a value of Rsem =4 was recommended as
the minimum necessary to ensure that a mechanism could form. Based on this
recommendation, Hasan and Hancock [51] and Zhao and Hancock [52] used the limitation of

Rdem = 4 to determine suitable plastic slenderness for the Australian Standard AS 4100.

Kuhlmann [37] analysed continuous beams on four supports loaded by a point load at mid-
span, and suggested that a value of Rsem = 2 was sufficient for continuous beams. Neal [45]

also gave the same recommendation for continuous beams.

Stranghoner, Sedlacek and Boeraeve [38] investigated the behaviour of hollow sections and
highlighted that different rotation requirements are reached in this case, since the shape factor
of hollow sections is different than I-sections. They found that Rien = 3 was adequate for

continuous beams.

As a general comment, it can be noted here that in seismic regions, greater rotation capacity

needs to be provided for plastic analysis; however, this area is not the subject of this thesis.
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As a summary, analysis was performed on the rotation capacity requirements for the most
common structures and rotation of the order of 3 ~4 was found suitable and used in most

standards for the derivation of plate slenderness limits.

It has also been outlined that the calculation of the required rotation capacity is difficult and
time consuming. This process can also be sometimes unreliable (but generally always safe-

sided), because some parameters that affect the results are neglected, and are listed below:

= Strain hardening is ignored. However, if included, smaller rotations capacities are
required.

= In some extreme cases, the theoretical ideal hinge capacities are considerable due to
zones of high moment gradient or to some extreme structures conception (single-story
frames with very steep gables) where the ideal assumptions are invalid;

= Moreover, for extreme situations, it was shown that the rotation requirements are
greatly diminished for a load just a few percent below the system peak load.

= Plastic analysis has been traditionally used under proportionally increasing loading.
However, there are cases under which the traditional methods of plastic analysis
cannot be applied (effect of foundation settlement, increasing temperature caused by

fire...) [46].

Hence, the assumption made in current standards that defines the level of required rotation
capacity is made for simplicity and rapidity of the design. This assumption (Rsem = 3 or 4) is
based on traditional and simple structures where the number of plastic hinges is small before
collapse occurs. Nevertheless, for highly redundant steel structures, it is more realistic to
check the actual plastic rotation demand of the structure, because of the high number of
plastic hinges that would occur and lead to large plastic rotations. The rotation demand

should then be compared to rotation capacity of the section: Raem < Reap

2.3 Plastic design
2.3.1 Treatment and background of main design codes

2.3.1.1 Slenderness limits

Rules concerning local buckling are required for the design of structural steel members.

Therefore, in any specification, the combination of cross-sectional dimensions and yield
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strength are taken into account, in order to determine limits at which local buckling can be
expected to occur for a designer. In other words, to prevent premature local buckling,
slenderness limits for the plate elements in members have been established, and sections are
considered as being constituted of individual flat plate elements. The elastic buckling stress

given in Equation 2.2 can be rearranged in terms of the geometrical slenderness limit b / ¢:

t

b H b
—SF or7\/7y£H 2.5

y

The plate relative slenderness 4, is defined as follows:
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Slenderness limit from different standard will be compared to point out the diversity among

2.6

several specifications. The comparison will only be focused on rectangular sections subject to
bending. The examined standards are listed below, and Table 2.1 summarises the terminology

in these standards to avoid any confusion.

(1) Eurocode 3 [53], ( EC3 ), 1993, Common Unified code of practice for steel structures;
(i) AISC [54], ( AISC), 2005, Specification for structural steel buildings;

(i11) BS 5950 Part 1 [55], ( BS 5950 ), 2000, Structural use of steelwork in building;

(iv) DIN 18800 Teil 1 [56], ( DIN 18 800 ), 1990, Steel structures, Design and construction;

(v) AS 4100 [57], (AS 4100 ), 1998, SAA Steel structures Code.

Table 2.1 — Denomination of cross-section classes in each specification

Specification Types of classes
Eurocode 3 Class 1 Class 2 ‘ Class 3 Class 4
AISC Compact Non-compact Slender
DIN 18800 P-P E-P E-E
BS 5950 Plastic Compact ‘ Semi-compact Slender
AS 4100 Compact Non-Compact Slender

Since plastic design is the object of study in the present thesis, only the background of the
limit between class 1 and 2 will be detailed hereafter. It is therefore reminded here, that this

limit was based on the fact that a cross-section is able to maintain the yield stress for a
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substantial amount of deformation to prevent premature local buckling, and hence allow

moment redistribution and the formation of a plastic hinge.
Development of the plastic limit for plates in compression supported on both edges:

Haaijer & Thurlimann (1958) [58] first examined theoretically the problem of inelastic plate
buckling under uniform compression, with the object of deriving plate buckling equation
which is applicable to the strain-hardening range. The plastic limit for compressed hot-
formed elements supported on two edges was determined for 36 ksi (248 MPa) steel while

assuming an inelastic rotation capacity R = 3:

b=t <323 2.7

t
Korol and Hudoba (1972) [50] investigated experimentally the behaviour of SHS, RHS and
CHS in both hot-formed and cold-formed steel, with a total of 31 tests on single span and
three span beams. Due to the lack of strain hardening and the high level of stress
concentration induced by the load application method, most sections did not exceed the
plastic moment calculated from measured properties. The proposed limit for RHS and SHS

flanges was given for a rotation capacity of 4 and using the nominal yield stress guaranteed

b-2r, ‘/Lszs 2.8
r V250

The experimental work of Hasan and Hancock (1989) [51] and Zhao and Hancock (1991)
[52], who performed bending tests of Grade C350 and C450 on cold-formed SHS and RHS

by the manufacturer:

under uniform moment, was combined; and the flange slenderness limit for plastic design

assuming an inelastic rotation capacity R = 4, was given as:

b-2t | [,
t 250

<30 2.9

Following the research work detailed before, slenderness limit have been defined in design
standards. Table 2.2 gives the flange slenderness definition and plastic limits for square and
rectangular hollow sections under major axis bending (flange is in compression) for

Eurocode 3, AISC, DIN 18800, BS 5950 and AS 4100. It is to be noted here that only the
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British standard BS 5950 takes into consideration the production route of the section, whether

it is hot-rolled or cold-formed, and gives different slenderness limitations accordingly.

Table 2.2 — Plastic flange slenderness limits of RHS in bending

Specification Fabrication process Flange slenderness Slenderness limits for plastic
definition border
Eurocode 3 HF-CF b-2r, L 33
t 235
AISC * HEF-CF b2, |1, 112
t E
DIN 18800 HF-CF b-2r, L 32
t 240
- ‘ b-3t |275
HF b3 |/, 28 but <80~ 2% |22
BS 5950 t 275 t N/
- , b-5t [275
CF ﬂ f“‘ 26but <72——— |—
t 275 t fy
AS 4100 HF-CF b2t |/, 30
t 250

*AISC considers E =29000 Ksi (=200000MPa)

Development of the plastic limit for plates in bending supported on both edges:

Generally, in current design standards the same slenderness limits applies to the webs of RHS
and I-sections. Most research on web slenderness limits consisted of tests of simple plates or
I-sections. One can cite the main research performed: Lyse and Godfrey (1934) [3], Haaijer
(1957) [59], and Haaijer and Thurlimann (1957) [60], Kerensky, Flint and Brown (1956)
[61], Holtz and Kulak (1973, 1975) [62] [63], Perlynn and Kulak (1974) [64], Nash and
Kulak (1976) [65], Horne (1979) [66], Dawe and Kulak (1986) [67], Della-Croce (1970)
[68], Costley (1970) [69], Galambos (1976) [70], Edinger and Haaijer (1984) [71].

All of the previous research listed above indicates that the web slenderness limits are based
on tests of [-sections. The slenderness limits in current design standards (see Table 2.3) are
applicable to both RHS and I-sections, although the nature of the web restraint of an RHS is
different to that of an I-section web: i) the centre of the flange of an I-section restrains the
web, whereas the ends of the flange restrain the webs of an RHS, ii) the area of the two webs

of an RHS consists of about 50 to 75 % of the total area of the section whereas for an I-
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section the web is typically 35 - 45% of the total area, so the influence of the web is greater in

RHS and SHS than in I-sections.

Also it can be noted that since the first manufactured RHS were either square or rectangular
with low aspect ratios, thus, in bending, flange buckling would prevail before web buckling
and therefore not much attention was given to this problem. Nowadays, since RHS have been
produced with higher aspect ratios, a more global approach, that takes into account the flange
web interaction and propose new limit to allow for plastic analysis, should be introduced.
Hence, it is usually conservative to assume that the webs of RHS sections are simply along

their edges, since the flanges normally provide some torsional restraints.

Table 2.3 present the web slenderness definition and plastic slenderness limits for SHS and

RHS under bending for Eurocode 3, AISC, DIN 18800, BS 5950 and AS 4100.

Table 2.3 — Plastic web slenderness limits of RHS in bending

Specification Fabrication process | web slenderness definition Slenderness limits for plastic
border
Eurocode 3 HF-CF h- 2, L 72
t 235
AISC HE-CF h=2r, |/, 3.76
t E
DIN 18800 HF-CF h=2r, | S, 64
t 240
HF H L 64
BS 5950 t 275
CF h=5t L 56
t 275
AS 4100 HF-CF h=2 | 1, 82
t 250

Different hypothesis and experiments lie behind the derivation of the limits for each standard
which explain the different limitation in the codes. A more complete summary of limits in
several steel design specifications and their background can be found in Bild & Kulak [72]

and Wilkinson [41].

Since diverse definitions lie behind the flange and web slenderness limitations of the different

standards, all values has been converted to the EC3 definition in order to be able to compare
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the proposed limits. Table 2.4 shows the slenderness limit of the different standards

according to the EC3 definition.

From Table 2.4, it can be shown that current standards display some disparities in their flange
and web slenderness recommendations. It can also be pointed out that the AISC possesses the
highest web slenderness limit in comparison with the other standards, while the AS 4100 has
the lowest flange slenderness requirement. Based on these results that highlight the
inconsistencies in the derivation of actual limits, new investigations should be performed to

define more accurate propositions to allow the use of plastic design.

Table 2.4 — Class 1-2 slenderness limit according to EC3 definition

class 1-2 border according to EC3 definition => /,=?

Conditions | Eurocode 3 AISC DIN 18800 BS 5950 AS 4100
HF: 30.3e =>
% 33e=> 32.5e => 30.8e => 4p=0.53 24.0e =>
A=0.58 A=0.57 A=0.54 CF: 28.1¢ = Ap=0.42
7p=0.49
HF: 69.2e =>
72 => 109.65 => 61.7¢ => 4p=0.50 65.65 =>
j A4=0.52 4=0.79 A=0.44 CF: 60.6c => A4p=0.47
p=0.44
2.3.1.2 Material requirements

In addition to the section slenderness specifications, current design standards have material
ductility requirements in order for plastic analysis to be permitted. This is due to the fact that
large strains are required so that moment is redistributed and a mechanism is formed. The
material requirement of AISC, AS 4100 and Eurocode 3 design specifications are presented
herein. These recommendations has been made following several investigations on the
ductility requirement of the material for plastic design and their effect on the moment

redistribution which are summarised by Wilkinson [41].

For the Eurocode 3, the ductility requirement is expressed in terms of limit for the f. / f; ratio

(f« being the ultimate tensile strength and f; the yield strength), the elongation at failure
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denoted & on a gauge length of 5.65VAo (Ao is the original cross-sectional area), and the

ultimate strain &, where & corresponds to the ultimate strength fu

The limiting criteria for the three abovementioned values are the following:

f)f, 212
&, 215%

£,/€, 220

Concerning the Australian standard, clause 4.5.2 of AS 4100 states the ductility conditions to
be met for plastic design. These conditions can be summarised by the following

requirements:

S, <450N/ mm®

Sl f, 212

&, 215%

Moreover, AS 4100 restrict the use of plastic analysis to hot-formed steel and doubly
symmetric I section. It also requires that the length of the yield plateau should be greater than

6& and that the steel should exhibit strain hardening.

AISC only requires that the steel yield strength should be less than 65 Ksi to be eligible for
plastic design (f; < 448 N/mm?) (clause A5.1). In addition, and concerning the case of cold-
formed section, clause A3.1.1a of AISC states that the requirements of ASTM AS500
(“Standard” 1993) must also be met. ASTM A500 specifies that &,, >21% for Grade C steels

(and slightly higher values for other steel grades), where &0 is the elongation on a 50.8 mm

gauge length.

2.3.2 Currents shortcoming and aim of the thesis

Current design standards have been shown to display many inconsistencies. A summary of

the main shortcomings is detailed below:

Abovementioned design standards specify independent slenderness limits for flanges and
webs, although many researchers have recommended slenderness limit that account for

flange-web interaction.
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To name a few, Kato (1989) [34] proposed an interaction formulae between web and flange
slenderness to limit classes for I and H sections. For class 1 it was based on a rotation of 4

and the equation is given below:

o)

+

[ 181 ] (1 170]
2 )

More researchers used experimental tests on I-sections to propose slenderness limit values

that accounted for the flange-web interaction. Kemp (1985) [73], Kuhlmann (1989) [37],
Daali & Korol (19950 [74]...

=1 for ductility class 1 (Rdem = 4) 2.10

Stewart and Sivakumaran (1997) [75] used the finite strip method and proposed Class 1, 2

and 3 limits for [-section beams that accounted for flange-web interaction.

Wilkinson (1999) [41] studied cold-formed RHS and proposed a simple bi-linear interaction

curve for the Class 1 limits to represent the flange-web interaction.

Seif and Schafer (2009, 2010) [76],[77] suggested equations for the plate buckling coefficient
k as a function of the member geometry and loading conditions, that would represent the

web-flange interaction.

Nevertheless, even though the connection between webs and flanges is clearly seen to
provide some torsional restraint, and while many researchers have made propositions to
account for this interaction, these recommendations are not yet incorporated in current design

standards.

Moreover, current standards define web slenderness limits for class 1-2 border that are based
on the behaviour of I-section, and has been applied to rectangular and square hollow section.
This was previously stated not to be accurate since the restraint of webs of I and H sections is

different from SHS and RHS.

Furthermore, different plate slenderness limitations are reached from web and flange
slenderness values and highlight the inconsistencies in the derivation of the bounds of each

standard.

In addition, the link between the rotation demand and the rotation capacity is disregarded, and

the prescribed rotation demand on which all current limitations are based is defined from
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simple and common structures. For very complex constructions, this value could be

inappropriate and would jeopardize the safety of the structure.

Finally, current limitations have also been seen to be unconservative. Some sections,

prescribed as class 1 in current design standards, experienced insufficient plastic rotations

([41], [40], [78]).

All these reasons justify the need to develop effective and accurate formulations to predict the
rotation capacity of square and rectangular hollow sections for both hot-formed and cold-
formed steel. Moreover, the rotation capacity should be linked to the rotation demand of a
structure by verifying if the section is able to provide sufficient ductility. This procedure
would could be more economical than current specifications for simple structures but

definitely more accurate especially for very complex constructions.

Hence, and with the use of finite element software, the rotation capacity of hollow sections
will be characterised and analytical formulations will be proposed to represent accurately the

inelastic behaviour of hollow structural sections.

2.4 Available experimental data

Experimental data was collected for simply supported beams from many sources for hollow
sections. A total number of 109 bending test were taken from Zhao & Hancock [79],
Wilkinson & Hancock [80], Gardner & al [81], Wilkinson [41], Hasan & Hancoick [51],
Rondal & al [82], Saloumi & al [83], Wang & al [40]. From present work (also reported in
[83]), only the experimental data for RHS 150x100%8 was reported, since it was the only one
that was not influenced by the loading introduction, and reached its plastic moment. The
experimental database comprises different section geometries, material properties, tests
setups (3-point and 4-point bending configuration), element lengths, loading introductions...
Results are represented in Figure 2.10 and Figure 2.11; the normalised ultimate moment that
a section can resist and its rotation capacity are shown as a function of the plate slenderness.
Concerning the rotation capacity, the label “not reached” correspond to experimental tests
where the moment rotation curve did not reach the plastic moment in its unloading path, i.e.
after attaining its maximum load capacity (Figure 2.4). Collected data along with their

corresponding references can be found in Appendix 1.

—47—



Mult / Mpl [_]

State of the art

Table 2.5 — Collected bending test data for hollow sections

Source Shape Fabrication process | Number of tests Test setup
Zhao & Hancock, 1991 RHS_SHS CF 10 4-point
Wilkinson & Hancock, 1998 RHS_SHS CF 44 4-point
Gardner, Saari, & Wang, 2010 | RHS_SHS CF-HF 6 3-point
Wilkinson, 1999 RHS HF 4-point
Hasan & Hancock, 1989 RHS CF 19 4-point
Stranghoner & al, 1995 SHS CF 4 4-point
Saloumi et al, 2015 RHS HF 2 3-point & 4-point
Wang et al, 2016 RHS SHS HF 22 3-point & 4-point
1.6 7 T T T T
: l l I l
14 +———- ¢ 8 g to—————= ———————
1 a ° 008 o I
12 1 4'_ ® :’. e J'_ : — — Resistance
<] e e 4 s.l‘ 69 .— ______ T T T <) Zhao & Hancock, 1991 - CF - 4pt
] A‘: A ql ® i§00 N ° | ® Wilkinson & Hancock, 1998 - CF - 4pt
1.0 T A i‘l A L Z— — A Gardner, Saari, & Wang, 2010 - HR - 3pt
] : | : : ) Gardner, Saari, & Wang, 2010 - CF - 3pt
08 +-—————— o ——— o ————— S ——— A Wilkinson, 1999 - HR - 4pt
i | | | | S} Hasan & Hancock, 1989 - CF - 4pt
061 b L [ L] ©  Rondaletal, 1995 - CF - 4pt
A | | | | A Saloumi, 2015 - HR - 3pt & 4pt
] : : : : A Wang & al - HR - 3pt
04 -~ 1T Tt N . A Wang&al-HR-4pt
] | | [ |
02 +———- 4= f————— +—————— [———————1
1 | | | |
1 I I I I
0.0 ! | i :
0.0 0.2 0.4 0.6 0.8 1.0
A1)

Figure 2.10 — Normalised ultimate as function of the plate slenderness from experimental data of hollow section
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Figure 2.11 — Rotation capacity as function of the plate slenderness from experimental data of hollow section

Figure 2.11 displays a big scatter for the rotation capacity of hollow member; hence, for a
same slenderness value, sections can display a difference in rotation capacity of the order of
10. Moreover, these experimental results highlight the need to investigate more the class 1-2
border since the current standards limitations are seen not to be appropriate. Thus, many
sections although classified as class 1, fail to deliver the rotation capacity of 3. In addition, it
can be clearly seen that the flange and web limitation result in different plate slenderness
value. This highlights the lack of a consistent background to the derivation of the actual

limits.

Moreover, some experimental data for open I and H section has been gathered from literature
and are reported in Figure 2.12 and Figure 2.13. These figures enhance the fact that the
current code recommendations should be revised and that the rotation capacity of
experimental data present a big scatter with no clear tendencies. Experimental data has been
collected from Sawyer [84], Lukey and Adams [85] , Holtz and Kulak [62] [63], Perlynn and
Kulak [64] , Kuhlmann and Roik [86] [87] [88], Adams, Lay and Galambos [89] Dermott
[90].
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Figure 2.13 — Rotation capacity as function of the plate slenderness from experimental data of open section
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3 EXPERIMENTAL PROGRAM

3.1 General description, objective and test program

The test program undertaken at the University of Applied Science of Western Switzerland —
Fribourg consisted in bending tests on hollow structural shapes (either rectangular RHS or
square hollow sections SHS). The main goal of the experimental campaign was i) to calibrate
and validate the numerical model based on experimental results, ii) to provide experimental
references on the inelastic behaviour of such members (ultimate load carrying capacity,
available rotation...), iii) to improve the way the rotation capacity of tubular members are
actually characterized and vi) to investigate new ways of defining the possibility to resort to a

plastic analysis in design practice.

This chapter summarises experimental activities aimed towards the rotation capacity of
tubular profiles; a series of 23 bending tests are detailed. Tested beams had a nominal steel
grade of S355. Seven different cross-sections were considered. Six of them were hot-formed,
and classified as class 1 sections according to the Eurocode. Their dimensions were chosen in
order to have different relative slenderness values ranging from 0.2 to 0.56, in order to
represent the plastic range. One section was cold-formed and corresponded to the class 3.
Four different test setup configurations were considered: 3-point and 4-point bending static
systems, with a span length of 2.6 m, to characterise the rotation capacity of these sections
(see Figure 3.12, Figure3.13, Figure3.14 and Figure3.19). Propped cantilever
configurations with mid-span and outer loaded point loads, with a span length of 4.8 m were
also performed to define the rotation demand of these sections for such configurations (see

Figure 3.27 and Figure 3.35).

Six meter long profiles were received at the laboratory of Structural Engineering, from which
400 mm samples were kept for tensile tests. For the simple supported configuration (3-point
and 4-point bending), the remaining 5.6 m was cut into two 2.8 m pieces, while for the
propped cantilever configuration (centrally and off-centrally loaded) it was cut into a 4.9 m
beam; the remaining segment, of length equal to three times the height of the cross section,
was kept for stub column testing (Figure 3.1). Specimens’ lengths were chosen long enough

to assure that the failure mode would occur predominately by bending with little influence of
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shear. The dimensions of each specimen were measured prior to testing. No measurements of
the initial geometrical imperfections were undertaken because the accuracy of the available
method at the laboratory (that consists of different set of LVDT) was not sufficient.
Therefore, for the case of hollow sections, initial geometrical imperfections have little effect
on the ultimate load, but considerable impact on the rotation capacity [41], [91], [92]. Hence,
in the following validation model, different sets of geometric imperfections would be
introduced in order to match the numerical results to the experimental ones. The test program

is summarised in Table 3.1.

6000
2800 2800 400
Part for 3-point bending test Part for 4-point bending test
Part kept for
tensile test
6000
4900 400 700
Part for propped-cantilever bending tests Jh

Part kept for Part kept for
tensile test stub column tests

Figure 3.1 — Segmentation of received beams (dimensions in mm)

In the following, detailed measurements of the tested specimens’ cross-sectional dimensions,
tensile tests, and stub column tests will be presented. Then, bending tests will be detailed. For
each configuration, the testing arrangement will be described and results will be summarised.
Moreover, some typical specimens’ response will be shown and analysed in detail. Finally,

main conclusions will be presented.
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Table 3.1 — Test program for cross-sectional tests

. Fabrication Nominal Length Span .
Test # Name of specimen process steel [mm] length Test configuration
grade [mm]

1 RHS_150x100x8_SS_3P Hot-formed S355 2800 2600 Simply supported; 3-point bending
2 RHS_180x80%x4.5_SS 3P Hot-formed S355 2800 2600 Simply supported; 3-point bending
3 RHS_150x100x5_SS_3P Hot-formed S355 2800 2600 Simply supported; 3-point bending
4 RHS_220x120%6.3_SS_3P Hot-formed S355 2800 2600 Simply supported; 3-point bending
5 RHS_220%120%6.3_SS_3P* Hot-formed S355 2800 2600 Simply supported; 3-point bending
6 SHS_180%6.3_SS_3P Hot-formed S355 2800 2600 Simply supported; 3-point bending
7 SHS 180x8 SS 3P Hot-formed S355 2800 2600 Simply supported; 3-point bending
8 SHS_200%6.3_SS_3P Cold-formed S355 2800 2600 Simply supported; 3-point bending
9 RHS 150x100x8 SS 4P Hot-formed S355 2800 2600 Simply supported; 4-point bending
10 RHS_180x80x4.5_SS_4P Hot-formed S355 2800 2600 Simply supported; 4-point bending
11 RHS_150x100x5_SS_4P Hot-formed S355 2800 2600 Simply supported; 4-point bending
12 RHS_220x120x6.3_SS_4P Hot-formed S355 2800 2600 Simply supported; 4-point bending
13 SHS_180%6.3_SS_4P Hot-formed S355 2800 2600 Simply supported; 4-point bending
14 SHS 180x8 SS 4P Hot-formed S355 2800 2600 Simply supported; 4-point bending
15 SHS_200x6.3_SS_4P Cold-formed S355 2800 2600 Simply supported; 4-point bending
18 RHS_180%80x4.5_PR_C Hot-formed S355 4900 4800 Propped cantilever; centrally loaded
19 RHS_150x100x5_PR_C Hot-formed S355 4900 4800 Propped cantilever; centrally loaded
20 RHS_220%x120x6.3_ PR_C Hot-formed S355 4900 4800 Propped cantilever; centrally loaded
21 SHS_180%6.3_PR_C Hot-formed S355 4900 4800 Propped cantilever; centrally loaded
22 SHS_180x8_PR_C Hot-formed S355 4900 4800 Propped cantilever; centrally loaded
23 RHS_180x80x4.5_PR_O Hot-formed S355 4900 4800 Propped cantilever; off-centrally loaded
24 RHS_220%x120x6.3_ PR_O Hot-formed S355 4900 4800 Propped cantilever; off-centrally loaded
25 SHS_180x6.3_PR_O Hot-formed S355 4900 4800 Propped cantilever; off-centrally loaded
26 RHS_150x100x8_Stub(PR_C) Hot-formed S355 450 450 Stub column
27 RHS_180%x80x4.5_Stub(PR_C) Hot-formed S355 540 540 Stub column

28 RHS 180%80x4.5 Stub(PR_O) Hot-formed S355 540 540 Stub column
29 RHS_150x100x5_Stub(PR_C) Hot-formed S355 450 450 Stub column

30 SHS 220x120x6.3_Stub(PR_C) Hot-formed S355 660 660 Stub column

31 SHS_220x120x6.3_Stub(PR_0O) Hot-formed S355 660 660 Stub column

32 SHS 180%6.3_Stub(PR_C) Hot-formed S355 540 540 Stub column

* The rectangular cross-section 220x120x6.3 has two test specimens for the simply supported; 3-point bending

3.1.1 Cross-sectional dimensions

The cross-section dimensions represented in Figure 3.2, such as the depth (%), the width (b)
and the thickness (¢), were measured using calipers and micrometers at both ends of the
specimens. Average measured values for all tested specimens are reported in Table 3.2

below. Detailed measurements can be found in appendix 3, along a comparison with
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tolerances according to EN 10210-2 [93] for hot formed sections, and EN 10219-2 [94] for
cold formed sections. An example is given in Figure 3.3 in which subscripts represent
repeated measurements. The medium corners radius () was assumed equal to 1.5 ¢ according

to the prescription in EN 10210-2 and EN 10219-2.
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Figure 3.3 — Example of detailed cross-section measurement for RHS 220x120x6.3_SS 3P along with the

Table 3.2 — Average measured dimensions

Eurocode tolerances

Name of specimen Rimes [mm] bimes [mm] tmes [mm] r [mm]
RHS_150x100x8_SS 3P 149.60 99.94 8.35 12.52
RHS 180x80x4.5 SS 3P 179.35 78.52 4.80 7.20
RHS 150x100x5_SS 3P 148.97 99.17 5.26 7.90
RHS 220x120%6.3_SS_3P* 219.25 120.60 6.39 9.58
RHS 220x120%6.3_SS 3P 217.55 120.75 6.40 9.60
SHS 180%6.3_SS 3P 179.42 179.76 6.58 9.87
SHS 180x8 SS 3P 179.46 179.42 7.89 11.83
SHS 200x6_SS 3P 200.53 200.87 5.83 8.74
RHS_150x100%8_SS_4P 149.48 99.86 8.16 12.24
RHS_180x80%4.5_SS 4P 179.59 79.71 4.81 7.21
RHS 150x100x5_SS 4P 149.13 99.48 5.13 7.69
RHS 220x120%6.3_SS 4P 219.40 120.86 6.42 9.64
SHS 180%6.3_SS 4P 179.43 179.93 6.68 10.02
SHS 180x8_SS 4P 179.20 179.58 791 11.86
SHS 200x6_SS 4P 200.84 200.42 5.80 8.70
RHS 180x80x4.5 PR C 179.19 79.06 4.76 7.13
RHS 150x100x5_PR_C 148.78 99.49 5.20 7.81
RHS 220x120%6.3 PR C 219.10 120.45 6.51 9.76
SHS 180%6.3 PR _C 179.44 179.70 6.72 10.09
SHS 180x8 PR _C 179.37 179.23 7.94 11.91
RHS 180x80%4.5 PR O 178.96 79.45 4.63 6.95
RHS 220x120%6.3 PR O 219.03 120.66 6.51 9.76
SHS 180%6.3 PR_O 180.02 179.08 6.53 9.80

* The rectangular cross-section 220x120x6.3 has two test specimens for the simply supported; 3-point bending
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3.1.2 Tensile tests

The stress-strain behaviour of specimens was determined through 68 tensile tests. Tensile
coupon samples were extracted from the flat faces of the profiles as indicated in Figure 3.5
(concerning the cold-formed section, the coupon location was shifted in faces containing a
weld). The coupons were 270 mm in length (see Figure 3.5) and tested in a 100 kN testing
machine with hydraulic grips for the load application, and under a constant strain rate of
2.5 mm/min. A 25 mm clip gauge was attached at the middle of the coupon segment to record

axial elongation (see Figure 3.4). Some of the tested coupons are shown in Figure 3.6.

4

270
80 |15 80 [ 15 80
iy P z
25 15 i

\ Face F1

Figure 3.5 — Tensile coupon dimensions and locations of the tensile coupons
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Figure 3.6 — Example of some tested coupons

I

Figure 3.7 exhibits typical stress-strain responses for some of the tested coupons. Hot-formed
structural steels’ results typically exhibit uniform material properties within the entire cross-
section owing to their fabrication process. The stress strain curve for these profiles displays a
sharply defined yield point and a yield plateau followed by strain hardening; the recorded
yield stress f, was taken as the average of the yield plateau. The young’s modulus £ was
taken as the gradient between 20% and 80% of f, using a linear regression analysis.
Concerning the cold-formed section, the material shows a more rounded response. These
steel members usually exhibit non-uniform material properties within the cross-section, and
display strength enhancement in the corner region. The Young’s modulus £ was taken as the
slope gradient from the point where the ratio of the successive secant moduli is less than 80%
to 30% of f, as recommended by Afshan & al [95]; the 0.2% proof stress was then

determined.

| | |
\ \ \
| | |
| | |
! H H 1
2 I } —— RHS_150¥100*8_SS @2 } } } —— RHS_150*100*8_SS
3} —— RHS_180*80*4.5_SS 0 —— RHS_180*80*4.5_SS
A I A [ _ | 1 Lo T a _ |
% 200 ! ! RHS_150%100%5_SS % 200 ! ! ! —— RHS_150*100%5_SS
| | —— RHS_220*120%6.3_SS | | | —— RHS_220*120*6.3_SS
\ [ —— SHS_180%6.3_SS \ \ \ —— SHS_180%6.3_SS
100 == T T SHS_180*8_SS 100 === T T 7 SHS_180*8_SS
} } e  Utimate Strength f,, } } } e  Utimate Strength f,,
0 : : T T 0 : : v T ;
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Figure 3.7 — Stress strain curve for RHS 150%100%8_SS coupon
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Average values from the four coupons of all sections are reported in Table 3.3, and

corresponding parameters are displayed in Figure 3.8. These values were used in the finite

element calculations. Detailed measured data of each coupon test can be found in appendix 3.

o - ¢ contitutive law for hot-formed sections

o - ¢ contitutive law for cold-formed sections
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Figure 3.8 — Stress-strain constitutive law parameters
Table 3.3 — Average material properties of tested profiles
S Ju E & &2 &u
[N/mm?] [N/mm?] [N/mm?) [%] [%] [%]

RHS HF 150%100x8_SS 391.2 554.0 205737 0.19 1.49 12.93
RHS _HF 180x80x4.5_SS 389.2 539.4 198504 0.20 1.76 16.98
RHS _HF 150x100x5_SS 419.8 573.0 211215 0.20 1.73 14.89
RHS HF 220x120x6.3 SS* 394.2 534.4 208932 0.19 1.85 16.98
RHS HF 220x120%6.3_SS 396.5 535.9 211087 0.19 1.88 15.28
SHS HF 180%6.3_SS 393.2 523.8 206903 0.19 2.19 14.88
SHS HF 180%8_SS 384.0 531.5 208013 0.18 1.69 17.47
SHS CF 200x6_SS 481.5 569.6 210239 0.25 - 19.00
RHS HF 150x100x8 PR C 385.2 5273 207854 0.19 1.78 19.66
RHS HF 180x80x4.5 PR C 403.9 547.3 213062 0.19 1.93 16.68
RHS_HF 150x100x5 PR_C 396.5 552.7 203267 0.20 1.72 12.61
RHS HF 220x120%x6.3 PR C 393.0 531.8 202440 0.19 1.83 17.16
SHS HF 180%x6.3 PR C 390.9 532.2 206819 0.19 1.79 17.62
SHS_HF_180x8 PR _C 384.8 529.5 213367 0.18 1.70 15.90
RHS HF 180x80x4.5 PR O 386.6 537.1 205414 0.19 1.85 18.47
RHS HF 220x120x6.3 PR O 393.6 533.2 210347 0.19 1.84 18.58
SHS HF 180%6.3 PR O 385.9 529.0 207744 0.19 1.77 17.08

* The rectangular cross-section 220x120x6.3 has two test specimens for the simply supported; 3-point bending
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3.1.3 Stub column tests

A series consisting in seven stub column tests was performed in order to determine the load
carrying capacities under pure compression. The stub columns lengths were chosen as being
three times the height of the cross-section to avoid global flexural buckling. Each member
length, cross-sectional dimension and weight were measured prior to testing, and were used
for the calculation of the exact section’s area, assuming a density of 7850 kg/m>. The ends of
each specimen were carefully manufactured, namely regarding flatness (use of a flat marble
stone) and parallel faces in order to ensure uniform distribution of load through the specimen.
Two strain gauges have been attached at mid-height of the specimens and on adjacent plates,
because if local buckling would occur on the gauge locations, these gauges would be able to
capture the compressive and tensile responses of the stub column constituent plates. The
testing machine was a 5000 kN hydraulic rig controlled by loading. Two 250%250%150 of
high strength steel (f; = 2200 N/mm?) have been placed on each side of the stub column in
order to protect the testing machine surface. Four LVDTs were positioned on the stub’s ends
to record the average end-shortening behaviour (Figure 3.9). The strains gauges indicated if
the compression was kept concentrically-applied and provided the load displacement
behaviour of the specimen in the elastic range, therefore the (indirect) corresponding Young’s

modulus. The failure shapes of all stub columns are shown in Figure 3.10.

Milled flat plate

Stub column

Local buckle

Strain gauge

LVDT

Milled flat plate

Figure 3.9 — General test set-up of stub columns
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Figure 3.10 — Failure shapes of tested stub columns

In order to analyse tests results, cross-sections were first classified according to Eurocode 3
[53], for pure bending and compression cases. For sake of simplicity, nominal geometrical
dimensions were used, and estimated yield strengths based on the tensile tests performed
were adopted for each cross-section type; the selected values and corresponding results are
shown in Table 3.4. Plate relative slenderness 4, values are also reported in Table 3.4 and
correspond to the maximum relative slenderness value 4, of the cross-section constituent
plates. Plate relative slenderness /, is given by:

J5 J5
,1p=f J =\/ 24 3.1

7’E o,

k. crit,p
1201-0")b/)’

where k is the buckling coefficient, v is the poisson ratio and taken as v=0.3, and ¢ is the

yield factor: &=V (235/f;). In bending, all sections are classified as class 1, with relative
slenderness values raging for 0.2 to 0.56 for the hot formed sections; whereas the cold formed
section SHS 200x6 is class 3. In compression, cross-sections are classified from class 1 to

class 4.
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Table 3.4 — Cross-section classification

Name of specimen h b ! g S (h_tt;zgr)/ (b_tt;zgr)/ (famjr];sion biZ;7g Classin | Class in
compression | bending
] | fm] | [ | foo] [N | 19 | (1 | |
RHS 150%100x8 150 | 100 | 8.0 | 12.00| 400 19.2 11.1 0.34 0.20 1 1
RHS 180x80x4.5 | 180 | 80 | 4.5 | 6.75 400 47.0 18.0 0.83 0.34 4 1
RHS 150%100%5 150 | 100 | 5.0 | 7.50 420 34.8 21.4 0.61 0.38 2 1
RHS 220%x120%x6.3 | 220 | 120 | 6.3 | 9.45 400 40.3 19.6 0.71 0.35 3 1
SHS 180x6.3 180 | 180 | 6.3 | 9.45 400 32.1 32.1 0.56 0.56 1 1
SHS 1808 180 | 180 | 8.0 [12.00] 400 241 | 241 | 042 | 042 1 1
SHS 200x6 200 | 200 | 6.0 | 9.00 400 383 38.3 0.67 0.67 3 3

Table 3.5 summarise the obtained results for all stub columns. For the
RHS 180x80x4.5 PR _O, SHS 180x6.3 PR C, RHS 220x120x6.3 PR C sections, local
buckling was seen to develop unevenly on one side owing to a slightly imperfect flatness on
the end sections, which resulted in an unexpected moment introduction on the specimen.
These experimental defaults as well as other experimental uncertainties may explain why

some class 1 or 2 tests have reached ultimate loads slightly below the plastic load.

Table 3.5 — Measured properties and ultimate loads of stub columns

Name of specimen Length | Weight | Area b Npify Npifi=355 | Fulpexp F;\EZ /
[mm] [Kg]l | [mm?] | [N/mm’] [kN] [kN] [kN] [-]
RHS 150x100x8 Stub (PR _C) 450.5 12.85 | 3633.6 385.2 1440.6 1289.9 | 1807.2 | 1.25
RHS_180%80x4.5_Stub_(PR_C) 541.0 9.50 | 2237.0 403.9 861.6 794.1 822.6 0.95
RHS_180%80x4.5_Stub_(PR_O)* 540.5 9.40 | 22155 386.6 856.5 786.5 805.6 0.94
RHS_150x100%x5_Stub_(PR_C) 541.0 8.35 2358.5 396.5 952.6 837.3 943.4 0.99
SHS 220%x120%6.3 Stub (PR _C)* 663.0 21.25 | 4083.0 393.0 1604.5 1449.5 | 1577.5 | 0.98
SHS 220%x120%6.3_Stub_(PR_O) 662.0 21.35 | 41084 393.6 1616.9 1449.5 | 1613.7 | 1.00
SHS_180%6.3_Stub_(PR_C)* 540.0 19.05 | 4494.0 390.9 1756.7 15954 | 1749.8 | 1.00

*Buckling occurred on one side due to accidental moment introduction

Because the recorded deformation from the displacement transducers and the strain gauges
are different, a correction that combines both sets of measurements was required. Hence, the
strain gauges provided the correct Young’s modulus slope since they were directly in contact
with the column faces, while the displacement transducers provided good post-yield
information, however including the elastic deformation of the end plates, thus leading to an
incorrect initial Young’s modulus value. A correcting method described by the Centre for
Advanced Structural Engineering ([96], [97] & [98]) was used. The method consists in a

correction factor k that represents the undesired displacement.
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50 = 5LVDT —2kf 3.3

In Equation 3.2 and 3.3, ELvpr represents the initial Young’s modulus calculated from the
LVDT readings, Esc represents the initial Young’s modulus calculated from the strain
gauges, and f represents the applied stress N/ A. The corrected end shortening Jc is then the
difference between the LVDT displacements and the set-up displacement. Figure 3.11
provides typical results for RHS 220x120x6.3 PR _C. Figure 3.11a exhibits the normalized
axial load N/ Npis (Npigy is the product of the cross-section area 4 and the tensile coupon
yield stress f;) as a function of the stubs end shortening & before and after correction.
Figure 3.11b represents the normalized axial load N/ Ny and measured strain £/¢, & being
the strain at yield. Local buckling consists of alternate inward and outward buckles of the
stub column constituent plates. Hence, we can explain why one of the strain curves reversed
direction in Figure 3.11, based on the strain gauges location on either the tensile or

compressive face of the buckled shape. Full details of the stub columns results are given in

appendix 3.
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Figure 3.11 — a) Normalized load displacement curves — b) Strain gauges measurements

3.2 Bending tests

3.2.1 3-point bending tests

Eight beams were tested under a typical 3-point bending configuration (Figure 3.12). The
experimental setup consisted in a simply-supported beam arrangement with 30 mm diameter

rollers at the supports. Loading was applied by means of two hydraulic jacks used to generate

- 62—

10



Experimental program

a concentrated force using two threaded bars connected to a loading beam. Loading was
introduced to the specimen with half-round loading point and through a 40 mm thick and
50 mm wide plate, to avoid high levels of stress concentration. Detailed test setup is shown in

Figure 3.12 and Figure 3.13.
Various transducers were used to monitor the beam’s response:

= Load cells were located under each support and under the jacks to record the support

reaction and the loading force respectively;
= Inclinometers were fixed at both ends of the beam to measure the beam end rotations;

* Linear variable displacement transducers (LVDTs) were positioned at different

locations along the beam to record the beam deflection;

= Strain gauges were fixed on the tension flange to measure both its deformation and its

curvature.

Loading was carried out under displacement control and all readings were taken using an
electronic data acquisition system at a 2 Hz pace. Figure 3.15 displays the deformed shape of

specimen RHS 150x100x5 SS 3P.

All six beams were tested up to and beyond failure. In most cases, local buckling occurred
before beams reached their plastic moment, except for the case of the specimen
RHS 150x100x%8 for which strain hardening was reached, and the test had to be aborted

before unloading, due to high deformations and experimental limitations.
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Figure 3.12 — Test setup of the 3-point bending beam, longitudinal view (dimensions in mm)
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Figure 3.13 — Test setup of the 3-point bending beam, transversal view (dimensions in mm)
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Figure 3.14 — Position of the variable transducers on the 3-point bending beam (dimensions in mm)
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Figure 3.15 — Deformed shape a RHS 150x100x5_SS 3P
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The maximum shear rate Ve / Vpira for the 3-point bending configuration was equal to 32%,

so no influence of shear on the obtained result is expected; Figure 3.16 shows that the plastic

hinge that developed was of limited length due to the moment gradient. Moreover, the onset

of local buckling was much localized due to the loading introduction that induced high levels

of stress concentrations. Therefore, even with the loading applied through a 40 mm thick

plate, loading was not uniformly distributed on the area of the plate but was mostly

transferred through the plate extremities in contact with the corners edges and distanced by

5 ¢m. This can explain why beams failed prematurely and did not reach the plastic moment

My while being all class 1 in bending. The RHS 150x100x8 SS 3P, that possess a very

stocky section (Areip,bending = 0.2), was not influenced by the load introduction and reached a
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139 mm deflection at peak load. The behaviour of hollow sections is very sensitive to the
bearing stresses imposed during loading, and is seen to be a function of the & / ¢ ratio of the
compression flange. EC3 part 1-3 [99] provide design rules to calculate the web crippling
strength for cold formed sections (also known as the local transverse resistance of web)
which can occur at support or point of structural members where concentrated load is applied.
Nevertheless it was shown by Li & Young (2015) [100], who considered cold formed hollow
sections, that the web crippling design strength predicted by current standard (EC3, AISI,
AS) are either unconservative or very conservative, and are therefore not capable of

predicting the design strength for cold formed hollow sections undergoing web crippling.

Figure 3.16 — Onset of local buckling

Figure 3.18a displays examples of moment-rotation curves in which M, is the plastic

moment calculated with measured cross-sections properties (both geometry and material),

and 6 is the yield rotation at the beam ends — 6, is calculated when the middle cross-section
first reaches the elastic moment.

Pl

" T 16EI

The moment M is calculated from the recording of the load cell under the left support

34

multiplied by the half span distance L / 2, whereas the load P is calculated as the sum of the
two load cells placed under the jacks. Figure 3.18b represents the total load vs. deflection for
these specimens, where Py is the theoretical plastic collapse load of the system and v is the

deflection of the beam at mid-span.

2 35
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According to the plotted curves in Figure 3.18b, it appears clear that all beams failed prior to
reaching their plastic capacity, however by a small amount except for the SHS 200x6 that
reached 0.74 Pp. This was expected since this section was classified as class 3 according to

EC3.
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Figure 3.17 — 3-Point bending analysis
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Figure 3.18 — a) Normalized moment - rotation curves — b) Normalized load - deflection curves

Table 3.6 summarises experimental values of the non-dimensional ultimate moments
Muit | Mpi, ultimate load Puir / Ppr and their corresponding rotation &, and deflection vu for all
tested beams under the 3-point bending configuration, and report the values of Mp;, Py, 6, that
were used for normalization. It can be seen that the non-dimensional ratios Mui/ My and

Puit / Ppi of a same specimen diverge by as much of 7% although they should be identical (3%
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in average over the 15 simply supported tested specimens); this is due to experimental
uncertainties related to the load cell recordings. Hence, the load cells used in the experimental

setup have a precision that is equal to 5% the applied load.

Table 3.6 — Results at collapse for the 3-point bending tests

Are
. Mpl,}ﬁ) Ppl,}fv gy Mult Mult/Mpl Pult Pult /Ppl 914/0) Vu ]ipf
Name of specimen bending

[AN.m] | [kNT| [°] | [-] [-] [-] -] [-] | [mm]| [-]

RHS_150x100x8_SS 3P 69.8 |107.4| 0.95 | 84.6 1.21 1348 | 1.26 | 7.53 {138.9] 0.20

RHS_180x80x4.5_SS_3P 50.5 | 77.6 | 0.81 | 46.3 0.92 753 097 | 159|229 0.34

RHS_150x100x5_SS 3P 50.5 | 77.6 | 0.99 | 46.6 0.92 76.7 099 | 1.94 | 33.4 | 0.38

RHS 220x120%x6.3_SS 3P*| 113.8 |175.1| 0.64 | 98.7 0.87 1564 | 0.89 | 1.28 | 13.8 | 0.35

RHS 220x120%x6.3_SS 3P | 1134 |174.4| 0.64 |101.6| 0.90 1613 | 092 | 1.34 | 14.6 | 0.35

SHS_180x6.3_SS_3P 112.3 |172.8| 0.79 |105.6| 0.94 166.6 | 096 | 1.31 | 17.6 | 0.56
SHS_180x8_SS_3P 1284 |197.5| 0.77 |121.1| 0.94 191.8 | 097 | 132 | 17.3 | 0.42
SHS_200x6_SS_3P 155.7 1239.6| 0.85 |111.6| 0.72 177.78 | 0.74 | 1.24 | 16.85| 0.67

* The rectangular cross-section 220x120x6.3 has two test specimens for the simply supported; 3-point bending
3.2.2 4-point bending tests

Six beams were tested under 4-point loading configurations; Figure 3.19 shows
SHS 180x6_SS 4P specimen at failure. The 4-point bending test setup differs from the 3-
point bending arrangement by the addition of a spreader beam over the tested specimen in
order to apply equivalent loads on both loading points located at quarter length of the hinged
supports. The shear ratio Vea/ Vpira for the 4-point bending configuration is similar to the 3-
point bending one except for the central segment of the specimen which is free from shear
forces; shear should not significantly affect the behaviour —no influence of shear on the
obtained result is expected (maximum shear rate Ves/ Vprra = 32 %). LVDTs and strain
gauges have been placed under the loading points and at mid span to record the beam
response accurately as shown in Figure 3.20. Load cells were placed under both supports and

hydraulic jacks; inclinometers were positioned at the beams’ ends.
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Figure 3.19 — Test setup of the 4-point bending beam
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Figure 3.20 — Deformed shape of a 4-point bending beam

During testing, the beams’ deflection remained symmetric until the peak load was reached,
where local buckling failure mode started developing at either the right (side b) of left (side a)
loading point while maintaining a constant moment. The failure mode became more
pronounced in the post buckling unloading phase leading to an increased unsymmetrical
deflection shape as shown in Figure 3.21b for RHS 180x80x4.5; this observation was
previously observed and reported by Liew, 2014 [101]. The onset of local buckling was
localized under the load application (either on the left or right loading point) due to a high
level of stress concentration. Figure 3.22a shows how the load introduction may have
influenced the beam’s response, potentially explaining the lower results since local buckling

is only pronounced and localized in the vicinity of the 50 mm thick plate.
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Figure 3.21a presents moment as a function of the beam end rotations; the divergence

between the two curves at the loading points highlights the occurrence of local buckling.
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Figure 3.21 — a) Moment-rotation curve of RHS 220x120x6.3 — b) Relative deflected shape of
RHS 180x80%4.5
Bending moments did not fully reach the plastic moment at the peak load in all tests except
for the RHS 150x100x8 specimen who exhibited strain hardening effects but where loading
was here stopped before reaching the peak load due to excessive vertical deformations; the
beam deflected elastically and without the occurrence of local buckling until reaching a

vertical displacement of 150 mm (that corresponds to the maximum hydraulic jack capacity)

without attaining the system peak load (Figure 3.22b).

Figure 3.22 — a) Onset of local buckling for RHS 180x80x4.5 — b) Deflected shape of RHS 150%100%8

Table 3.7 summarises the experimental results for all the tested specimens. The rotation 6,4

and @, are the rotation from the inclinometer of side a and b respectively and vu.c and vu,» are
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the deflection under the loading point a or b. Yield rotation 6 is calculated from the middle

segment first reaching the elastic moment.

3pL
0, = 3.6
32E1
While plastic collapse load Py (Equation 3.7) is computed for the beam attaining its plastic
capacity.
4M
pl
Fu=—7 3.7

It can also be noted that similarly to the 3-point bending case, the non-dimensional ultimate
values Mui:/ Mpi and Puir / Ppi, even though should be equal, diverge by approximately 5% due

to the load cells precision.

‘P ‘P P P
Y Y -
A
L/4 |, L/4 L L/4 |, L/4 "93 2 0y o
L/4 L/4 L/4 L/4
L
Configuration Plastic mecanism
P/2
|
e e
-P2
Mmax=-P1/4
Moment diagram Shear diagram

Figure 3.23 — 4-Point bending analysis
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Table 3.7 — Collapse results for the 4-point bending tests

Myis | Porgy | 6 | Mur | Mue! Mpr| Pur | Pue!/ Pot| Gua [ 6| Ou / 6| Via | Vuo
Name of specimen

[kN.m] | [&kN]| [°] | [-] [-] [-] [] [] [-1 | [mm] | [mm]
RHS 150x100x8 SS 3P**| 68.4 |105.3|1.42 83.2 1.22 1313 1.25 9.41 8.88 [149.2]142.0
RHS 180x80x4.5 SS 3P 51.0 | 78.5 |1.22| 47.3 0.93 75.0 0.95 1.93 2.04 | 253 |27.0
RHS_150x100x5 SS 3P | 49.5 | 76.1 |149] 479 | 097 | 77.0 | 101 | 294 | 264 | 473 | 43.0
RHS 220x%120%6.3 SS 3P | 115.3 |177.4|0.96|103.3 0.90 163.4| 0.92 1.23 1.34 12.9 | 14.1
SHS 180x6.3 _SS 3P 113.8 |175.1]1.18|103.7 0.91 164.8| 0.94 1.35 1.26 16.7 | 17.0
SHS 180x8 SS 3P 128.6 |197.8|1.15|125.3 0.97 181.9| 0.92 1.63 1.50 | 20.6 | 19.6
SHS 200x6_SS 3P 155.0 [238.4(1.28|104.0 0.67 151.0| 0.63 1.34 1.46 17.4 | 199

** Specimen didn't reach failure, but test was stopped due to excessive vertical deformations

The average curvature could be calculated from the LVDT displacements. Therefore, since
the moment is constant between the load points, this results by the fact that this segment
forms an arc of circle. The curvature can be thus determined according to the following

equation given by [102], and [41].

o _1__ 8Dy-D))
WP 4D, - D)) + I

3.8

With Dy being the deflection at mid span and Dy is the average of the deflection at the
loading points. If this curvature is calculated over a shorter length that includes the buckled
region, the post buckling curvatures would be notably higher and would result in a higher
value of the rotation capacity. Moreover, the curvature has been calculated from the three
gauges measurements placed on the tension flange by dividing the strain by half the height of

the specimen section.

&
Kgauges = h/2

This method displays some shortcomings, since once local buckling occurs, the curvature

3.9

becomes concentrated at the location of the buckle while elastic unloading occur at the
remaining part of the segment; additionally and since the strain gauges are only placed on the
tension flange, deformations due to local buckling in the compression flange is therefore not
recorded, which leads to a delayed unloading. These observations are displayed in
Figure 3.24 that shows that curvatures as measured according to the different ways described

previously, are practically identical in the elastic part but diverge in the post-buckling phase.
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These values are normalized by the yield curvature x and calculated from measured

dimensions and material properties.
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Figure 3.24 — Normalized moment curvature for RHS 180%80%4.5 SS 4P

Both for the 3-point bending and 4-point bending configurations, the system theoretical
plastic collapse load is identical; the main differences between both configurations are the
steepness of the moment gradient and the influence of shear. In the 4-point bending
specimens, plastic hinges are theoretically expected to develop somewhere in the middle
segment, i.e. between the loading points (constant bending moment). Experimentally, local
buckling occurs at the loading points due to a high level of stress concentration, and either on
the left or right side owing to uneven and askew arrangements. Figure 3.25 shows a
comparison between the moment rotation curve of the 3-point bending and the 4-point
bending configuration for the RHS 220x120x6.3 and the RHS 150x100x5; Table 3.8

summarises all results.
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Figure 3.25 — Comparison between 3-point and 4-point configurations of RHS 220%120%6.3 and
RHS 150x100x5

Table 3.8 — Comparison of ultimate bending moments between 3-point and 4-point bending configurations

Name of specimen S 3P M/ My [] S DlVf[:;fj?nce
RHS_150x100%8 1.21 1.22 -0.33
RHS_180x80%4.5 0.92 0.93 -0.99
RHS_150x100x5 0.92 0.97 -4.79
RHS 220x120x6.3* 0.87 - -
RHS_220x%120%6.3 0.90 0.90 0.10
SHS_180x%6.3 0.94 0.91 3.16
SHS 180x8 0.94 0.97 -3.30
SHS_200x%6 0.72 0.67 6.39

3.2.3 Propped-cantilever centrally loaded

Five propped-cantilever specimens of 4.8 m span length were tested with the loading being

applied at mid-span. Specimens have been fixed to a braced support by welding a 30 mm

thick plate to the beam’s end and then bolting it with 8 10.9 M24 bolts (Figure 3.28b). The

plate was chosen to be thick enough in order to be considered as perfectly rigid, and full

penetration welds were realized.

In an attempt to monitor the specimens’ strains and curvature at the hinges location without

the interference of local buckling on readings, strain gauges were fixed on the tension flange;

one was placed on the fixed-end 50 mm away from the plate due to the presence of the weld
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and another one was placed at mid-span. The inclinometer was attached to the hinged end to
measure the beam end rotation and a load cell was placed under the hinged support to
measure the support reaction. Loading was introduced in the same way as for the simply
supported beams and two load cells were placed under the jacks to record the applied force.
LVDTs were placed at mid-span and at quarter span length to measure the beams deflection.

The test setup is shown in Figure 3.27 below.

Plastic moment was always first reached at the fixed support with the development of a
plastic hinge; additional bending moment was then redistributed to the middle span until

plastic moment and system peak load were reached.

6, (Equation 3.11) was calculated when the system first reaches the elastic bending moment
Me.i. The system collapse load Py is calculated based on virtual work analysis and collapse
mechanism with the assumption of having rigid-perfectly plastic hinges of zero length

(Equation 3.12). Moments at mid-span and at fixed-end were determined through elastic

methods.
pPL’
= 3.11
32E1
L .. oM pl
F-—0=M,-0+M,-20 giving P, 6 = 3.12
p p P
2 L
‘ P P
2 A4
T
L/2 ! L2 4 0y
L
| 20
L2 L2
L
Configuration Plastic mecanism
Mmax=3P1/16
5P/16
% % |
= A
M=-5P1/32 -11P/16
Moment diagram Shear diagram

Figure 3.26 — Propped-cantilever centrally loaded analysis
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Loading beam

Tested specimen

Connection detail

Figure 3.28 — a) Deformed shape of a propped cantilever centrally loaded — b) Connection detail on braced
support
Moment-rotation curves have been plotted using the rotation given by the inclinometer at the
hinged end, and moments at the mid-span and at the fixed-end are determined through elastic
methods. Examples of results are shown for SHS 180x%6.3 in Figure 3.29a. As expected, it is
shown that, as the test progresses, fixed end moments are higher than at mid-span. System
peak load is reached with premature local buckling at mid-span (i.e. before reaching the
plastic moment in span), while the fixed-end end fully reaches the plastic moment due to
welding restraint and to the absence of localised stresses. Table 3.9 summarises normalized
span moments and fixed-end moment along with the system peak load for all the five tested
specimens. The small area of load introduction induced concentrated load application that
resulted in localized buckling. At the fixed end, a greater moment is reached (of about 30%
Mpi). Even if an increase of moment is expected at the fixed-end due to the welding restraints
and the moment gradient, a value of 30% M, is too high; this value is due to the load cell
sensitivity, and mainly to the error generated if not uniformed loading is applied on its surface
(see Figure 3.30). Therefore, after the peak load is reached, the beam deflection increase
rapidly, and due to the load cell position in the test setup, tilted forces (and slightly off-set) are
applied on the load cell, thus inducing error. Moreover, in Figure 3.29a, it can be observed
that the system peak load occurred when the middle span reached its peak moment, or beyond
for the cases of stockier sections where the system had reserve in resistance even though the
span segment was unloading (Figure 3.31). Figure 3.29b displays the normalized moment-
curvature with the yield curvature given in Equation 3.13. In the elastic phase, a linear region

with the same elastic flexural stiffness EI, for both the fixed-end and mid-span cross-sections
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is shown, followed by a gradual reduction in stiffness for the fixed-end and a sudden loss of

stiffness at mid-span.
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Figure 3.29 — a) Normalized moment - rotation of RHS 180x80x4.5 —b) Moment - curvature of
RHS 180x80%4.5
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Figure 3.30 — Load cell arrangement in the test setup

For some of the test results (RHS 220x120x6.3 PR C, SHS 180x6.3 PR C and
SHS 180x8 PR C), beams’ response was in contradiction with the theoretical expected ones
in terms of moment redistributions. Hence, bending moment at the fixed end was not greater
than the one in span (see Figure 3.31a). This is primarily due to the braced support. Due to
experimental limitations, bolts had to distanced horizontally by 160 mm, thus for all sections
of width larger than 80 mm bolts were positioned on either side of the section (see
Figure 3.32), and even though the plate was chosen thick enough to ensure a perfectly rigid
connection, it resulted in a semi-rigid one (see Figure 3.32c for the case of SHS 180x8 in
which the welded plate deformed after peak load was reached). This semi-rigid connection
would therefore attract less moment and the span higher ones. Moreover, in the elastic part,

bending moment at mid-span and the one at the fixed-end differ by 15% of the applied load P
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(see Figure 3.26). Hence, since the load cells precision is of the order of 5% the applied load
P, their precision would have a great impact on the test data and would also justify the

ambiguity that could occur in the elastic part.

|
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02 f-4-———4-—-{—=—— RHS220°1203_PR_C - Fixed-end || ! i | 1| ——— Test Mid-span Sup
// | — ——- System peak load / } } } | A System peak load_Inf
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* “inf” represents the deflection of the lower flange of the tested specimen and “sup” represents the deflection of the upper flange

Figure 3.31 — a) Normalized moment - rotation of RHS 220x120x6.3 —b) Normalized total load — span
displacement of RHS 220x120%6.3

Figure 3.32 — a) braced connection for RHS 180%80x4.5 —b) RHS 150x100x5 — c) plate deformation for the
case of RHS 220x120%6.3

Moreover, for comparison purposes, the moment-rotation curves have also been plotted using
the moment value back-calculated form strain-gauges measurements (see appendix 2). This
allows to plot moment-rotation curves from another set of data, and to confirm whether the
obtained moment redistribution is caused from the braced support not being fully rigid, or
from the inaccuracy of load cells measurements (it is also to be noted that some strain gauges
were defective so no conclusion could be drawn to all specimens; refer to appendix 3).
Moments from strain gauges have been calculated through reconstructing the stress diagram
based on the measured material law and then integrating it. Calculations were based on the

Bernoulli assumption. The strain on the compression flange was taken equal to that of the
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tension flange (where the strain gauge was positioned) and the strain diagram was assumed
linear in between. After the strain diagram was determined, the stress diagram as based on the
measured material law was calculated. Then, the major axis bending moment M was
determined by integrating the stress diagram around the major plastic axis of the section. Two
methods have been used and compared: the first, analytical, was adopted with a simplified
section that neglects the presence of corners and then the moment has then been normalized
with the plastic moment from the simplified section for comparison purposes. The other
method, numerical, consisted in discretizing the cross-section and then integrating the
according stress of each element around the plastic neutral axis; the moment has then been

normalized with the plastic moment.

Both methods gave the same results, and are described in detail in appendix 3. In Figure 3.33,
for the case of RHS 180x80%4.5 specimen, we can see that in the elastic part, the moment
from the strain gauges recording are in concordance with the moment calculated from the load
cells measurement and to the theoretical curves (detailed calculation can be found in
appendix 3). Moments calculated from the strain gauges can be more easily compared to the
theoretical ones since their values are computed while assuming that the strain at the tensile
flange is equivalent to the one at the compression flange; therefore, no reduction due to local
buckling is taken into consideration, and the plastic moment is reached. Nonetheless, even if
local buckling is not explicitly reported, its effect influences the strain gauges recordings and
is displayed by the rapid loss in stiffness displayed in the moment-rotation curves. Moreover,
the rounded response recorded by the gauges is due to the progressive propagation of yielding

along the height and the length of the specimen and to the effect of residual stresses.

It can be noted in the moment-rotation graph (Figure 3.33), from the experimental curves
computed from the gauges recording, that after the fixed-end first reaches the plastic moment,
the moment is redistributed to the mid-span, and the curve at mid-span displays a premature
sudden loss in stiffness due to the early initiation of local buckling. It is also shown that the

system peak load is attained when both the span and fixed end reach the plastic moment.

In Figure 3.34, the theoretical load-displacement curve exhibits higher stiffness than the
experimental one. This is due to the yielding process that spread in the transverse and
longitudinal direction, and to second order effects. Moreover, it is due to the loading
introduction that induced high level of stress concentrations and resulted in early local

buckling, and hence a softer beam response.
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Figure 3.33 — Normalized moment - rotation of RHS 180%x80x4.5 — comparison between moment from test load

cells, strain gauges and theoretical calculations
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Figure 3.34 — Normalized load - displacement of RHS_180x80x4.
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Table 3.9 — Collapse results for the centrally loaded propped cantilever

Name of specimen Moty | Pots | G| P Pfu)l ;l/ Mutspon M}I\ZIG ! M‘i:;im” ]:ﬁl/tfl?\;jl 0l 6| v
[kN.m] | [kNT | [°] | [&kN] | [-] |[AN.m]| [-] [AN.m] | [-] [-] | [mm]
RHS 180x80x4.5 SS 3P | 49.6 | 62.0 |0.95| 59.2 | 0.95 | 404 0.81 66.1 1.33 2.12 | 624
RHS 150x100x5_SS 3P 48.1 | 60.1 |1.17| 61.4 | 1.02 | 46.0 0.96 58.1 1.21 2.82 |106.9
RHS 220x120x6.3_SS 3P| 115.1 |143.9|0.81|126.4| 0.88 | 97.9 0.85 144.1 1.25 223 | 642
SHS 180x6.3_SS 3P 113.8 | 1423|096 |1239| 0.87 | 97.8 0.86 134.9 1.18 1.36 | 36.0
SHS 180x8_SS 3P 129.1 |161.4|0.92 1522|094 | 112.96 | 0.87 169.7 1.31 3.16 | 99.6

3.2.4 Propped-cantilever off-centrally loaded

Three additional propped-cantilever specimens of 4.8 m span length were tested with loading

applied at one third length from the hinged support. This arrangement was performed so

that — unlike the propped-cantilever centrally loaded — the plastic hinge would first form in the

span and then, due to moment redistribution, failure would occur by the fixed-end reaching

the plastic collapse load. The test setup is shown in Figure 3.35 and Figure 3.36.

Arrangements for the fixed end, hinged end and loading introduction were performed

similarly to the centrally loaded cantilevers.

LVDT
Loading beam

I

ANRNY

. ) 2 jacks + 2 load cells  Inclinometer b
Strain gauge Strain gauges
o
LVDT LVDT LVDT jﬂoad cell
L/4 L L/4 |
2L/3 L/3
1L=4800 var.

Figure 3.35 — Test setup of the propped cantilever off-centrally loaded
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Loading beam

Tested specimen
Braced support

Hydraulic jacks

Figure 3.36 — Deflected shape of a propped cantilever off-centrally loaded

As shown in Figure 3.38a moment-rotation plot, span first reaches the plastic moment. Failure
is then attained in the fixed-end reaching its plastic bending resistance. Before the system
peak load is reached, span moment is higher than the fixed-end moment, after which the span
moment decreases and the fixed-end moment increases to reach the plastic moment. Yield

rotation and system collapse load P, are given in Equations 3.14 and 3.15.

P
= 3.14
27EI
L 0 36 6M
F-3:0=M, —+M, == gving P, - LPZ 3.15

Similarly, for the propped cantilever off-centrally loaded, a semi-rigid connection would also
result in greater span moment and reduced fixed-end moment which would only emphasize
the theoretically expected results. Nevertheless for the case of the RHS 180x80x4.5 where the
braced connection is perfectly rigid, moment redistribution were in contradiction with the
theoretical expected ones (i.e. fixed end moment were higher than of the span). This can be
explained by the load cells precision and the fact that moments at the point load and at the
fixed-end are close, thus an ambiguity may arises in the elastic regions of these curves. In
addition, when plotting the back-calculated moments from the strain gauges readings, it can
be seen that the fixed-end moment should be lower than that recorded by the load cells;
however it should be noted that strain gauges at fixed end were defective for some specimens

and therefore cannot be fully trustworthy.
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Figure 3.37 — Propped cantilever centrally loaded diagrams
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Figure 3.38 — a) Normalized moment - rotation of RHS 180x80x4.5 — b) Normalized total load — span
displacement
In Figure 3.39, the moment-rotation curves calculated from the gauges shows clearly that
local buckling is first reached at the point load position and this without reaching the plastic
moment Mp: (as seen in Figure 3.39 by the curve calculated from load cells). Thus, no plastic
hinge could be developed at the point load due to high level of stress concentrations. Hence,
due to premature local instability, bending moment cannot be properly redistributed to the
fixed-end which explains the high reduction in stiffness of the fixed-end moment curve and
the reason why the attainment of the plastic moment is much delayed after the attainment of

the system peak load.
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Figure 3.39 — a) Normalized moment - rotation of RHS 180x80x4.5 — comparison between moment from test

load cells, strain gauges and theoretical calculations

System peak load occurred at variable vertical displacement levels ranging between 20 mm

and 60 mm; the normalized total load is plotted as a function of the deflection for the three

propped cantilever off-centrally loaded in Figure 3.38b. The deflection v is measured at the

loading point. Table 3.10 summarises normalized span moments and fixed-end moments

along with the system peak loads and corresponding end rotations &, for the 3 tested

specimens.

Table 3.10 — Collapse results for the off-centrally loaded propped cantilever

Name of specimen R I I };L;lptl/ Mt Mu]l(j:;l ! MHZZXM’ éﬁl/tf;;:l %l 8| w
[AN.m] | [N] | [°] | [N] | [-] |[AN.m]|  [-] [kN.m] | [-] [-] | [mm]
RHS 180x80x4.5 SS 3P | 487 | 60.9 [1.24| 57.5 |0.95| 433 0.89 64.3 1.32 1.84 | 532
RHS 220%120x6.3_SS 3P| 1154 | 144.2 [1.01 | 127.8 |0.89 | 103.8 0.90 122.8 1.06 1.48 | 33.7
SHS 180x6.3 SS 3P 109.46 | 136.83 [ 1.22| 116.6 | 0.85 | 94.07 0.86 140.41 1.28 1.25 | 345

3.3 Conclusions

Experimental works investigating the available rotation capacity of HSS have been presented.

The test program included 4 different configurations, 6 cross-sections dimensions of S355

steel grade profiles from the hot-formed production process. Tensile tests were performed for
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all sections. Moreover, seven stub column specimens were tested to measure the level of

available ductility of the sections.

The simple supported test configurations resulted in five out of six sections to experience
insufficient plastic rotation capacity due to high level of stress concentration imposed during
loading, although sections were classified as class 1 according to Eurocode 3. It was shown
that the bearing surface area was the key factor here and that further investigation are
necessary to couple the width-to-thickness ratio of the compression flange with the bearing
stress intensity imposed on that flange, in order to fully understand and characterize the

observed experimental behaviour.

For the propped cantilever configurations, the fixed sections showed an increase in strength
due to welding restraints while the span section did not reach its full plastic moment capacity
due to high level of stress application. Early local buckling at the span prevented the
attainment of the plastic moment and the formation of plastic hinge, thus prohibiting the

formation of a mechanism and the characterisation of the rotation demand.
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4 DEVELOPMENT AND VALIDATION OF FINITE

ELEMENT MODELS

4.1 General scope

This chapter details the numerical model developed, and its validation against the 23 bending
tests performed at the University of Applied Science of Western Switzerland — Fribourg, and
against 32 cold-formed tests performed by Wilkinson at the University of Sydney — Australia.
The finite element simulations were carried out with the finite element software FINELg.
Special attention was given to the boundary conditions, load introduction, geometrical
imperfections and measured material law and dimensions. Numerical results are then
compared to their experimental counterpart, in order to validate the numerical model. Hence,
after its validation, the numerical model will be extensively used in a consecutive numerical
parametric study (reported in the next chapter) to generate a series of bending test data, in

order to investigate the sensibility of the rotation capacity to different parameters.

4.2 Assessment toward documented test data

4.2.1 Validation against tests performed at the University of Applied Sciences of

Western Switzerland — Fribourg

Numerical computations were performed with the use of the non-linear F.E. software
FINELg, continuously developed at the University of Li¢ge and Greisch Engineering Office
since 1970 [103]. Cross-sections were modelled with the use of quadrangular 4-nodes plate-
shell finite elements, and resorting to L.B.A. (Local Buckling Analysis) and G.M.N.L.A.
(Geometrically and Materially Nonlinear Analysis with Imperfections) analyses. Detailed

results for all specimens can be found in appendix 3.

The numerical models have been developed to represent the specimens’ properties, as well as
the test setup characteristics as closely as possible. Measured geometric dimensions described
in Chapter 3 were implemented, and the section was modelled using 4 shell elements per
corner, to suitably represent the geometric static characteristics of the tested specimen.

Averaged measured stress-strain data was also included; for hot-formed sections, a multi-
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linear material law was adopted as shown in Figure 4.1. For cold-formed sections, a simple

Ramberg-Osgood material law was used for the flat regions (Equation 4.1) with n = 22.

e=240.002] < 4.1
E OCo2

This parameter was seen to provide curves in good concordance with the measured ones;
moreover, due to the cold-forming process, sections usually exhibit strength enhancement in
the corner regions, hence a multi-linear law was considered as described in Figure 4.2, with
the corresponding yield and tensile stress given in Equation 4.2 and 4.3. These values have
been adopted based on experimental measurements along with literature review and are

summarised in [104] .

f‘yicorner = 1‘15f:\17_/lat 42
f;ticorner = l 1 Sf;iﬂat 43

Figure 4.1 — a) Adopted material law for hot-formed sections

't is to be noted that having such different material laws led to difficult convergences, especially in the post
peak range.
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Figure 4.2 — a) Adopted simple Ramberg-Osgood material law for flat regions — b) Adopted multi-linear material
law for corner regions [104]
For hot-formed sections, auto-equilibrated membrane residual stresses pattern were
implemented with a reference yield stress f; = 235 N/mm? along with constant residual stresses
patterns, shown graphically in Figure 4.3. Flexural residual stresses were adopted for cold-
formed sections with a linear distribution. Flexural stresses were taken equal to 1.2 f (fy =235
N/mm?), in the flat regions and equal to £, in the corner region. These values have been
prescribed by Nseir (2015) [104] based on literature review and on some own measurements.
It is to be noted that for cold-formed sections, residual stresses are somewhat implicitly
incorporated in the stress-strain curve, due to the tensile coupon straightening during testing
[105]. Nevertheless, they have been implemented in the numerical model to well represent the

mechanical behaviour of the beams and to provide safe-sided numerical resistance

predictions.
+().5fy
-0.5f. 4rsin(/8)
(b-2r-1)
1 +().5fy
\
Yy ,77#777 o -0.5f. 4rsin(1/8)
| (b-2r1)
\
|
\
V4 With £, = 235 N/mm?
—
b

Figure 4.3 — Auto-equilibrated residual stress pattern for Hot-formed tubular profiles - SHS and RHS
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4.2.1.1 Mesh density

In F.E. models, the distribution of the fine mesh is crucial in order to obtain trustworthy
results. In the context of this study, a dense mesh was used in the yielding zones, where local
buckling would develop, to obtain accurate results and well represent the beam behaviour (see
Figure 4.5). Moreover, a slightly coarser mesh density was used in the zones adjacent to the
ones where local buckling would spread, to minimise the computational time. Numerical
models have been developed so that the hollow beam consists of 10 zones, allowing a
variation of the meshing density in the longitudinal direction. In this way density can be

increased in key areas.

For each of the tested specimen, three different mesh types have been adopted with the aim of
checking the mesh densities that would provide accurate results (Figure 4.4). The adopted
meshes were denoted Mesh 1, Mesh 2 and Mesh 3 with mesh densities spanning from coarse
(for the case of Mesh 1) to very dense (Mesh 3). While Linear Buckling Analysis (L.B.A.) is
the most sensitive to meshing variations, G.M.N.I.A. calculations were selected for validation

purposes.

It can be observed in Figure 4.6 that different meshes resulted in relatively similar stiffness in
the elastic part, but in differences concerning the peak load value and the post peak path. This
is attributed to the elements’ size which is not small enough to represent accurately the
development of plastic mechanisms and local buckling. In Figure 4.6, we can clearly see that

Mesh 2 and 3 give similar responses and a quite satisfactory behaviour.
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Figure 4.4 — Different adopted mesh densities

Figure 4.5 — Yield extent at final step

Mesh 1

Mesh 2

Mesh 3

Mesh 1

Mesh 2

Mesh 3
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Figure 4.6 — G.M.N.L.A. results, maximum load and load-deflection curves for RHS 180x80x4.5 PR C

Figure 4.7 to Figure 4.10 report results for all tests in terms of normalised ultimate moment
for the simply supported arrangement, and normalised ultimate load for the propped cantilever
configurations. From these figures, it can be observed that small differences occur between
the three different meshes in the simply supported cases. For the propped cantilever
configuration, more differences are observed between Mesh 1 — that is very coarse — and both
Mesh 2 and Mesh 3. For the latter case (propped cantilever), bigger differences were expected
since two plastic hinge form. Hence, a fine mesh capable of accurately representing the
development of the yield lines in two locations — and thus the plastic mechanism — is required.
For the cases of Mesh 2 and Mesh 3, small differences are displayed for all tests. These
meshes were seen to provide accurate representations in terms of peak load and yield
development. Hence, since results showed a quite satisfactory behaviour for the mesh 2
definition, it was therefore adopted for the remaining validation of tests, as it provides

satisfactory accuracy and minimal computational time.
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- RHS 220x120x6.3_SS_3P*
RHS 220x120x6.3 SS 3P
RHS 150x100x8_SS 3P
SHS 180x6.3 SS 3P
SHS 180x8 SS 3P
RHS 180x80x4.5 SS 3P
RHS_150x100x5_SS 3P
SHS 200x6_SS_3P

Figure 4.7 — G.M.N.LA. results, normalised maximum moment of the 3-pt bending tests for different meshes
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Figure 4.8 — G.M.N.L A. results, normalised maximum moment of the 4-pt bending tests for different meshes
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Figure 4.10 — G.M.N.I.A. results, normalised maximum load of the PR_O tests for different meshes

4.2.1.2 Support conditions

Special attention was given to the modelling of the support conditions to represent the test

configuration as closely as possible. Hence, for

the simply supported configurations and to

represent the actual hinged connection, only the bottom flange nodes were supported at a

—94_



Development and validation of finite element models

distance of 10 cm away from the section end as in the actual test. Moreover, a bearing plate of
20 mm thickness was added under the hinged support and was given an elastic material law in
order to prevent its yielding. Concerning the propped cantilever, the end plate was modelled
as well since it was shown to affect the response of the specimens. The same material law as
for the main beam was adopted. Also, an increase in thickness was considered for the first
1 cm of the beam to model the weld with £, = 500 N/mm? and f, = 600 N/mm?. Since the end-
plate of the specimen was fixed by mean of 8 bolts, thus, when the beam is bended, the lower
part of the end-plate is in compression and applying a compressive pressure against the
column of the braced support, while the upper part of the end-plate is in tension, with the bolts

retaining it to the braced support. In that respect, the compression part of the end-plate was

completely fixed, and 4 supports were placed on the bolts positions in the tension part

(Figure 4.12).

Figure 4.11 — Modelling of propped cantilever beam

End plate modelling, position of supports and increase in thickness at Hinged support representation
the fixed end

Figure 4.12 — Details of supports modelling
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4.2.1.3 Introduction of loading

As for the modelling of the load introduction, the experimental conditions were taken into
account as closely as possible, however through different possibilities. Loading was first
introduced through 4 concentrated forces applied on the upper flange edges, and positioned at
the 4 corners of the plate in contact with the tested beam, as it was observed to be in the actual
test. Hence, due to the bending of the beam and the upper flange buckling, the 50 mm plate
was in contact with the flange only at its extremities and not on the whole surface.
Nevertheless, for sake of consistencies, three loading application were varied in order to see
their effect on the beams response. Load 1 corresponds to the actual loading application and
Figure 4.13 shows a picture of the tested beam where this phenomenon is highlighted; load 2
is applied uniformly on the junction between corner and flange on a distance of 50 mm, and

load 3 is applied evenly on the flanges on two segments spaced of 50 mm (see Figure 4.13).

Load 1 Load 2 Load 3

Figure 4.13 — Loading variation

Figure 4.14 clearly illustrates that the loading variation not only affects the ultimate capacity
of the beam, but also its stiffness especially for the loading case 3. Therefore, load 1 was
adopted since it seemed to well represent the loading conditions as well as the beams response

in terms of moment-rotation behaviour (see section 4.2.2.1).
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My limit

Loadl Load2 Load3

Figure 4.14 — Load introduction influence in term of maximum moment and moment-rotation curves for

SHS_180%6.3_SS_3P

4.2.14 Sensitivity to geometrical Imperfections

Initial geometrical imperfection are shown to alter hollow section beams’ response in the post
peak (unloading) phase. Typically, when such beams are tested in bending, their rotation
capacities may vary in a considerable extent, depending on the geometrical imperfections. In
the experiments performed, initial geometrical imperfections were not measured prior to
testing, because the measurement technique at our disposition was not sufficiently reliable to
measure small amplitudes, and would therefore not help achieve a better understanding of the
experimental results. Therefore, a set of different imperfection shape and amplitudes were
varied numerically. Two types of geometrical imperfections were introduced. One is based on
the deformation induced by the first eigenmode shape, for which the maximum amplitude is
assigned. The second is introduced through an appropriate modification of node coordinates.
Full independence between all global or local defaults is respected. Local geometrical
imperfections are established for both webs and flanges with square half-wave shapes and
with a chosen amplitude. The global default is introduced through a sinusoidal shape (similar
to the member buckling shape), for both strong axis and weak axis; the maximum amplitude
of each being an input parameter. Seven different geometrical imperfection pattern were
selected and are represented in Figure 4.15 and Figure 4.16. Depending on the geometric
imperfections introduced into the model, results were seen to be more or less close to the

recorded experimental one in the unloading phase.
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Figure 4.15 — Considered geometrical imperfections

Imp 1

Imp 4

Figure 4.16 — Amplified geometrical imperfections

The geometrical imperfections did not affect the beam response in the elastic part, and no

difference is depicted between curves. Moreover, an excellent correlation between the test

results and the F.E. models prediction is observed, indicating that the modelling of the beams

was adequate (in terms of support modelling, load introduction...) and represented well the

system stiffness. Nevertheless, the imperfections shape and amplitude had a large influence

on the post peak response, and therefore on the rotation capacity of the specimens. Because a

limited set of imperfection was selected, the unloading phase observed in the F.E. simulations

was not always nicely matching the experimental one, as Figure 4.17, Figure 4.18, and
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Figure 4.19 show. In these figures, “Displacement inf” refers to the beam deflection recorded

at the bottom flange.

Global geometrical imperfections had no influence on the beams tested in bending, since no
difference between “Imp 1” and “Imp 2” moment rotation curves can be noticed. Global
geometrical imperfections were nevertheless added to the local imperfections since they are

present in a real specimen.

As a general trend, imperfections had an influence on the beam ultimate capacity as well as on
its rotation capacity, as seen in Figure 4.17. It is also to be noted that even though the
imperfection shape had an impact on the beam response, it is mainly their amplitude that lead
to scatters in rotation capacities. An increase or decrease in strength when the imperfection is
amplified is due to whether the initial geometrical buckle direction at the loading point is
downward or upward. Furthermore, even for the cases based on the first eigenmode and since
loading was introduced on the 4 corners, some configurations resulted in an upward buckle,
explaining why the specimen could attain higher resistances when the amplitude was
increased (Figure 4.18 and Figure 4.19). In some cases, for example for the case of
RHS 150x100x5_SS 4P, some imperfection patterns had a major influence on the rotation
capacity (Figure 4.18), but not on the ultimate strength. For other specimens, it is the ultimate
capacity of the beam that was affected but not the post peak unloading phase. Would a
numerous number of imperfections shape and amplitudes varied for the same tested specimen,
an imperfection pattern shall lead to a similar behaviour as the experimental test and load-
displacements curves would be matched in the post peak phase (as it was the case of the

RHS 150x100x5_SS 4P reported in Figure 4.18 ).

In this sub-study, we limited our sensibility analysis to 7 cases. In this sensibility analysis,
type 1 imperfection pattern was seen to lead to conservative results in term of rotation
capacity. Further sensitivity studies toward a deeper understanding shall however be welcome
and considered as additional developments. In the following section, when the numerical
model is validated against the experimental tests, test results were compared to the numerical
model that incorporate type 1 imperfection shape, even if other imperfections types led to

closer results.
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Figure 4.17 — Imperfections sensitivity for SHS 180%6.3 PR_C, a) comparison of the normalised ultimate load,

b) load-displacement curves for the different imperfection patterns
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Figure 4.18 — Imperfections sensitivity for RHS_150%100x5_SS 4P, a) comparison of the normalised ultimate

load, b) load-displacement curves for the different imperfection patterns
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b) load-displacement curves for the different imperfection patterns
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4.2.1.5 3-point and 4-point bending tests

In the present section, experimental results are compared to the numerically predicted ones,
based on actual cross-sectional dimensions, material properties, initial imperfection type 12,
and loading introduction type 13 — except for the case of the SHS 200x6 SS 4P specimen
because no 50 mm thick plate was placed under the loading point. Loading was then modelled
using “type 2” load application pattern, and was applied uniformly on the corners end over a

distance of 4 cm.

Concerning the three point bending configuration, numerical simulations represented the real
behaviour quite accurately, especially regarding the rigidity of the beams’ response. Hence
Figure 4.20 depict how the numerical results match the experimental ones in the elastic part.
Moreover, the numerical model predicts the moment capacity accurately. Hence, numerical
results also outline that, similarly to experimental observations, and owing to the load
introduction, cross-sections were not able to achieve their plastic limit and premature local
buckling developed. The behaviour of hollow section in bending is thus represented
accurately. A small divergence can usually be observed in the post peak phase and this is to
be attributed to geometrical imperfection shape, as detailed previously. In Figure 4.20,
“Displacement inf” refers to the vertical displacement of the tested beam at mid-span and at
the bottom flange, while “Displacement sup” refers to the recording at the top flange. The
difference between these two recording is attributed to the development of local buckling in

the upper flange, which result in higher deformations at this point.

2 Average sinewave of web and flange and a / 200 amplitude by plate, with a reduction of 30%

3 Four concentrated loads applied at the upper flange edges
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Figure 4.20 — RHS_220x120x6.3_SS 3P validation

Table 4.1 summarises numerical results for all specimens, and Table 4.2 displays a
comparison between F.E. and tests results in terms of peak moment and equivalent peak
rotation. On average, the deviation of numerical and experimental results in term of peak
moment was less than 2%. In some cases the difference was larger (up to a maximum of 11%)
which may be connected to laboratory effects that are difficult to quantify (load cells, load
eccentricities, friction in the hinges...). These results demonstrate the ability of the numerical
model to well predict the capacity of sections. In terms of rotation at failure, the average
deviation of numerical vs. experimental results was smaller than 20% with a deviation of 9%.
These values represent a good estimate of the rotation, since the large variability of the
rotation capacity was previously identified and mainly attributed to the initial geometrical
imperfections. We can also note that the numerical model always lead to a safe underestimate

for all the specimens in terms of the ultimate rotation.

Table 4.1 — 3-pt bending numerical results

. M rivee M. Fiverg! o Puiriverg! | Ouriverg! .

Test specimen M,y Py 0,

[kN.m] [-] [&N] [-] [-] [mm]
RHS 150%x100x8 SS 3P 81.1 1.16 124.8 1.16 6.15 113.9
RHS 180x80x4.5 SS 3P 47.1 0.93 72.5 0.93 1.37 18.1
RHS 150x100x5_SS 3P 49.6 0.98 76.4 0.98 1.46 23.9
RHS 220%120%x6.3_SS 3P* 98.1 0.86 151.0 0.86 1.21 12.6
RHS 220%120%x6.3_SS 3P 96.2 0.85 148.0 0.85 1.18 124
SHS 180%6.3 SS 3P 95.5 0.85 147.0 0.85 1.08 13.5
SHS 180x8 SS 3P 118.5 0.92 182.3 0.92 1.22 14.9
SHS 200x6_SS 3P 110.5 0.71 170.0 0.71 0.91 11.9
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Table 4.2 — Numerical vs. experimental results for 3-pt bending tests

Putexp! Mo/ Oexp!

Test specimen Puew Pult,l;‘l]\;ELg Musen Mtlt,l;IN};iLg Ouewl & eu,l;lN[;Lg
[-] [-] [-] [-] [-] [-]
RHS_150x100x8_SS_3P 134.8 1.08 84.6 1.04 7.53 122
RHS 180%x80x4.5 SS 3P 75.3 1.04 46.3 0.98 1.59 1.16
RHS 150%100x5_SS 3P 76.7 1.00 46.6 0.94 1.94 1.33
RHS 220%120%6.3_SS 3P* 156.4 1.04 98.7 1.01 1.28 1.06
RHS 220%120x%6.3_SS 3P 161.3 1.09 101.6 1.06 1.34 1.13
SHS_180%6.3 SS_3P 166.6 113 105.6 111 131 121
SHS 180x8 SS 3P 191.8 1.05 121.1 1.02 1.32 1.08
SHS_200x6_SS_3P 177.8 1.05 1116 1.01 124 137
max 1.13 1.11 1.37

min 1.00 0.94 1.06

mean 1.06 1.02 1.20

C.0.V. 0.04 0.05 0.09

Similarly, for the four point loading configuration, a good concordance between numerical
and experimental results was found. Figure 4.21 displays a representative example for the
SHS 180x8 SS 4P. It can also be observed that the stiffness of the beam response is well
represented in the elastic part. In the unloading phase, results slightly diverge between
numerical and experimental results but similar trends are observed. Figure 4.21 demonstrate
the ability of the 4-pt bending model to well predict the experimental behaviour of such

beams. Hence, a very good representation of the experimental curves is achieved.

In Figure 4.21, in terms of the ultimate moment reached (figure on the left), a difference of
8% 1s reported between the numerical and the experimental results. However in term of
ultimate peak load (figure on the right), only a 2% is observed. The normalised peak load and
peak moment achieved in the numerical model are identical, as expected due to simple
engineering, and are reported in Table 4.3. However, this is not achieved experimentally and

is attributed to the load cell precision as stated in Chapter 3.
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Figure 4.21 — SHS 180x8_SS 4P validation

Table 4.3 and Table 4.4 summarise results for all the tested specimens and show a good

agreement between the numerical and experimental results. 6, , and 6, , represent the beam
end rotation when the ultimate load P, is reached. v, , and v,, are the beam deflection

recorded at the point load a or b when the ultimate load is attained. In terms of ultimate
moment capacity, numerical and experimental results display a difference of 6% on average.
A maximum of 12% and a minimum of 1% are reported, with the numerical model always
leading to safe sided values. These results demonstrate the ability of the numerical model to
represent the experimental behaviour quite accurately. Differences between numerical and
experimental results in terms of ultimate rotation are on average equal to 16% with a standard
deviation of 22%. These difference, although a bit high, are not at all alarming since they are
attributed to the geometrical imperfection introduced in the model. This difference can be
considerably diminished when varying the initial imperfection shape and amplitude (see
§4.2.1.4).
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Table 4.3 — 4-pt bending numerical results

Test specimen M FiNELg M'/h'AF/;ZELg P FineLg Pul/t’gzﬂg Oua/ 6 | Ouv/ 6, Vua Vub
[kN.m] [-] [kN] [-] [-] [-] [mm] [mm]
RHS 150x100x8 SS 4P 76.2 1.11 117.3 1.11 13.13 12.85 | 207.81 | 203.52
RHS 180%x80%4.5 SS 4P 46.6 0.91 71.7 0.91 1.60 1.60 20.57 20.59
RHS 150x100x5_SS 4P 47.6 0.96 73.2 0.96 2.18 2.18 34.92 34.93
RHS 220x120x6.3_SS 4P| 97.7 0.85 150.3 0.85 1.28 1.29 12.95 12.97
SHS 180%6.3_SS 4P 96.0 0.84 147.7 0.84 1.08 1.06 15.24 14.80
SHS 180x8 SS 4P 116.1 0.90 178.6 0.90 1.33 1.34 16.11 16.16
SHS 200x6_SS 4P 93.0 0.60 143.0 0.60 0.97 0.9 12.2 11.1
Table 4.4 — Numerical vs. experimental results for 4-pt bending tests
‘ Puteny Putexp! Moy Mutrexp! | Ouaep! | Ouberp/ | Ouaep! | Ouaewp!
Test specimen PurineLg M riNeLg 6, 6, ObFINELg | Oub FINELg
[-] [-] [-] [-] [-] [-] [-] [-]
RHS 150x100x8 SS 4P 131.3 1.12 83.2 1.09 9.41 8.88 0.72 0.69
RHS 180%x80%4.5 SS 4P 75.0 1.05 473 1.02 1.93 2.04 1.20 1.27
RHS 150x100x5_SS 4P 77.0 1.05 47.9 1.01 2.94 2.64 1.35 1.21
RHS 220%120x6.3 SS 4P| 163.4 1.09 103.3 1.06 1.23 1.34 0.96 1.04
SHS 180x6.3_SS 4P 164.8 1.12 103.7 1.08 1.35 1.26 1.24 1.19
SHS 180x8 SS 4P 181.9 1.02 1253 1.08 1.63 1.50 1.22 1.12
SHS 200x6_SS 4P 151.0 1.06 104.00 1.12 1.34 1.46 1.39 1.65
max 1.12 1.12 1.39 1.65
min 1.02 1.01 0.72 0.69
mean 1.07 1.06 1.15 1.17
C.O.V. 0.04 0.04 0.21 0.24

A graphical view that compares peak moments for 3 point and 4 point bending configurations

is presented in Figure 4.22 and Figure 4.23. It can be seen that all numerical simulations

provide ultimate moments values in excellent accordance with the test results. All numerical

predictions give values close to the ideal line M, /Muh’ = =1, while generally being safe-

sided. This indicates that the numerical models have been well calibrated.
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4.2.1.6 Propped cantilever arrangements

For the propped cantilever configurations, end plates were modelled for sake of a fair
comparison with the experimental results. Beams were also modelled using an ideally-fixed
end by fixing all nodes of the end section as shown in Figure 4.25. This was intended at

highlighting such effect on the system rigidity.

Figure 4.24 presents the bolts position on the end-plate for all sections. Their positioning was
made following experimental limitations that consist in bolts being distanced horizontally by
160 mm and vertically by 80 mm. Bolts configuration was assigned considering minimum
gages required. Only for the case of SHS 180x80x%4.5, bolts could be placed near the section
webs; this lead to a rigid connection for this case. Whereas for the other specimens, the
connection was somehow semi-rigid, although the end plate was 30mm thick (the thickness of

the end-plate was assigned in an attempt to ensure a perfectly rigid connection as stated in
§3.2.3).

300 300
160 160
300 —
300 160 d_} % & Oy
© & no & & &
100 z ‘f—‘f 180
e & 1
= = - _
- “—H Zl |2 2l L
g E 2 2l | g 2 o &
- E=4 18 R U B = I S PR A N [ N S R
& £ & & € &
2
& & el & & &
RHS 180%80*4.5_HF RHS 150%100*5_HF RHS 220%120%6.3_HF SHS 180x6.3 and SHS 180x8

Figure 4.24 — Bolts distribution on the end-plate of the propped cantilever tests

For the SHS 180%x80x4.5 PR _C case, as the fixed end was perfectly rigid through a good
distribution of bolts, Figure 4.26 shows that results with the end plate modelled and the one
with an ideally-fixed end are identical. Nonetheless for the case of SHS 180x6.3 PR C
(Figure 4.27), it can be seen that when the end plate is modelled, numerical results matches
experimental ones in the elastic part, while if a perfect “ideal” fixed end is modelled, an

increase in stiffness is observed.

-107 -



Development and validation of finite element models

Figure 4.25 — Modelling of the ideally-fixed end for propped cantilever configurations
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Figure 4.26 — SHS 180x80x4.5 PR _C; ideally-fixed end vs. end plate
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Figure 4.27 — SHS_180%6.3_PR_C; ideally-fixed end vs. end plate

Figure 4.28 shows an excellent accordance between numerical and experimental results for
SHS 180%6.3 PR _C. For this case, we can see that the numerical curves are very similar to
the experimental ones and that similar tendencies are observed in the load-displacement and
in the moment-rotation representations. It is reminded here that the terminology “Inf” refers to
the deflection recorded at the bottom flange while “Sup” refers to the deflection measured at
the top flange. By comparing numerical and experimental curves for SHS 180x80x4.5 PR C
in Figure 4.29, it can be seen that the system peak load is well predicted, as well as the
rigidity of the system. However, deflections at failure may sometimes differ; this divergence
may be attributed to the imperfection shape and amplitude. When comparing moment-rotation
curves, a bigger divergence is noticed between numerical and test results in terms of peak
moment. Experimentally, it can be seen that the moment at the fixed end reached values 20%
higher than the one obtained numerically. This difference could be explained by the fact that
welding may have caused an increase in strength in a bigger portion of the beam than the one
modelled. It is also attributed to the precision of the load cells that may have been affected
after the peak load is reached. Hence, after the peak, the beam deflection becomes more

pronounced and load was not strictly vertically and uniformly applied.
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Figure 4.29 — Results for SHS 180x80%x4.5 PR _C

Results of all propped cantilever centrally loaded specimens are summarised in Table 4.5 and
Table 4.6 below. When comparing the ultimate load reached experimentally and the one
achieved numerically, a very good correspondence is observed. On average, results diverged
by 1% and a maximum deviation of only 5% is reached. A slightly higher divergence was
noticed in term of rotations, as expected. These results demonstrate the capability of the
numerical model to well predict the experimental behaviour of propped cantilever centrally
loaded.
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Table 4.5 — PR_C numerical results

P FINEL Mospan! Mg
, 4 . span ult fixed-
Pull € Mtlt,span

M, 3 6./ 6, Vv
Test specimen !/ Py My ulifedrend |/ My S !

[kN] [-] [kN.m] [-] [kN.m] [-] [-] [mm]

RHS_180%80x4.5_ PR _C 60.82 0.98 52.00 1.05 47.30 0.95 1.70 43.08

RHS_150%100x5_PR_C 60.40 1.01 51.65 1.07 47.39 0.99 1.76 56.17

RHS_220x120x6.3_PR_C | 129.18 0.90 120.15 1.04 101.53 0.88 1.51 32.77

SHS_180%6.3_PR_C 130.18 0.92 117.10 1.03 105.05 0.92 1.47 37.18

SHS 180x8 PR C 149.12 0.92 136.50 1.06 120.63 0.93 1.62 41.09

Table 4.6 — Numerical vs. experimental results for PR_C tests

Puitexp e
Test specimen Puen P ulz,l;n\fEig B! & efﬁv“ll\ll;:‘ig
[-] [-] [-] [-]
RHS 180x80x4.5 PR C 59.2 0.97 2.12 1.25
RHS_150x100x5 PR _C 61.4 1.02 2.82 1.60
RHS 220x120x6.3 PR _C 126.4 0.98 2.23 1.48
SHS 180x6.3 PR C 123.9 0.95 1.36 0.93
SHS 180x8 PR _C 152.20 1.02 3.16 1.95
max 1.02 1.95
min 0.95 0.93
mean 0.99 1.44
C.O.V. 0.03 0.27

For the propped cantilever off-centrally loaded, conclusions similar to the centrally loaded
propped cantilever can be drawn. For the RHS 180x80x4.5 PR O case (see Figure 4.30),
identical responses and trends are observed for the model with end plate and the one with an
“ideally” fixed end. However, an increase in stiffness at the fixed-end is observed for all
propped cantilever centrally loaded. Figure 4.31 also reveals that experimental results are
more accurately predicted by the model with an ideally-fixed end rather than by the one with
an end plate. It is to be mentioned that the difference between models regarding the stiffness
in the elastic part is only of the order of 5%; hence, this deviation is of the order of precision
of the load cells. Moreover, the inaccuracy in the load cells is increased by the non-uniform

load application due to the beam end rotation.
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Figure 4.31 — SHS _180%6.3_PR_O; ideally-fixed end vs. end plate

Figure 4.32 displays validation curves for the SHS 180x6.3 PR O test in terms of load
deflection as well as in moment rotation curves. A perfect agreement is observed when
comparing the stiffness of the beam response as well as the ultimate peak load, peak moment
and the deflection at the peak load. Only 1% difference is achieved between the experimental

recorded peak load and the one from numerical simulation, and a 5% divergence is reported
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between the rotations at peak load. These results highlight the capacity of the numerical
model to well simulate the bending behaviour of specimens. A faster unloading is noticeable
in the numerical results, and could be attributed to geometrical imperfection and to the load
introduction. Regarding the moment rotations curves (Figure 4.32 right graph), bigger
discrepancies can be observed for the fixed end stiffness and the peak moment, the fixed end

seemingly reaching a capacity 30% higher than the plastic limit.
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Figure 4.32 — Results for SHS 180x6.3 PR_O

Table 4.7 and Table 4.8 summarise numerical results achieved and a comparison with test
values. A maximum deviation of 3% is reported between the numerical and the test ultimate
loads, with an average value of 1% and a 1% standard deviation. These values indicate the
good prediction of the peak load by the numerical model and its accuracy. In terms of ultimate
rotation, an average of 17% deviation between numerical and experimental results is
achieved. These results show that the numerical model is able to accurately represent the real

behaviour of such members.

Table 4.7 — PR_O numerical results

P Finer Mt span! M,
A g ult,span ult fixed-
Pu]t Mult,span eu/ @ Vu

M, ult,fixed-end
Test specimen ! Py My ! end/ Moy

[kN] [-] [kN.m] [-] [kN.m] [-] [-] [rmm]

RHS_180%x80x4.5_PR_O 56.31 0.93 47.02 0.97 46.24 0.95 1.40 37.61

RHS_220%x120%6.3_PR_O | 123.97 0.86 104.29 0.90 104.12 0.90 1.31 28.75

SHS_180%6.3_PR_O 115.38 0.84 97.29 0.89 98.48 0.90 1.19 31.39
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Table 4.8 — Numerical vs. experimental results for PR_O tests

Test specimen Pute P}::Z)Z;ig Ouewr! O H?I;j;ig
[-] [-] [-] [-]

RHS_180x80x4.5 PR_O 57.5 1.02 1.84 1.32
RHS 220x120x6.3 PR O 127.8 1.03 1.48 1.13
SHS 180x6.3 PR_O 116.6 1.01 1.25 1.05
max 1.03 1.32
min 1.01 1.05
mean 1.02 1.17
C.0.V. 0.01 0.12

A graphical comparison of the ultimate loads predicted by the F.E. simulations and of the
experimental ones is shown in Figure 4.33, in which the red dashed lines indicate a deviation
of +/- 10%. Results indicate that numerical simulations represented well the real behaviour of

specimens. All values fluctuate very closely around P, . /P, - =1, indicating an excellent

agreement between test and numerical result. The ability of the numerical model to accurately
predict the failure load is obvious. Larger discrepancies are noticed in the post-peak behaviour
between numerical and experimental results, and can be attributed to previously mentioned

numerical modelling considerations.
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Figure 4.33 — Numerical vs. experimental results for the propped cantilever configurations

4.2.2 Experimental tests performed at the University of Sydney

In 1999, Tim Wilkinson [41] conducted experimental investigations on a variety of cold-
formed RHS with two different steel grades: C350 and C450. These additional tests have been
used to provide experimental reference data for the validation of the F.E. modelling of cold-

formed tubes.

Wilkinson adopted the four-point bending arrangement and loading was applied through 3
different methods: the “parallel plate”, the “perpendicular plate”, and the “pin loading”
method. Only the parallel plate approach has been considered and modelled in the present
study, covering 32 out of 45 tests. The “parallel plate” loading method consists in welding
plates parallel to the webs of the RHS beam. A schematic drawing of the test rig and the

loading method is shown in Figure 4.34 below.
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Figure 4.34 — Wilkinson test setup and the “parallel plate” loading method [41].

4.2.2.1 Numerical model characteristics

In FINELg, the loading plates were modelled at loading positions and in the support zones;
elastic material behaviour was considered for these plates. Loading was applied through these
plates at the mid-section location and on all nodes of both webs, as shown in Figure 4.35. As
for support conditions, pinned conditions were attributed to end supports using linear

constraints.

Measured geometric dimensions were implemented, and the hollow section was modelled
using 2 shell elements per corner. Simple Ramberg-Osgood material law was used for the flat
regions of the RHS (see Equation 4.1) with » = 22. Wilkinson reported that the yield stress in
flanges was on average 10% higher than that of the webs and 20% higher in the corner
regions due to the cold forming process (see Figure 4.36). Accordingly, 1.1 times the

measured f, was considered in the flange regions and a multi-linear law was used for corner
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regions as described in Figure 4.2 (the corresponding yield and tensile stresses are equal to
1.2 fy and 1.2 fu, respectively). Flexural residual stresses were also implemented as described

in section 4.2.1. Geometrical imperfection type 1 was introduced (see Figure 4.15) and a

dense mesh was adopted in order to obtain reliable results.

Figure 4.35 — FINELg model of Wilkinson 4-pt bending test setup using the “parallel plate” loading method.
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Figure 4.36 — Typical measured stress-strain curves [41].

Wilkinson’s tests have been also first used to asses a simplified model. This model consists in
a short beam of length equal to the three times the average of the clear width of both webs and
flanges; loading is introduced through equal bending moments applied at both ends, so as to
get a constant bending moment distribution. This was performed in order to validate this

“simplified model”. Then, it could be used to simulate cases where a constant moment is
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applied, without resorting to the modelling of a full 4-pt bending arrangement. Hence, this
model possesses many advantages. First, the effect of shear is completely avoided contrary to
the 4-pt bending configuration. Secondly, this model allows for a better handling of the initial
geometric imperfections so that results can be more easily analysed and the effect of each

parameter sorted.

All considered parameters (material and geometric properties) were introduced as defined

previously for the full model; only the test configuration was altered.

4.2.2.2 Validation of F.E. models

Numerical simulations with measured material and geometric properties were first performed.
The experimental data of the 32 bending tests performed at the University of Sydney are
reported in Table 4.9. Table 4.9 indicates the position of the point loads in the test
arrangement, and gives a summary of the average measured materials and dimensions
properties of sections. Moreover, it gives results in terms of the ultimate moment capacity and
the rotation capacity achieved by each specimen tested. All these values have been used as

reference to calibrate the numerical model.

It is to be mentioned that the rotation capacity R adopted here for the validation of the 4-pt
bending test is based on the mid-segment curvature and is given by Equation 4.4. The
curvature k¥ was calculated from the displacement values as previously seen in Equation 3.8.

R=X_1 44

Ky

Nonetheless, concerning the simplified model, the rotation capacity was calculated from the

beam end rotation (as stated in Equation 2.4).

Figure 4.37 displays the results obtained for the case of BSO8B specimen. It can be seen that
in this case, the numerical curve matches the experimental one in the elastic part and in the
plastic range for both the full model and the simplified one. In terms of rotation capacity, the
experimental values presented a 6% deviation from both numerical model values; the case of
the simplified model displayed an over prediction while the full model an under prediction. In
this particular case of BSO8B specimen, the full model is seen capable of representing
numerically the abrupt unloading after the peak moment is reached, whereas the simplified
model presents a smoother post buckling response. This can be expected since for the first

case the model is represented exactly as experimentally whereas in the simplified model,
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different loading introduction were performed to achieve the case of a constant moment.
Nonetheless, since the main aim of the simplified model analysis was to predict the rotation

capacity, it was seen to deliver trustworthy results.

e n Y = -

s , <
S / \\ e
E Test stopped - no local
§ buckling observed.
E / |
g —=— BSOSB - experimental
g —+— BSOSC — experimental
a / —— BSOSB — numerical, full model
g + — BSOS8B — numerical, simplified
.’lrf T
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Non Dimensional Curvature (ik/x;) or
Non Dimensional Rotation (0/0;)

Figure 4.37 — BSO8B validation [41].

All numerical results are summarised in Table 4.10 and are compared to the experimental
values. In terms of ultimate section capacity, numerical results reached an average deviation
with tests values of 3% for the full model and 4% for the simplified one with a deviation of
6%:; both models achieved a maximum over prediction of 15% and an under prediction of 6%.
These results indicate a very good agreement between both sources of numerical results. For
what concerns the rotation capacity, a bigger disparity is reported. In average, the simplified
model gave an under-prediction of 5% when compared to tests results whereas the full model
gave, on average, an over-prediction of 10%. Nonetheless, better standard deviation was
achieved for the case of the simplified model, with a value of 35% compared to 40% in the
case of the full model. These large deviation values are mainly attributed to the sensibility of
the rotation capacity to the initial geometrical imperfection. Moreover, the simplified model
reached a maximum value of 54%, compared to 91% for the full model, and an under-
prediction of 52%, compared to 72% for the full model. On the basis of these results, we can
assert that the simplified model is more consistent in predicting the rotation capacity of
hollow sections, and that both models give satisfactory estimates, taking into account the

sensitivity of the rotation capacity to geometrical imperfections.
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Table 4.9 — Results of Wilkinson’s bending tests.

. L Ly h b t 1 fu Mpiy M M/ Mpiy | Riest

Specimen
[mm] | [mm] | [mm] | [mm] | [mm] | [N/mm?] | [N/mm?] | [kN.m] | [kN.m] [-] [-]

BSOIB 800 | 1700 | 151 | 50.25 | 4.92 441 495 35.51 43.8 1.23 >13.0
BSOIC 800 | 1700 | 1509 | 50.41 | 4.9 441 495 35.14 41.1 1.17 >9.0
BSO2B 800 | 1700 | 150.4 | 50.27 | 3.92 457 527 30.32 38.6 1.27 6.6
BSO2C 800 | 1700 | 150.4 | 50.4 | 3.87 457 527 29.86 355 1.19 7.7
BF02 800 | 1700 | 150.2 | 50.16 | 3.89 423 480 28.06 | 33.02 1.18 9.5
BSO3A 800 | 1700 | 150.5 | 50.22 | 2.97 444 513 22.76 26.2 1.15 2.7
BSO3B 800 | 1700 | 150.8 | 50.01 | 2.95 444 513 22.68 26.3 1.16 23
BSO3C 800 | 1700 | 150.8 | 50.34 | 2.96 444 513 22.81 25.8 1.13 2.9
BSO4B 800 | 1700 | 150.4 | 50.15 | 2.6 446 523 20.3 20.8 1.02 1.4
BSO4C 800 | 1700 | 150.4 | 50.41 | 2.57 446 523 20.13 20.2 1.00 1.2
BSOSA 800 | 1700 | 150.7 | 50.64 | 2.25 444 518 17.73 17.4 0.98 0
BSO5B 800 | 1700 | 150.5 | 50.57 | 2.28 444 518 17.96 18.2 1.01 0.6
BSO5C 800 | 1700 | 150.4 | 50.7 | 2.26 444 518 17.71 17.3 0.98 0
BSO6B 800 | 1700 | 100.5 | 50.7 | 2.06 449 499 8.7 9.3 1.07 0.8
BSO6C 800 | 1700 | 100.5 | 50.55 | 2.07 449 499 8.71 8.8 1.01 0.8
BSO7B 500 | 1300 | 75.48 | 50.1 | 1.94 411 484 4.8 5 1.04 1.7
BSO7C 500 | 1300 | 75.63 | 50.31 | 1.95 411 484 4.86 4.96 1.02 1.9
BSO8B 500 | 1300 | 75.31 | 25.28 | 1.98 457 514 3.82 4.24 1.11 5.7
BSO8C 500 | 1300 | 75.33 | 25.23 | 1.95 457 514 3.75 4.25 1.13 *
BSO9B 500 | 1300 | 75.24 | 25.12 | 1.54 439 511 2.84 3.16 1.11 2.2
BS0O9C 500 | 1300 | 749 | 252 | 1.54 439 511 2.82 3.25 1.15 2.5
BS10B 500 | 1300 | 75.27 | 25.12 | 1.55 422 456 2.81 2.9 1.03 1.9
BS10C 500 | 1300 | 75.19 | 25.25 | 1.56 422 456 2.82 2.82 1.00 2.6
BS11B 800 | 1700 | 150.5 | 50.13 3 370 429 19.11 23.2 1.21 4.1
BS11C 800 | 1700 | 150.5 | 50.19 | 2.96 370 429 18.84 21.7 1.15 3.6
BS12B 800 | 1700 | 100.9 | 50.43 | 2.06 400 450 7.77 7.7 0.99 1.2
BS12C 800 | 1700 | 100.8 | 50.52 | 2.05 400 450 7.75 7.75 1.00 1.3
BS13B 800 | 1700 | 125.6 | 75.84 | 2.92 397 449 18.42 18.9 1.03 1.5
BS13C 800 | 1700 | 125.4 | 75.74 | 2.93 397 449 18.4 19.1 1.04 1.6
BS19A 800 | 1700 | 100.4 | 100.3 | 2.88 445 502 17.86 | 18.16 1.02 0.8
BJO7 800 | 1700 | 150.3 | 50.21 | 3.9 349 437 22.8 29.7 1.30 12.9
BF01 800 | 1700 | 150.4 | 50.57 | 3.85 410 464 26.63 | 31.78 1.19 10.7
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Table 4.10 — Numerical vs. experimental results for Wilkinson’s bending tests.

FINELg results for full test modelling ligjf {;i ;:;uzltg ;ﬁn?;djéﬂzigf;eogg:;t
Specimen ’ tex Rev,/ M, . Muexp/
b Aﬁz\;ij?g Reere Aymtl;m;; RFIJ\ZELg / [jt’VF[;[ZfLé Rrmets M«lt,l;lNl;Lg Rew ! Remstg
[-] [-] [-] [-] [-] [-] [-] [-]
BSO1B 1.16 8.26 1.07 1.57 1.15 10.19 1.07 1.28
BSO1C 1.16 8.60 1.01 1.05 1.15 9.85 1.01 0.91
BSO2B 1.11 4.94 1.15 1.34 1.11 6.63 1.15 0.99
BSO2C 1.11 492 1.07 1.56 1.11 5.32 1.07 1.45
BF02 1.11 5.74 1.06 1.66 1.11 6.18 1.06 1.54
BSO3A 1.04 2.58 1.10 1.04 1.05 2.96 1.10 0.91
BSO3B 1.04 2.20 1.11 1.05 1.04 2.83 1.11 0.81
BSO3C 1.04 2.21 1.09 1.31 1.05 2.81 1.08 1.03
BS0O4B 1.00 - 1.03 - 1.00 1.41 1.02 0.99
BS0O4C 0.99 - 1.01 - 1.00 1.29 1.00 0.93
BSO5SA 0.95 - 1.04 - 0.95 - 1.03 -
BSO5B 0.96 - 1.06 - 0.96 - 1.06 -
BSO5C 0.95 - 1.03 - 0.96 - 1.02 -
BSO6B 1.05 1.76 1.02 0.45 1.04 1.67 1.03 0.48
BSO6C 1.05 2.08 0.96 0.38 1.04 1.67 0.97 0.48
BSO7B 1.08 2.40 0.96 0.71 1.07 2.26 0.98 0.75
BSO7C 1.08 2.40 0.95 0.79 1.07 2.19 0.96 0.87
BSOSB 1.12 4.86 0.99 1.17 1.11 6.79 1.00 0.84
BSO8C 1.12 5.07 1.01 - 1.11 6.50 1.02 -
BSO9B 1.06 2.28 1.05 0.97 1.06 3.56 1.05 0.62
BSO9C 1.07 2.35 1.08 1.06 1.06 3.61 1.08 0.69
BS10B 1.06 2.32 0.97 0.82 1.06 3.84 0.97 0.49
BS10C 1.07 2.53 0.94 1.03 1.06 3.87 0.94 0.67
BS11B 1.06 3.66 1.14 1.12 1.06 4.38 1.14 0.94
BS11C 1.06 3.06 1.09 1.17 1.06 3.71 1.09 0.97
BS12B 1.05 2.15 0.94 0.56 1.05 2.12 0.94 0.57
BS12C 1.05 2.41 0.95 0.54 1.05 2.05 0.95 0.64
BS13B 1.07 2.65 0.96 0.57 1.06 2.09 0.97 0.72
BS13C 1.07 2.63 0.97 0.61 1.06 2.16 0.98 0.74
BS19A 0.96 - 1.06 - 0.95 - 1.07 -
BJO7 1.13 7.60 1.15 1.70 1.14 8.53 1.14 1.51
BFO1 1.11 5.62 1.07 1.91 1.11 7.26 1.07 1.47
max 1.15 191 1.15 1.54
min 0.94 0.38 0.94 0.48
mean 1.03 1.05 1.04 0.90
C.0.V. 0.061 0.401 0.058 0.349
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Figure 4.38 gives a graphical comparison between experimental and numerical results for all
tests ultimate moment from the full model in terms of ultimate load. All results are close to
the limit of 1, which indicate when experimental and numerical results coincide. On average
the deviation of numerical simulations and tests results was less than 3%. For very few
specimens, the deviation exceeds the 10% limit, and can be attributed to laboratories
uncertainties. Hence, based on these comparisons and on the one reported in Table 4.10, we
can state that the numerical models reproduce the real behaviour quite accurately, for both the

full model and the simplified one, and can thus be accepted scientifically.

Mult’exp 1.3

Mult,num 12

Figure 4.38 — Experimental ultimate vs. F.E. (full) model results — Wilkinson’s test data

4.3 Conclusions

Modelling of the bending tests performed at the University of Applied Sciences of Western
Switzerland — Fribourg was done using the finite element software FINELg and a good
agreement was found. Accurate replication of the initial stiffness, the ultimate moment
capacity and the general form of the moment-rotation curves were achieved. Experimental
and numerical values were seen to match closely. Nonetheless, some differences were
observed and were associated with the numerical model, the experimental imprecisions of the

geometrical and material measured properties and to the recording devices precisions.

All the load-displacement curves coincided with their numerically predicted counterparts in
the elastic range, but sometimes not well in the unloading phase. These results showed that

analyses using type 1 geometrical imperfection didn’t always meet test results after the peak
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was reached, and several calibrations regarding imperfections shape and scaling had to be

approved for each section type.

For the simply supported configurations, a good agreement was found in terms of peak load
and equivalent rotation at peak; however, for the propped cantilever configurations, more
divergences related to the rotation at peak were noticed for some sections; this was associated
not only to local imperfections but also to the introduction of loading, along with the
modelling of the fixed-end rigidity, the presence of welds and their effect on the system

ductility.

Besides, 32 additional cold-formed bending tests performed by Tim Wilkinson at the
University of Sydney were also considered. A good correspondence between the numerical
and test results was found, and the numerical tools were shown to predict well the behaviour
of the tested beam until failure. Divergence up to only 15% was recorded concerning the

ultimate moment reached, for an average of 1.03 M, and a C.O.V. of 6.1%.

Hence, the ability of the numerical model to replicate adequately the behaviour of beams in
bending is evidenced. Based on these comparisons, the F.E. models are assumed to represent
the real behaviour quite accurately, and numerical results can be substituted safely and
reliably to experimental ones in consecutives studies. The models will have to be slightly
modified within the forthcoming parametric study, so as to account for more ‘“standard”
conditions (supports, material....). In the following chapter, detailed extensive numerical
studies are described, where the main objectives are the identification of the key parameters

towards the rotation capacity of steel hollow sections.
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S NUMERICAL INVESTIGATIONS

Numerical models being validated against test results, extensive numerical investigation were
carried out in order to have a large data set from which conclusions and recommendations

regarding the rotation capacity of square and rectangular cross section can be drawn.

In a first step, numerical assumptions are described, then, comprehensive analysis are
performed with respect to the test modelling, material properties, imperfections and residual
stresses in order to highlight their effect on the rotation capacity of hollow sections. The main
aim of the analysis is to understand and characterize the development of inelastic local
instability in hot-formed and cold-formed RHS beams. In a second step, an extensive
parametric study, that cover a wide range of parameters from section dimensions, steel grade
and testing configuration, was launched in the aim to determine trends for the rotation

capacity. Finally, the results of the simulations are illustrated and analysed.

5.1 Modelling considerations

5.1.1 Material model for hot-formed and cold-formed tubes

For hot-formed carbon steel tubes, and in an attempt to model the true material behaviour
over the entire strain range, full-range nominal stress-strain behaviour is modelled in a four
linear material curve as shown in Figure 5.1, where key parameters are reported. This
formulation has been based on a careful representation of a total number of 214 tensile
coupon test data for hot-rolled carbon steel of yield stress varying from S235 to S690, as well
as on a numerical validation against experimental data. This work and the proposed
characterization of the stress strain curve was performed by Yun & Gardner [106] where the
model can be presented using only three basic parameters: £, oy and ou. where E is Young’s
modulus, taken as 210000 N/mm? in EN-1993-1-1, &y is the yield strain at its corresponding

yield stress oy, eu is the ultimate strain at the ultimate stress ou.
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Figure 5.1 — Typical stress-strain curve of hot-rolled carbon steels and the proposed four-linear material model [106].

The empirical expressions for other parameters are summarised in the following equations:

o
g, =0.61-—) 5.1
O-Ll
o
gsh = (_}’)6 gu 52
O-u
o,—C Ae —
E, =—— where 7, = Ep +04(8, = 84) 5.3
771‘9u - 8sh gu
2 -
n = &, +0.25(e, —&y,) 54

&

u

&sh 1s the strain at the onset of strain-hardening, Esh is the strain hardening modulus, #716u is the
strain of the specified maximum point, which is used for the determination of Esx as shown in
Figure 5.2, m2eu represents the strain at the intersection point of the first stage strain hardening

line and the stress-strain curve and o,  is its corresponding stress.
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In the context of this thesis, three nominal steel grades were adopted: S235, S355 and S460

steel. The stress strain material laws for all these steel grades have been represented in

Figure 5.2 and the key parameters have been summarised in Table 5.1. In Table 5.1, the

strain, stress and tangent modulus have been reported for the different stages of each material

law. The strain normalised by the yield strain ¢ / ¢, has also been reported in order to compare

dimensionless entities. It is pointed out for example, that S355 steel possesses the shorter

dimensionless yield plateau. The maximum strain for the material law adopted in the F.E.

analysis was set to a value of 30%.

600

fu =550 Nimm>

ﬁ:

10 N/mm?
l_____

£ [%]

30

Figure 5.2 — Hot-formed material model considered for different yield strengths

Table 5.1 — Parameters for hot-formed material law for S235, S355 and S460

S235, ful f,=1.53 S355, ful fy=1.44 S460, f./ f,=1.20

€ e/gy | Stress o | E; € e/gy | Stress o | E; € e/gy | Stress o | E;

[%] [-] [Nimm?] | [NImm?] | [%] [-] [NImm?] | [Nfmm?] | [%] | [-] [NImm?] | [N/mm?)
Linear elastic 0.11 | L.O 235 210000 | 0.17 | 1.0 355 210000 | 0.22 | 1.0 | 460 210000
Yield plateau 1.61 | 144 | 235 - 2.07 | 123 | 355 - 3.36 | 153 | 460 -
First stage strain hardening 6.42 | 573 | 313 1621 6.11 | 362 | 452 2389 497 | 22.7 | 516 3456
Second stage strain hardening | 20.83 | 186.2 | 360 325 18.24 | 107.9 | 510 480 9.82 | 44.8 | 550 697

Concerning cold-formed carbon steel tubes, as stated in section 4.2.1, two different material

laws were adopted. A simple Ramberg-Osgood was assumed for the flat region, and a
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multilinear one with a strength enhancement for the corner region. Hence, due to the cold-
forming process, the corner regions usually exhibit an increase in strength, and a decrease in
ductility. The following simple Ramberg-Osgood material was included for the flat faces of

cold-formed hollow sections in the FE parametric studies:

22
e=240.002] < 55
E OCo2

A multi-linear law was considered for the corner region of hollow sections. The yield stress
and ultimate stress of the corner material have been enhanced by a factor of 1.15 than that of
the yield and ultimate stresses values adopted for the flat faces. Figure 5.3 displays the

adopted parameters for the material laws of cold formed sections.

(&)

Fue=1.15fu Simple Ramberg-Osgood for flat regions

fut S N
fre=1.15fy

S

Multi-linear material for corner regions

]

|
I
I
I
|
I I
! I
|
[ [ ~t
02% &Eo2 25% 8.5% Emax=30%

Figure 5.3 — Typical stress-strain curves for cold-formed carbon steels; simple Ramberg-Osgood law for flat
regions and a multi-linear material model for corner regions.
The material laws for S235, S355 and S460 steels are represented in Figure 5.4. For the corner
material law, after a strain value of 8.5% has been attained, corners becomes ineffective, but a
marginal stress have been kept for convergences purposes. The maximum strain assigned for
sections in the numerical analysis have been set to 30%. Table 5.2 summarises the parameters

for the multi-linear material law assigned to the corners of cold formed hollow sections.
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Figure 5.4 — Cold-formed material model considered in the flat and corner region for each nominal yield strength

Table 5.2 — Parameters of the corner region material for S235, S355 and S460 cold-formed sections

Material for corner region for S235 Material for corner region for S355 Material for corner region for S460

€ e/gy | Stress o | E; € e/ey | Stress o | E; € e/gy | Stress o | E;

[%] [-] [Nmm?] | [Nlmm?] | [%] [-] [N/mm?] | [Nlmm?] | [%] [-] [Nmm?] | [N/mm?]
Linear elastic 013 |12 270 210000 | 0.19 | 1.2 408 210000 | 0.25 | 1.2 529 210000
Strain hardening 250 | 223 |414 6062 250 | 14.8 | 587 7731 250 | 114 | 633 4604
first stage unloading 8.50 | 76.0 |41 -6210 8.50 | 503 |59 -8798 850 | 388 |63 -9488
Second stage unloading | 30.00 | 268.1 | 0 -193 30.00 | 177.5 | 0 -273 30.00 | 137.0 | O -294

Residual stresses were modelled as prescribed from previous chapter in section 4.2.1, i.e.

membrane stresses were implemented for hot-formed sections while flexural stresses were

introduced for the cold-formed ones.

5.1.2 Boundary conditions

After determining the material law models and residual stresses to be adopted for sections in

the F.E. analysis, special attention was given to the modelling of the boundary conditions.

Support conditions were accounted for using a linear constraints model for the axial

(longitudinal) displacements of the beam edges at the supports. These linear constraints fulfil

the simply supported fork conditions. It is assumed that hollow cross-sections’ ends exhibit
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three degrees of freedom: axial displacement as a whole, rotation around the major axis and
rotation around minor axis. Warping is neglected since hollow section possesses high
torsional stiffness. Thus, three independent nodes can completely determine the position of
any other node. Using linear relationships between these three nodes at the extremities of the
flanges, the axial displacements of all other nodes are constrained to respect linear
relationships in the displacements of the three “free” nodes. In accordance, the different types
of loading are applied at these nodes. Transverse supports have been placed along the flanges
and web to prevent the end sections from local buckling. Moreover, additional fictitious nodes
have been defined at the centroids of the end-cross-sections for the definition of the support
conditions. External loading have been applied through four concentrated forces at the end of

the flanges as reported in Figure 5.5.

Figure 5.5 — Adopted boundary conditions and loading introduction.

5.2 Comprehensive analysis

5.2.1 Beam subject to a constant moment.

The basics assumptions to the modelling of beams in the F.E. software FINELg have been
outlined in the previous paragraphs. Therefore, some comprehensive analysis will be
performed to assess the behaviour of beams in bending. These analysis will be performed on a
short length beam subjected to a constant moment. When a beam is bended, its deformation
induce rotation, curvature and strain. In our case, the beam end’s rotation is of interest and
will be used to determine the rotation capacity of these beams. Nevertheless, in order to obtain
a deeper understanding of the relation that exists between the rotation, curvature and strain,

and to be able to link the present work to other studies, a relationship between these three
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entities will be presented. Then the particular case of hot-formed beams will be detailed to
assess their behaviour in bending and the influence of the plastic plateau on the beam

response.

To be able to quantify the ductility of a section, some strain-based methods usually calculate a
ratio between the ultimate strain & and the yield strains &, other use the curvature x while in
this thesis, the beam deformation is given as a function of its ends’ rotation 8. If we assume
that plane sections remain plane during bending, there is a proportional relationship between
the strain, the rotation, and the curvature. In order to represent the relation between all these
factors, theirs formulations are given hereafter. Figure 5.6 presents the deformed shape of a

beam subjected to a constant bending moment.

) — non-deformed beam 3y

r o _—— inelastic buckling U

_—— deformation of a beam
under constant moment

Figure 5.6 — Deformation of a beam under constant bending moment
The strain ¢ is calculated as the average strain over the entire length of the specimen so that
the effect of local buckling is captured in a homogenous way. The strain ¢ is computed from
the beam end displacement ¢ divided by the length. Its formulation is given by Equation 5.6.
The end shortening o is the average displacement of the flanges outer fibers i, 02, ... (in
compression and in tension).

E=— 5.6
L

In bending, the distribution of strain across the section is linear regardless of the stress state,
and the curvature is proportional to the section outer fibres’ strains. Equation 5.7 gives the

formulation for the case of a symmetrical section in bending.

&

K=— 5.7
12
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The end rotation @ 1is calculated from the beam’s average end shortening o of the section ends
divided by the height of the specimen.
0=— 5.8
h
In this thesis, rotation and curvature have been normalized with their plastic counterparts 6
and xp:. In order to link these ratios to the elastic strain g, the section shape ratio S = Mpi /Mo

_r

12

was introduced together with the elastic modulus W, = . The plastic rotation for a beam

under constant moment and the plastic curvatures are then given in Equation 5.9 and 5.10.

Msz S-M,-L S-We,-E-gy-L S~€y-L
— — = d = = 59
pl pl
2FEI 2FEI 2E1 h
S-M S-W,-E-¢ S-2¢
Ky=—2 > Kk,= £ = l L = - 5.10
El El El h

Equation 5.11 and 5.12.gives the equivalence of the strain ratio ¢/ & to the curvature ratio

x/ kpr and the rotation €/ 6,1 These factors are equal when divided by the shape factor S.

0, Sé&-L Sg L Se¢g '
h
&
K h2 1 ¢
525 55 512
Kpl Y gy
h

A relationship between the normalised strain, rotation and curvature for beams in bending
have been presented. These entities were seen to be equal after introducing the shape factor S.

The relationship is given in Equation (0.12) below:

1
_.£ 5.13
0, Kk, S &
Now, it is of interest to study the special case of hot-formed beams in bending. This particular
case is detailed here since the hot-formed material law possess a large yield plateau, so the

plastic moment M, cannot be reached before the occurrence of strain-hardening. This

behaviour is important to detail, because the rotation capacity is only calculated after the
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plastic moment is attained, so the need to set a new limit to calculate the rotation capacity Reqp

is essential and should be proposed.

Hot-formed beams under constant moment exhibit a significant level of ductility before the
plastic moment is reached due to the plastic plateau of the material law. Theoretically, for an
elastic-plastic material law, full plasticity can only occur at infinite curvature. Hence, for the
elastic - plastic - strain hardening material, the section yields completely at high values of
curvature and it is only when strain hardening is initiated that the stress can exceed the yield

stress.

Moreover, since the material yield plateau have a length varying from 12 to 15 & depending
on the steel grade (see Table 5.1), and after detailing the relationship that exist between the
strain and the rotation of a beam, we can assert that a section can undergo rotation capacities
of the order of 12 before strain hardening is initiated. Examples of some cases are shown in
Figure 5.7 and Figure 5.8; the section SHS 80x5 S355 (Figure 5.7) displays large ductility
(normalised rotation of the order of 12) without reaching the plastic moment; while for
section SHS 90x5 S355, strain hardening is only reached after a normalised rotation of about

10, and it is at this moment that the plastic moment is exceeded.

1.4 - |
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] I
1.2 ] 777|7}L777J} ,,,,,
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- 1 \ 195M,,
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2 0.6 : **f****h**fﬁffffffffrrfffj ,,,,,
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12 14 16

Figure 5.7 — Moment rotation curve for SHS 80x5 S355 under constant moment from FINELg calculations
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Figure 5.8 — Moment rotation curve for SHS 90x5 S355 under constant moment from FINELg calculations

In that respect, to account for the initial spread of plasticity when the bending moment
generally lies just below M, many researchers such as Chan & Gardner [31], Stranghoner
[28], Sedlacek [30] and Lay & Galambos [29] calculated the rotation capacity based on
achieving 95% of the plastic moment. This value was also adopted in this thesis for the case
of hot-formed section tested under a uniform moment. Thus, in that case, 8,2 corresponds to
the point where the curve reaches 95% of the plastic moment in the decreasing part, as shown
in Figure 5.7 and Figure 5.8. For all other cases other that of hot-formed sections subjected to
a constant moment, Gy is calculated when the curve attain the plastic moment after buckling.
The rotation capacity Reqp is given in Equation 5.14 below as reminder.
B ‘9p12

R, = ) -1 5.14

pl

5.2.2 Mesh density studies

After determining the material model, residual stresses, boundary conditions and the
calculation of the rotation capacity, an initial study that addresses the quality of several
adopted meshes is presented here. Indeed, it is crucial to ensure that the density of the chosen
meshes is sufficient to provide reliable results and a good representation of local buckling.
Hence, a proper FE mesh that provides accurate results within minimum computational effort

should be selected. GMNIA calculations were performed on hot-formed short members
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subject to a constant bending moment (length = 3 times the average of flange and webs clear
widths). Three different meshes were considered from coarse (Mesh 1) to very dense
(Mesh 3); the investigated meshes dimensions are shown in Figure 5.9. 12 different cross-
sections were selected with /4 / b ratios varying from 1 to 2.5 and having different slenderness

defined through the b / ¢ ratio.

Mesh 1 Mesh 2 Mesh 3

Figure 5.9 — Meshing types

In Figure 5.10 and Figure 5.11, comparisons between obtained results in terms of moment and
rotation capacity are plotted for the different adopted meshes. Results show a minor
difference in terms of ultimate capacity (Figure 5.10) while bigger discrepancies are observed

in terms of rotation capacity (Figure 5.11).

Figure 5.12 to Figure 5.15 exhibit the moment-rotation curves for all sections considered. It
can be clearly seen that Mesh 2 and Mesh 3 present an identical beam behaviour while mesh 1
displays a stiffer response. Both Mesh 2 and Mesh 3 display an identical behaviour in the post
buckling range. It can also be reported that the moment rotation curve from Mesh 3 lies
slightly above Mesh 2 curves in the postbuckling phase leading to slightly higher rotation
capacities. Even though there is practically no difference between curves of Mesh 2 and
Mesh 3 configurations in the postbuckling range, some differences in the rotation capacity of
these configurations is reported in Figure 5.11. Hence, since hot-formed display a large yield
plateau, a very small divergence between curves can lead to marginally bigger differences in
terms of rotation capacity; with Mesh 2 reaching slightly lower values that that of Mesh 3
(Mesh 3 being the beam having the most dense mesh).
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All these graphs ensures the reliability of Mesh 2 results which was therefore adopted for the
following numerical studies since it can provide accurate results in terms of peak load and

rotation capacity, thus, representing accurately the structural behaviour of cross-sections.

12 -

~ 1 EMesh 1
7 ] mMesh2 ||
= 1.1 es|

j q OMesh 3
Z

10 11 12

Figure 5.10 — Moment capacity of square and rectangular hollow section under constant moment for different

meshes
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Figure 5.11 — Rotation capacity of square and rectangular hollow section under constant moment for different

meshes
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Figure 5.12 — Moment rotation curves of square hollow section under constant moment for different meshes;
HSS refers to Hollow Structural Shape
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Figure 5.13 — Moment rotation curves of rectangular hollow section with h/b=1.5, under constant moment for
different meshes; HSS refers to Hollow Structural Shape
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Figure 5.14 — Moment rotation curves of rectangular hollow section with h/b=2, under constant moment for

different meshes; HSS refers to Hollow Structural Shape
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Figure 5.15 — Moment rotation curves of rectangular hollow section with h/b=2.5, under constant moment for

different meshes; HSS refers to Hollow Structural Shape

5.2.3 Length variation sensitivity when constant moment is applied

The mesh to be adopted in the finite element simulations was selected; the analysis was
performed on a short beam of length equal to three time the average of the clear width of both
flanges and webs, subject to a constant moment. This section here is developed in order to
justify the use of this simplify model that represent cases of constant moment, without

resorting to the modelling of a full four point bending test.

Experimentally, a constant moment is obtained by means of a 4-pt bending configuration.
Nevertheless, constant bending moment can be represented numerically by applying uniform
end moments to a single beam of small length. This model will be referred to as the
“simplified model”. This was also performed by many researchers; for instance, Shifferaw &
Schafer [43] also modelled a segment of the constant moment region by applying uniform end
rotations (moments) to a single beam. The length of the member was selected as a function of
the elastic buckling halfwavelength. Their model was compared with test results of some 4-pt

bending experiments and good overall agreement was found.

In this section, many simplified model configurations with different length are compared to 2
types of 4-point bending arrangement that act as reference, in order to adopt the model that

would represent most accurately the inelastic local buckling of beams in constant bending.

Adopting a simplified model would not only represent accurately the behaviour of a beam
subject to constant moment (as also seen in section 3.4) and reduce the computational time
but it will also bring many other advantages. Most importantly, it will allow to suitably

manipulate the initial geometrical imperfections, since they have been previously identified as
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having substantial repercussions on the rotation capacity [41], [40] and [42]. Hence the
simplified model will allow to disentangle the effect of each parameter on the rotation

capacity in order to obtain clear tendencies.

Initial imperfections are introduced through square half-waves of length Lo equal to the
average clear width of each constituent plate of the cross section (refer to case of

Imperfection 1 in Figure 4.15).

L0=%-((h—2r—z)+(b—2r—t)) 5.15

We should note here that if the beam length is not taken as a function of the halfwave length
Lo and rather as a function of the cross-section height, this will lead to an unknown number of
initial buckling waves depending on the cross-section geometry, and hence this will lead to

different rotation capacity values.

Configurations 1 to 4 simplified models consist of different lengths. The minimal length was
chosen to be equal to 3 Lo (and therefore obtain 3 initial buckling waves) , based on the
principle that the length is sufficiently small to prevent second order effects while long
enough to avoid the influence of the boundary conditions [107]. Configurations 5 and 6 are 4-
pt bending configurations with loading applied at third-length from the support. Loading is

introduced uniformly trough all nodes of the webs (see Figure 5.19).

Configurations 1: Length =3 Lo. This is chosen in order to obtain 3 wavelength so that local

buckling would always occur at mid-span.

Figure 5.16 — Amplified imperfections for configuration 1
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Configuration 2: L =5 Lo. This arrangement is selected in order to have a longer beam length
while maintaining an odd number of halfwave lengths and an upward first buckle on the

flange so that local buckling would not occur near the boundaries.

Figure 5.17 — Amplified imperfections for configuration 2

Configuration 3: L =3 h. The length of the cross—section specimen is chosen equal to three
times the height of the section. This configuration will lead to different initial geometric
combinations — by having a different number of buckling waves — depending of the section
geometry as seen in Figure 5.18. In Figure 5.18, a beam of length equal to 3 times the height
with h =200 mm and an aspect ratio h / b = 1, results in 4 initial geometrical buckles whereas

for an aspect ratio h / b =2, we obtain 5 buckles.

Figure 5.18 — Amplified imperfections for configuration 3;a) A/ b=1,b)h/b=2

Configuration 4: L =5 h. The length of the cross—section specimen is chosen equal to five

times the height of the section.

Configuration 5: L = 10 A. this is a 4-pt bending configuration in which a part of length 3.33h

is left with a constant moment.
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Configuration 6: L = 15 h. this is a 4-pt bending configuration in which a part of length equal

to 5h is left with a constant moment.

Figure 5.19 — Amplified imperfections for configuration 5 (4-pt bending)

Figure 5.20 compares the section normalised ultimate resistance Mui/ Mpi for the different
modelling and Figure 5.21 displays the rotation capacity obtained. It is to be mentioned here
that the rotation capacity for 4-pt bending configurations was based on the mid-segment

curvature while for the simplified model it is based on the section end’s rotations.

In Figure 5.20, in terms of ultimate moment, differences between models are very limited and
negligible, with section 4 exhibiting the highest divergence of about 5%. This divergence is

due to the initiation of strain hardening in some models.

For what concerns the rotation capacity, presented in Figure 5.21, a bigger disparity is
reported. The first remark to note is that between the 4-pt bending configurations, we can
observe a variation of 45% in the rotation capacity. Moreover, higher rotation capacity are
reached randomly, sometimes by configuration 5, while other times by configuration 6. For
example, section 2 and 11 reach higher rotation capacity values with configuration 5, while
section 4 obtain higher values with configuration 6. These differences highlight the sensitivity

of the rotation capacity and the need to adopt a model that would lead to consistent results.

Divergences between the simplified models are also non-negligible. However, it can be
noticed that configuration 1 presents the closest results to the 4-pt bending configuration
while configuration 4 displays the biggest discrepancies. Table 4.1 reports all the rotation

capacity values for configuration 1 to 6 which are denoted R; to R, respectively. Moreover,
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Ravg consists in the average of the rotation capacity from configuration 5 and 6, and the
deviation from Ravy is reported for all sections. It can be noted that configuration 1 displays
the closest results to the 4-pt bending models with an average of 17% and the smaller standard
deviation (11%) from the 4-pt bending results. Although these values are considerable, the
divergence observed experimentally is much larger. Figure 2.11 shows the rotation capacity
obtained experimentally for hollow sections and Figure 2.13 displays it for open section; In
these figures large differences in the rotation capacity are observed between sections of same
slenderness and the variation can be larger than 200%. Therefore, the differences are much
larger experimentally than that observed numerically and is caused by the fact that
experimentally, the geometrical and material properties of a beam are numerous and

unpredictable.

Figure 5.22, Figure 5.23, Figure 5.24 and Figure 5.25 illustrate the moment-rotation curves
obtained for all sections. The illustration show that configuration 1 presents the best
accordance with the 4-pt bending arrangement and that it represents accurately the beam
behaviour. Moreover it has been demonstrated in these numerical analysis, as well as
experimentally, that the rotation capacity varies enormously for a slightly different parameter.
Based on these observations, configuration 1 was considered to represent the bending
behaviour of sections adequately and gave the closest rotation capacities results to the 4-pt
bending configuration. In addition, this model possesses the best mechanical background, i.e.
it allows to always have a fixed number of initial buckles and allows for inelastic local
buckling to develop at mid-span; in that way, results are expected to be less scattered and
consistent with each other. Therefore configuration 1 was adopted for the rest of the

numerical studies.

—141 -



Numerical investigations

Elength 1
12 B length 2
— 1 Olength 3
'?Q T ] Blength 4
= ®length 5
= ] mlength 6
2 1.0
=
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
1 2 3 4 5 6 7 8 9 10 11 12
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Table 5.3 — Rotation capacity for different configurations and comparison

R, Rave-R1)/ Raveg-R2)/ Ravg-R3)/ Ravg-Ra)/
R Ry R3 Ry Rs R =(R5+1§6)/2 ( Rgavg ) ( Rgavg ) ( Rgavg ) ( Rgavg )
Bl E [-] [%o] [%] [%] [%]
section 1 183|113 | 5.5 58 | 16.8 | 15.3 16.0 -14.0 29.5 66.0 64.1
section 2 68 | 72 | 50 | 43 |11.1 | 74 9.2 25.7 21.4 453 53.7
section 3 37 | 40 | 24 | 2.6 - 49 49 24 .4 17.1 50.6 45.8
section 4 19.2 1223 | 13.9| 205 | 20.8 | 289 24.8 22.9 10.2 442 17.3
section 5 92 | 10.1 | 5.2 5.6 | 10.6 | 12.0 11.3 19.1 10.8 53.7 50.9
section 6 49 | 39 | 3.5 3.5 67 | 7.3 7.0 30.6 442 50.2 499
section 7 10,6 | 120 | 11.4| 40 | 114|119 11.6 8.5 -3.1 2.3 65.6
section 8 7.0 | 89 8.0 | 34 | 9.7 8.2 9.0 21.5 1.2 10.5 61.9
section 9 52 1 62| 56| 30| 76 | 67 7.1 27.4 13.5 21.8 58.6
section 10 | 17.8 | 19.7 | 18.5 | 4.8 | 19.4 | 18.8 19.1 6.6 -3.6 3.1 74.8
section11 | 89 | 7.0 | 9.1 37 | 13.0] 8.2 10.6 16.2 342 13.8 65.0
section 12 | 5.8 | 4.7 | 6.5 3.1 7.4 8.3 7.8 25.6 40.4 17.1 60.4
Average 17.9 18.0 31.6 55.7
S 11.9 15.6 213 13.9
deviation
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Figure 5.22 — Moment rotation curves for square hollow section under constant moment with length variation

—143 -




Numerical investigations

1.4 1.4 14
12 12 12
My limit M,y limit M,y limit
1.0 - = —— 1.0} e e e
- f/ \ Co 0.95M,, — N —— | 0.95M,,
=08 1 ~ - i =08 =
§ 0.6 — g, limit |- § 0.6 — g, limit | - § 0.6 \ —— g, timie [
Length 1 Length 1 Length 1
Length 2 Length 2 Length 2
0.4 Lcng:hz [ 0.4 l_cng:hz [ 0.4 l_cni:h} [
Length 4 Length 4 Length 4
02 Length5 | 0.2 Length5 | 0.2 Length5 |
) Length 6 ) Length 6 ) Length 6
0.0 1 0.0 1 0.0 1
5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
6/6pl or K/Kpl [-] 6/9pl or K/Kpl [-] 6/9pl or K/Kpl [-]
4-HSS200 hbl.5 bt20 5-HSS200 hbl.5 bt22 6-HSS200 hbl.5 bt24
Figure 5.23 — Moment rotation curves for rectangular hollow section with h/b=1.5, under constant moment with
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Figure 5.24 — Moment rotation curves for rectangular hollow section with h/b=2, under constant moment with
length variation
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Figure 5.25 — Moment rotation curves for rectangular hollow section with h/b=2.5, under constant moment with

length variation
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5.2.4 Effect of residual stresses

In the present section, the effect of residual stresses on the inelastic bending behaviour of
hollow beams is studied. Residual stresses are defined as self-equilibrated stresses present in
materials under uniform temperature conditions without external loading. Their origin is

related to the section production process.

For hot-formed sections, residual stresses result from differential cooling rates due to the
variation in material thickness. The first region to cool is left with residual compression while
the slower cooling parts are let in tension. Only longitudinal membrane residual stresses are
taken into account for hot-formed sections in the numerical studies. As prescribed by Nseir,
2015 [104], residual compression was affected to corners whereas webs and flanges were left

in residual tension. The adopted values are reported in section 4.2.1.

However, cold-formed sections exhibit flexural stresses due to the plastic deformation of flat
strips into a square or rectangular hollow section, and membrane residual stresses are
negligible. Figure 5.26 displays the amplification effect of flexural residual stresses. Flexural
residual stresses were considered with a linear variation through the plate thickness as
proposed by Key & Hancock [108] and Nseir [104]. Values implemented in the model are

listed in section 4.2.1.

Figure 5.26 — Amplification of the effect of flexural residual stresses on a beam.

The influence of bending and membrane residual stresses on the rotation capacity of beams
under constant bending moment was investigated numerically through GMNIA analyses.

Their amplitudes have been previously described in Chapter 4.

10 sections with different cross-section slenderness varying from 0.3 to 0.5 were selected for
each 4 /b ratio (1, 1.5, 2 and 2.5). The results of the study are presented in Figure 5.27 to

Figure 5.34. The cross-section slenderness is given by Equation 5.16.

//ics:\/Mpl/Mcrit 516
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The elastic buckling critical moment Mcr was calculated with Linear Buckling Analysis

(LBA) using FINELg.

The general influence of residual stresses in structural members is premature yielding which
leads to a loss in stiffness. For hot-formed sections, a typical material response with and
without membrane residual stresses is depicted in Figure 5.27. It is clearly seen that the
membrane residual stresses generate a slight decrease in stiffness at the beginning of yielding
and no effect is witnessed in the postbuckling phase. Figure 5.28 and Figure 5.29 exhibits the
rotation capacity for all hot-rolled sections with and without residual stresses. They clearly

demonstrate that membrane residual stresses induce no repercussion on the rotation capacity.
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Figure 5.27 — Influence of residual stresses of hot-formed section in terms of moment rotation curves. Specific

case of hollow structural sections, 2/ b =2, b/t =23 under constant moment
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Figure 5.28 — Effect of residual stresses on the rotation capacity of hot-formed hollow structural sections under
constant moment, a) 2/ b =1,b) h/ b= 1.5 — the rotation capacity limit of 3 represent the minimum required

rotation in the EC3 for plastic analysis to be performed
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Figure 5.29 — Effect of residual stresses on the rotation capacity of hot-formed hollow structural sections under
constant moment, a) h/b=2,b)h/b=2.5
As for the effect of flexural residual stresses, Figure 5.30 displays moment rotation curves for
a typical section with and without bending residual stresses. It can be noted that although
flexural residual stresses induce a reduction in stiffness at early stage, they are seen to have a

slightly positive influence on the postbuckling behaviour.

Hence, according to Jandera & al ([109] and [110]), it was found that despite the fact that the
secant modulus is being consistently reduced in the presence of residual stresses, a positive
influence arises when failure strains coincide with a region of increased tangent modulus. For
our cases, beams failure strain always coincided with increased tangent modulus regions,

leading to slightly higher ultimate loads and rotation capacities. Figure 5.31, Figure 5.32,
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Figure 5.33, and Figure 5.34 show the normalised ultimate load y. =M, /M , (also called

ult
cross-section reduction factor) and rotation capacity for all considered cross-sections. From
these figures, it can be concluded that flexural residual stresses have a slightly positive
influence on the section behaviour. Nevertheless, Schafer & Pekoz [111] demonstrated that
the inclusion of flexural residual stress has a significant qualitative effect on the behaviour of
beams and that if residual stress are ignored, the yielding locations exhibit a lower level of
complexity. They showed that early yielding on the face of the plates has a strong influence
on stress distribution and on interpretations of the way the load is carried by the plate. They
concluded that the primary importance of residual stresses is in how load is carried and not in
the final magnitude since they have a small net effect. In conclusion, to well represent the
mechanical behaviour of beams in bending, longitudinal membrane stresses were taken into
account for hot-rolled sections whereas flexural stresses were implemented for cold-formed

ones. Their amplitudes are described in Chapter 5.
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Figure 5.30 — Influence of residual stresses of cold-formed section in terms of moment rotation curves. Specific

case of hollow structural sections, 2/ b =2, b/t =23 under constant moment

— 148 -



Numerical investigations

20 T T

—e— h/b=1, with residual stresses
—&— h/b=1, without residual stresses

—@— h/b=1, with residual stresses
—@— h/b=1, without residual stresses

0.0 0.2 0.4 0.6 0.8
7\’CS [']

0.8

Figure 5.31 — Effect of residual stresses on the normalised ultimate capacity and rotation capacity of cold-formed

hollow structural sections under constant moment for 2/ b =1
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Figure 5.32 — Effect of residual stresses on the normalised ultimate capacity and rotation capacity of cold-formed

hollow structural sections under constant moment for 2/ b= 1.5
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Figure 5.33 — Effect of residual stresses on the normalised ultimate capacity and rotation capacity of cold-formed

hollow structural sections under constant moment for 2/ b =2
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Figure 5.34 — Effect of residual stresses on the normalised ultimate capacity and rotation capacity of cold-formed

hollow structural sections under constant moment for 2/ b= 2.5

5.2.5 Imperfection variation

For stocky sections, local geometrical imperfection shapes induce important effects on hollow
profiles in terms of ultimate strength and post-buckling capacities. Hence, implementation of
a proper geometric imperfection is crucial in order to obtain realistic results. Geometrical
imperfections alter hollow beams response mainly in the post peak (unloading) phase, and
therefore when such beams are tested in bending, their rotation capacities may differ

depending on the geometrical imperfection introduced.

Six different shapes and amplitudes of initial local geometric imperfections on the cross-
section capacity of the tested square and rectangular sections were selected and are
represented in Figure 5.35 and Figure 5.36. The geometric imperfection is composed of an
imperfection shape and an imperfection amplitude denoted wo. No global initial imperfections

were introduced as only cross section capacities are being examined.

- 150 -



Numerical investigations

(b-t-2r)/200 or (h-2r-1)/200 (b-t-2r)100 or (h-2r-1)/100 (b-t-2r)/200 or (h-2r-1)/200
| ] ] |
((b-2r-t)+(h-2r-1))/2 ((b-2r-t)+(h-2r-1))/2 b-2r-t or h-2r-t
(Average of plates widths) (Average of plates widths) (sine wave per plate)
Imp 1 (average of plates) Imp 2 (average of plates)  Imp 3 (sine wave per plate)
/50 by Dawson & Walker ((b-2r-t)+(h-2r-1))/2/200
| | | | | |
((b-2r-t)+(h-2r-1))/2 ((b-2r-1)+(h-2r-1))/2 Eigenmode wavelength
(Average of plates widths) (Average of plates widths)
Imp 4 (average of plates) Imp 5 (average of plates) Imp 6 (eigenemode-a/200)

Figure 5.35 — Considered local geometrical imperfections
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Figure 5.36 — Amplified geometrical imperfections for RHS with h/b=2

In terms of imperfection shapes, two types were adopted. The first consists in an appropriate
modification of node coordinates in square sine waves equations for each constituent plate.
For this type of imperfection, two variables were considered: the first, as shown in
Figure 5.36, consists in adopting a sine period equal to the average of the clear width of the
webs and flanges. The second variable had different sinewaves for each plate with the

amplitude corresponding to the clear width of the plate (Figure 5.36b). Type II consists in an
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imperfection distribution based on the first eigenmode from linear buckling analysis

(Figure 5.36¢).
The adopted amplitudes are the following:

- Amplitude of a/200 as prescribed in EC3 [112] without a reduction of 30%, although
the residual stress patterns were introduced in the calculations. Results are therefore
considered as conservative. This model is a function of the plate width b, and is

independent on the plate thicknesses which is more adapted for hot-formed section.

- Amplitude equal to 7/ 50 as stated by Wang & al [40]. Hence, for cold-formed steel,
the imperfection amplitude is usually determined as a function of the plate thickness
[113]. This method provides acceptable results in plates of small thicknesses but it can

lead to unreasonably large imperfections in thicker plates.
- A value calculated from the predictive model of Dawson and given by Equation 5.18.

Dawson and Walker [114] prescribed 3 different models given by Equation 5.17, 5.18 and

5.19, where f is the material yield strength, o, is the elastic critical buckling stress of the

most slender constituent plate element in the section, and t is the plate thickness.

w, =at 5.17

0.5
w,=pB(f,)0.) t 5.18
a)ozj/(fy/ac,)t 5.19

Equation 5.17 gives a constant imperfection amplitude for all values of the plate width, and is
only a function of the plate thickness, which gives unreasonable large imperfection values for

stocky plates.

Equation 5.18 is a function of the plate width b and independent of the thickness ¢ as the one
prescribed by EC3. This model presented a better correlations between predicted values and
experimental tests results according to Gardner & al [92] and was therefore recommended.

Dawson and Walker [114] indirectly calculated £ = 0.2 by fitting a resistance function to

available test results. However, more reasonable values were proposed by Gardner & al [92]

based on direct measurements. = 0.028 for hot-rolled sections and £=0.034 for cold-
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formed sections were recommended. These values indicate slightly higher imperfections in

the cold-formed sections.

Equation 5.19 gives an imperfection amplitude as a function of both the plate thickness and
the plate width. This model gives the most reasonable imperfection amplitude function,

especially for low b / ¢ values where smaller imperfections are expected.

A more precise comparison between these imperfection amplitude functions is detailed and

illustrated in Torabian & Schafer [91].
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Figure 5.37 — Rotation capacity of hot-rolled square hollow section for different geometrical imperfection

patterns
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Figure 5.38 — Rotation capacity of hot-rolled rectangular hollow section with 4 / b = 1.5 for different geometrical

imperfection patterns
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Figure 5.39 — Rotation capacity of hot-rolled rectangular hollow section with 4 / b = 2 for different geometrical

imperfection patterns
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Figure 5.40 — Rotation capacity of hot-rolled rectangular hollow section with 4 / b =2.5 for different geometrical
imperfection patterns

Figure 5.37, Figure 5.38, Figure 5.39 and Figure 5.40 present the rotation capacities for hot-

formed sections and for the different aspect ratios #/b=1, 1.5, 2 and 2.5 respectively.

Figure 5.41, Figure 5.42, Figure 5.43, and Figure 5.44 display the results corresponding to

cold-formed cross-sections.
The following conclusions can be drawn from these figures:

i) Geometrical imperfections induce a substantial effect on the rotation capacity of both

hot-formed and cold-formed sections;

i) Rotation values about 10 times higher are reached for hot-formed sections between
different imperfection models; this is primary due to the presence of the yield plateau
that leads to the rotation capacity having a steep parabolic curve when represented as a
function of the cross-section slenderness. Whereas for cold-formed sections, the
difference in the rotation capacity between models with different imperfections is of

the order of 2;

iii) The sensitivity to the imperfection amplitude increased as the cross section slenderness

decreased;
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iv) For a given imperfection shape and amplitude, clear tendencies are observed. This

v)

emphasises the need to take a unique imperfection pattern for all parametric studies in
order to maintain consistent modelling, and thus obtain a small scatter. It also explains
why experimentally, a large scatter is observed with an unclear disposition; a large
variation is noticed due to the random properties of each beam whereas when
consistent parameters are introduced numerically in the F.E. model, clear trends can be

achieved;

Imperfection 5 and 6 patterns give substantially higher rotation capacity values. These
imperfections amplitudes are smaller than the a / 200 prescribed by EC3. These values
have been obtained by calibration towards experimental tests. This shows that if tested
beams are well manufactured, i.e. with a high level of planarity, high rotation
capacities are achieved. Nevertheless, in order to remain safe sided, the a / 200 limit is

more reasonable and is adequate with the allowed tolerances for hollow sections;

vi) Both the amplitude and the imperfection shape have an impact on the rotation

capacity, nonetheless it is clearly shown that it is the amplitude that alter the rotation
capacity the most. In this respect, imperfection 1 and imperfection 6 are compared
with Imperfection 1 shape obtained through an appropriate by-hand modification of
node coordinates while Imperfection 6 shape is obtained by the first eigenmode shape.
It can be seen that for the cases of square hollow section, close values of rotations
capacity are reached despite the fact that these models display different imperfection
shapes. However, for the aspect ratio of 1.5 and 2, lower rotation values are reached
with Imperfection 6 (eigenmode wavelength); this is not only attributed to the
imperfection shape, but also to the selected amplitude. Hence, in Imperfection 1,
different amplitudes are given for webs and flanges according to the width of each
plate respectively; however, in Imperfection 6, the adopted amplitude is given as an
average of both webs and flanges width which leads to having a higher imperfection
value attributed to the flange of the model with Imperfection 1. Since for aspect ratios
smaller than 2, the flange buckles first, it can be explained why lower rotation values
are reached with Imperfection 6. For the aspect ratio of 2.5, failure is due to web

buckling, which is why results are for this case close to the ones of Imperfection 1;
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vii) Imperfection 2 (amplitude a/100) leads to the lowest rotation capacity values.
Although the motivation behind this study is to choose a safe-sided parameter, this

value is not seen reasonable as was therefore disregarded;

viii) For what concerns the resistance, minor differences between all the adopted initial
imperfections was observed. A larger analysis relative to the effect of the initial

imperfection on the cross-section resistance can be found in [104].

In conclusion, a big disparity is found between different initial imperfections configuration. In
an attempt to remain on the safe side, initial geometrical Imperfection 1 was selected for the
rest of the parametric study which consist in introducing square halfwavelength of length
equal to average of plate widths; and an amplitude of a / 200 according to the corresponding
plate. Although being quite widely used, the approach consisting in introducing imperfection
patterns by means of the first buckling mode was seen to be less appropriate, and does not
guarantee safer, conservative results [104]. Therefore, initial geometrical imperfections can be
basically introduced through adequate modifications of node coordinates and Imperfection

type 1 was selected for the remains of the studies.
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Figure 5.41 — Rotation capacity of cold-formed square hollow section for different geometrical imperfection

patterns
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Figure 5.42 — Rotation capacity of cold-formed rectangular hollow section with h/b=1.5 for different geometrical

imperfection patterns
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Figure 5.43 — Rotation capacity of cold-formed rectangular hollow section with h/b=2 for different geometrical

imperfection patterns
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Figure 5.44 — Rotation capacity of cold-formed rectangular hollow section with h/b=2.5 for different geometrical

imperfection patterns

5.2.6 Influence of yield stress to ultimate stress ratio

Since the material laws adopted for hot-formed and cold-formed sections are quite
sophisticated and different, with various sets of parameters assigned depending on the steel
grade, a small sub-study has been launched with a bilinear material law in order to isolate the
effect of strain hardening on the rotation capacity. Thus, two materials law were selected, one
with a strain hardening modulus equal to 2% the elastic modulus E, the other with a strain
hardening modulus equal to 1% of E, as represented in Figure 5.45. Two different steel grades

were chosen: S235 and S460 (see Figure 5.46).
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Figure 5.45 — Adopted material laws for the effect of strain hardening sub-study
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Figure 5.46 — Different steel grade for a material law
From Figure 5.47, Figure 5.48, Figure 5.49 and Figure 5.50, many conclusions can be drawn:

1) Higher ultimate moment and rotation capacities were achieved by material law 1. This
is expected since higher levels of strain hardening characterized by higher tangent
stiffness in the inelastic range delay the onset of local buckling. In addition, after local
buckling is initiated, a higher level of strain hardening also enables a greater
contribution from the post-buckling membrane stresses leading to higher rotation

capacities. Hence, we can conclude that strain hardening improves ultimate strength
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and post buckling behaviour. Further studies on the effect of strain hardening can be

found in Kuhlmann [37], Ricles & al [39] and Wang & al [40];

ii) It is worth noting that for a given material law, a divergence in the rotation capacity
curves is observed for different steel grades and only for low slenderness values. For
higher values of yield strength, the rotation capacity decreases; this divergence is less
noticeable for low values of strain hardening. For the material law 2, only a small

divergence is perceived between S235 and S460;

iii) In terms of normalized ultimate moment capacity, there is no distinction between the

different steel grades for a same material law;

iv) Divergences between curves of a same material law is seen to decrease when the aspect

ratio & / b increases.

In conclusion, these curves highlight the effect of strain hardening on the structural response
of beams in bending. They display clearly how strain hardening improves the ultimate
capacity and postbuckling response of a beam. They also illustrate the fact that when the
rotation capacity is represented as a function of the cross-section relative slenderness Acs, a
difference is observed between different steel grades despite the fact that they have the exact
dimensionless material law shape. This divergence is more pronounced for higher strain

hardening modulus and for low aspect ratios.
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Figure 5.47 — Normalised load and rotation capacities as a function of A¢s for different material law of 4/ b =1
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Figure 5.48 — Normalised load and rotation capacities as a function of Acs for different material law of 2/ b=1.5
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Figure 5.49 — Normalised load and rotation capacities as a function of Acs for different material law of 2/ b =2
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Figure 5.50 — Normalised load and rotation capacities as a function of Acs for different material law of 4/ b =2.5
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5.3 Parametric analysis

5.3.1 Parameters considered

Extensive numerical parametric analysis have been carried out to characterise the rotation
capacity of tubular sections. The rotation capacity was calculated for beams subjected to
major axis bending moment, and different loading configurations were adopted with various

section shapes, dimensions and steel grades.

Sections covered class 1 and 2 sections according to EN 1993-1. First, tubular geometries
from the European catalogue satisfying the condition 4, < 0.6 were selected. Secondly, an
additional set of sections based on a height 4 =200 mm was analysed. This was performed in
order to visualize more distributed results based on the 4/ b and b / ¢ ratios. Thus, 4 values of
h / b ranging from square sections to highly rectangular ones have been considered: 4/ b =1,
1.5, 2, and 2.5. For each / / b proposed value, b/ t values ranging from 10 to 20 with a step of

1 and from 20 to 34 with a step of 2 were considered.

Two different “testing” arrangement were considered: constant bending moment was applied
for a beam length of 3 times the average of the webs and flanges clear widths (Figure 5.51)
and 3-point bending configuration with load applied at mid-span (Figure 5.52). For the latter,
the beam length were taken as 10, 15 and 20 times the height of the cross-section to study the
effect of the steepness of the moment gradient. The lower value L / 2= 10 was determined in
order for shear not to influence the rotation capacity by fulfilling the condition of

Equation 5.20.
Vi £0.5-V ) py 5.20

pl

The shear ratio for a 3-pt bending configuration is V,, = at mid-span. At this position,

the moment is also on its maximum hence there is a coupling between shear when the latter
exceeds a value of 0.5 Vpira . Vpira is the plastic shear resistance of a section and is given in

EC3-1.1:

A (f,1\3)

pl.Rd —
S0

5.21

Av is calculated as A, = Ah/(b+h) as given in EC3 for rolled sections of constant thickness.
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Loading
application
Figure 5.51 — Constant moment modelling
Loading
application
Simply supported

boundary conditions

Figure 5.52 — 3-point bending modelling

For the case of the 3-pt bending, loading was applied uniformly through the webs as seen in
Figure 5.52 in order to avoid web crippling. It has been observed experimentally that when
loading is applied on the top flange, high levels of stress concentrations are induced, and lead
to a premature elastic local buckling. Fork conditions using linear constraints were assigned
for the support conditions. No global initial geometrical imperfections were taken into
account since it has been previously demonstrated that they do not have an impact on the
beams’ response and local imperfection type 1 was implemented (see Figure 4.15). For the

cross section slenderness value, the critical moment M.i* was always calculated for the case

4 M. is the elastic buckling critical moment of a cross-section
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of a short beam with a constant moment, with the use of FINELg software and through LBA

analysis.

The formulation of the plastic rotation by which the beams end rotations have been
normalized, is given for the two different setups by Equation 5.22 for beams under constant

moment, and by Equation 5.23 for beams under a point load at mid-span.

M, L
e —— 5.22
2EI
M L
= —L— 5.23
4E1
5.3.2 Results
5.3.2.1 Hot-formed sections — Constant bending moment

Figure 5.53 plot results for hot-formed sections subjected to constant moment in terms of
normalized ultimate moment capacity as a function of the cross section slenderness. The
acronym CM refers to the case of constant moment. From this figure, it can be seen that strain
hardening is reached for small slenderness values i.e. Acs<0.35. Moreover, different
capacities are reached for S235, S355 and S460, owing to different ultimate to yield ratios. In
addition, we can point out that strain hardening is first reached for S355 and is due to the yield
plateau length of the material. Hence as seen in Table 5.1, S355 possesses the shorter relative
yield plateau when put as a function of the yield strain &. For slenderness ranging from 0.35
to 0.6, no difference is observed between steel grades. Then, for Acs> 0.6, curves display a
small deviation that is primarily due to the residual stresses effect as stated in detail by Nseir,

2015 [104], however these slenderness are not the object of this thesis.

Concerning the rotation capacity of hollow sections, Figure 5.54 and Figure 5.55 display
results for hot-formed sections subjected to a constant moment. In Figure 5.54, the scale of
the rotation capacity range from 0 to 50. In this figure different trends can be observed for
very low slenderness values, i.e. Acs<0.35, and are due to the different level of strain
hardening achieved for different steel grades. Nonetheless, to limit the occurrence of
excessive deformation in a structure, numerical results are plotted with the maximum value of
R=20 in Figure 5.55. The material ductility requirement expressed in EN 1993-1-1 requires a

minimum elongation at failure of 15%, however the adopted material law in the numerical
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model was given a maximum strain of 30%, in order to be able to visualise the full moment-
rotation curve for stocky sections. This allowed the occurrence of large deformations and
large rotation capacities. Then, to remain in conformity with the material requirements given
in EN 1993-1-1, results that achieved higher rotation capacities than R=20 were disregarded

in the following studies.

In Figure 5.55, we can see that the difference between the rotation capacities reached for
various steel grade is negligible. We can also note that for the range observed in Figure 5.55
(0.35<Acs < 0.6), sections did not reach strain hardening, as seen in Figure 5.53, and beams
failed before reaching the plastic moment Mp;; Hence, for these sections, the beam failure
occurred within the yield plateau®. This explains the very steep increase in rotation capacity
for slenderness value around 0.4. In this range, we can also highlight the fact that S355 steel
exhibits slightly higher rotation capacity values. Hence, as explained in chapter 2, for hot-
formed beams under constant moment, and due to the discontinuous stress-strain relationship,
the mechanism of yielding is discontinuous and yielding occurs at discrete points by a sudden
jump of strain that reached strain hardening. Nevertheless, the rotation capacity records the
average strain reached by the beam in bending. Thus, even if strain hardening is not reached
on average by the full beam, the small plateau length of S355 explains why higher rotation
capacities are reached for this steel grade. In the more slender range, where failure is triggered
by buckling at smaller strains, the influence of material grade on the normalised response is

minimal and all results overlap with no distinction observed between steel grades.

3 For the case of hot-rolled sections subject to a constant moment, the rotation capacity was computed using the
limit of 0.95M,,
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Figure 5.54 — Strain hardening effect on the rotation capacity of hot-formed sections subjected to constant

moment — scale of the rotation capacity ranges from 0 to 50
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Figure 5.55 — Rotation capacity of hot-formed section subjected to constant moment — scale of the rotation
capacity ranges from 0 to 20; sections with higher rotation capacities values were disregarded
In the following section, the impact of the cross-section aspect ratio /4 /b on the rotation
capacity is discussed. In the majority of current standards, the interaction between the plate
elements of the cross-section is disregarded. Nonetheless, different flexural performances are
obtained for different aspect ratios. These differences are expected owing to the effects of

plate element interaction on the local buckling performance.

The plate interactions can be quantified according to the plate slenderness definition /, as
defined in Equation 2.6. Even though the inelastic buckling is of concern here, the plate
slenderness, that is a function of the critical elastic buckling stress, is a good mean to rapidly
quantify the plates’ interaction. The plate slenderness takes into account the different type of
stress distribution in the flanges and webs through the ks coefficient. It is also assumed that
the corners of hollow sections are rigid and do not deform. Based on this equation, we can
conclude that square hollow section should exhibit the highest capacities in bending since
flanges are the first to reach the buckling load and the webs would therefore offer a good level
of restraint. Moreover, from the plate slenderness definition, and if we neglect the corner

radius, we can also calculate a limiting aspect ratio / / b = 2.44 at which the flange element in
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compression and the webs in bending would have equal plate slenderness and therefore
simultaneously elastically buckle. Nonetheless, while taking into consideration the corner
radius (assumed as a function of the plate thickness: » = 1.5 ¢) and thus considering the flange
and webs clear length, the limiting aspect ratio value ranges from 4/b=1.9 for stocky
sections (for example £ =200 and b/ ¢t =10) to values of 4/ b= 2.3 for more slender section
(for example # =200 and b / ¢ = 30). This range represents the most unfavourable aspect ratio
for box sections in bending where no benefits from the effects of plate element interaction on
the local buckling response of the cross-section arises. For lower aspect ratios, the
compression flange is the critical element in the cross-section while for high aspect ratios

(approximately > 2), beams failure would be due to the web buckling.

The effect of the cross-section aspect ratio on the normalized bending moment capacity and
rotation capacity of hollow structural sections is depicted in Figure 5.56 and Figure 5.57 for
S235 steel. As expected, it can be clearly observed that the bending capacity decreases when
the aspect ratio increases. Then, in the more slender range (Acs > 0.45), the effect of the aspect

ratio on the cross-section rotation capacity is reduced.
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Figure 5.56 — Effect of aspect ratio on the moment capacity of hot-formed sections subject to constant moment

for S235
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Figure 5.57 — Effect of aspect ratio on the rotation capacity of hot-formed sections subject to constant moment
for S235

Figure 5.58 displays the available experimental data for hot-formed sections under a constant
moment. Unfilled symbols represents the results for which the test had to be stopped before
the moment rotation curve could reach the plastic capacity of the section in its decreasing
part. The experimental results are in accordance with the numerical results but display a
notable scatter which was previously justified by the high sensibility of the rotation capacity

to initial geometric imperfection and also to the testing configuration.
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Figure 5.58 — Rotation capacity of experimental and numerical data for hot-formed section subject to constant

moment

5.3.2.2 Cold-formed sections — Constant bending moment

Flexural capacities of cold-formed section under a constant moment and hot-formed one are

first compared in Figure 5.59 and Figure 5.60.

In terms of ultimate capacity, cold-formed sections reaches higher values than hot-formed
sections. This is due to the non-linear material law of cold-formed sections, where strain
hardening is reached gradually from low strain. In addition, having a multi-linear material law

for corners that possess a higher yield strength increases the section capacity.

When comparing the rotation capacity of cold-formed and hot-formed sections, one can
clearly identify that for cross-section slenderness ranging from 0.35 to 0.6 higher rotation
capacities are reached for cold-formed sections. This is due to strain hardening since it has
previously been shown that strain hardening improves both the ultimate strength and post
buckling behaviour of a section. For stockier sections, i.e. Acs<0.35, lower rotation
capacities are achieved by the cold-formed sections. Hence stocky sections can undergo
higher stresses and therefore higher strains. Nonetheless, since the corner region material law

is characterized by a low ductility and a maximum strain at 2.5%, once the section is stocky
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enough to undergo large strain, corners become ineffective and lead to the failure of the entire

cross-section.
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Figure 5.59 — Comparison between the moment capacity of cold-formed and hot-formed sections subjected to

constant moment
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Figure 5.60 — Comparison between the rotation capacity of cold-formed and hot-formed sections subjected to

constant moment
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In Figure 5.61, Figure 5.62 and Figure 5.63, results for cold-formed sections are presented for
different steel grades. Figure 5.61 shows that lower steel grades present higher rotation
capacities due to the ultimate-to-yield stress ratio. Nonetheless, for Acs> 0.55, results are
reversed because of the lower effect of residual stresses for higher steel grades and to the
adopted nonlinear Ramberg-Osgood material law that is normalized with the plastic moment

calculated from a perfectly plastic material law.

Figure 5.62 displays the rotation capacity for different steel grades. Different tendencies
appear for different yield stresses since for cold-formed sections strain hardening is reached at
acceptable deformation. Thus, clear and different trends can be observed for different steel
grades due to the ultimate-to-yield ratio (the strain hardening modulus). It can also be
attributed to the observation made in section 5.1.8, where lower rotation capacities were
reached for higher yield strength, even for identical material law. In the more slender range,
where failure is triggered by cross-section local buckling at low strains, practically no
influence from the material grade on the normalised response is detected. Figure 5.63
represents the strain reached at the maximum capacity of the section. In this representation,
results are much less scattered since the postbuckling is always more unstable and thus leads

to bigger discrepancies.
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Figure 5.61 — Normalised moment capacity of cold-formed sections subjected to constant moment for various

steel grades
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Figure 5.62 — Rotation capacity of cold-formed sections subjected to constant moment for various steel grades
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Figure 5.63 — Normalised ultimate strain of cold-formed sections subjected to constant moment

Another significant phenomenon is reported here and consist in a decrease of the rotation

capacity for very stocky sections (around Acs < 0.25). This observation is due to the corners
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material law and area. Hence, since the corner radius is a function of the section thickness, the
stockier the section, the larger the corner radius. Thus the corner constitutes a bigger portion
of the entire cross-section. Since corners of cold-formed sections exhibit very low ductility,
and since for stocky sections the corner is bigger in proportion, sections display lower
ductility and hence lower rotation capacities. Moreover, it is worth noting that for S235, the
maximum of the lower bound data, lies around a value of Acs = 0.2, whereas for S460, this
point is around Acs = 0.3. Hence, the maximum strain of the corner material law is set to 2.5%
and, based on Table 5.2, this value, when normalized to the yield strain &, consists in
&ucomer = 22.3 &, for S235, 14.8& for S355 and 11.4& for S460; therefore, the higher the yield
stress, the lower the ductility of the corner material law. In other words, if the section is
stocky enough to resist strains higher than the maximum strain of the corner material law, a
stockier section only then lead to a decrease in rotation capacity since more portions of it

exhibits low ductility.

Figure 5.64 display moment-rotation curves for different cross-section slenderness of cold-
formed section. From Figure 5.64, we can note that for section with a cross-section
slenderness up to Acs = 0.4, curves matches in the increasing part, until buckling occurs and
leads to different rotation capacities. For these sections, the flange yields first and yielding
does not reach the corner region. Nonetheless, for higher slenderness, the moment-rotation
curves becomes steeper from low strains. For these sections, where corners represent a large
portion of the total section area, corners are deformable which leads to their yielding and
result in an increase in the section capacity at low strain. Moreover, Figure 5.64 displays that
cold-formed sections exhibit a sudden loss of stiffness after the peak is reached, which is due
to the corner material law that is less ductile. It can be noted that the stockier the section, the

steeper the unloading becomes.
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Figure 5.64 — Moment-rotation curves for different cross-section slenderness of cold-formed sections

Figure 5.65 plots results for different aspect ratios for the case of S235 steel grade. As

observed in hot-formed sections, different tendencies are observed for different aspect ratio in

terms of ultimate and rotation capacity with high aspect ratios exhibiting lower rotation

capacities. Nonetheless, the divergence is not much pronounced.
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Figure 5.65 — Effect of aspect ratio on the flexural capacity cold-formed sections subject to constant moment for

S235
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Figure 5.66 presents numerical and experimental data for cold-formed sections under a
constant moment. The experimental results match the numerical ones and display the same
tendencies. Some results from Wilkinson & Hancock and Rondal & al lie below the numerical
data. This was expected for the case of Wilkinson & Hancock since cross-sections tested
possess an aspect ratio 4/ b =3, that is not treated in this thesis. The remaining results
achieve higher rotation capacities that the numerical computed data. Hence the parameters
adopted in the numerical model are always consistent and safe sided, while experimentally a
big variability is present, especially for what concerns initial geometric imperfection.

Therefore a bigger scatter is always achieved experimentally.
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Figure 5.66 — Rotation capacity of experimental and numerical data for cold-formed section subjected to

constant moment

5.3.2.3 Hot-formed sections in 3-pt bending configuration

For hot-formed sections in the 3-pt bending arrangement, special attention was given to the
initial geometrical imperfection distribution. Since the number of initial geometrical buckles
is always hand-defined as an integer, and because loading is applied at mid-span, 3 types of
geometrical imperfections can be obtained at this point: imperfection shape A occurs for an

even number of recurrence of the halfwavelength, and loading is thus applied on the
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intersection of two buckling waves as seen in Figure 5.67. Moreover, if the number of half
wavelength is odd, two possibilities can arise: imperfection shape B where loading is applied
at the middle of an inward buckle at the upper flange or imperfection shape C where the
flange buckle is outward. In order to identify the effect of each shape on the bending response
of square and rectangular hollow structural shape (HSS), 2 sections were selected. Their
length was chosen equal to 10 times their cross-section height and a S355 steel grade. Section
1 is a square section SHS200 with b/¢=15 and section 2 is slightly more slender with
b/t=16. These sections have been denoted as: Section 1: SHS200 bt15 Lh10 S355,
Section 2: SHS200 btl6 Lh10 S355. Due to their geometrical dimensions, section 1
exhibits an even number of half wavelength Lo as represented by Imperfection A while
section 2 have an odd number. In order to visualise the effect of the imperfection,
imperfection B was also assigned to section 1, and section 2 was studied under imperfection
shape B and C (inward and outward flange buckle). As can be seen in Figure 5.68, practically
no difference exist if the initial geometrical imperfection is of type A or B (on the intersection
of two buckle or on an inward one). Hence both were adopted in the numerical study, in an
attempt to obtain a square pattern of the initial buckles. For section 2, and when having an
upward buckle on the flange, the beam reached up to two times more rotation capacity as
compared to the inward buckle shape and was therefore not used in the present study. Hence,
only type A and B imperfection shapes were adopted in the numerical study so as to obtain a

safe sided and small scatter of results.

Load application at mid-span
through the webs

Imperfection shape A Imperfection shape B Imperfection shape C

Figure 5.67 — Amplified initial imperfection possibilities for 3-pt bending configuration

- 178 —



Numerical investigations

0.4 :,q‘ ________ "F _______ Section 1 - imperfection shape A
1/ I \ Section 1 - imperfection shape B
| I } Section 2 - imperfection shape C

Section 2 - imperfection shape B

i
0 5 10 15 20
0/0,, [

Figure 5.68 — Moment rotation response of two beams under different Initial imperfection possibilities

Figure 5.69 and Figure 5.70 compares the flexural behaviour of beams under a constant
moment to the 3-point bending configuration in terms of moment and rotation capacities. In
terms of ultimate moment capacity, the 3-point bending configuration reaches higher values
than beams with constant moment. This was expected since in 3-pt bending, due to the
moment gradient, as soon as the plastic moment M, is reached at the mid-section, the steel
strain hardens and yielding spreads along the length until the yielded length is sufficient to
form a buckled shape. Moreover, Figure 5.68 display how values higher that the plastic

moment capacity are reached at small strains.

However, for what concerns the rotation capacity, lower values are observed for all tested
sections (Figure 5.70). This was also predictable in the 3-pt bending case since a moment
gradient leads to having a confined region of maximum moment. Hence, the segments
adjacent to the plastic hinge are at lower stress levels and provide a certain level of restraint.
Therefore, yielding and thus also local buckling cannot spread plainly along the length of the
beam, contrary to the case of constant moment where local buckling can develop freely. For
this reason, lower rotation capacities are reached when beams are tested under a point load.
Similar conclusions were underlined by Lay, 1965 [115], Lay & Galambos, 1967 [32] and
Wang & al, 2016 [40]
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Figure 5.70 — Rotation capacities of beams under a constant moment versus 3-point bending configuration

Figure 5.71 and Figure 5.72 present all 3-pt bending results under different yield stresses. We
can note that higher rotation capacities were achieved by the grade S235 and S355 beams
compared with S460 beams. Therefore, in the 3-pt bending configuration, strain hardening is
reached as soon as yielding starts to spread, hence, higher strain hardening tangent stiffness
would lead to higher rotation capacities because a higher degree of strain hardening will delay

the onset of local buckling and improve the post-buckling response. For S460, the ultimate-to-
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yield stress ratio is much lower that of S235 and S355 and this is also reflected by lower strain
hardening modulus which leads to lower rotation capacities. Moreover since S460 have a
ful fy ratio of 1.2, this lead to sections reaching a maximum rotation capacity level of around

6.

In order to well visualize the effect of strain hardening, the specific case of square hollow
section with a length equal 10 times the height of the cross section is presented in Figure 5.73
and Figure 5.74. It can be seen that S460 present much lower rotation capacities than S235
and S355 grades. Moreover, for the cross section slenderness range varying around 0.35 to
0.45, beams of S355 grades reaches higher rotation capacities. This is due to the fact that
S355 material possess a smaller yield plateau length and a higher first stage strain hardening
modulus (see Table 5.1). Nevertheless, for stockier section, which yield at higher strains,
higher rotation capacities are reaches for S235 since it possess a higher £, / f; ratio (that is also
reflected by a higher second stage strain hardening). In the more slender range, where failure
is triggered by the cross-section local buckling at small strains, the rotation capacity is

independent of the material steel grade.
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Figure 5.71 — Ultimate moment capacity for the 3-pt bending configuration for different yield stresses
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Figure 5.72 — Rotation capacity for the 3-pt bending configuration for different yield stresses
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Figure 5.73 — Ultimate moment capacity for square hollow sections, L/h=10, for different yield stresses
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Figure 5.74 — Rotation capacity for square hollow sections, L/h=10, for different yield stresses

Figure 5.75 and Figure 5.76 represent the response of square hot-formed sections with 3-pt
bending configuration and S235 yield stress for various L / A ratios. These graphs highlight
the influence of the moment gradient on the flexural responses of beams and their dependence
on the steepness of the moment gradient. The moment gradient steepness is characterized by

the ratio of the span length L over the section height /.

The moment gradient is seen to have a minimal influence on the normalized moment capacity
of beams as seen in Figure 5.75, but a more pronounced effect on the cross-section rotation
capacity R (Figure 5.76) where higher rotations are reached for smaller L / 4 ratios. This is
due to the fact that small L / 4 ratios lead to higher moment gradient which in turn enable a
greater participation of strain hardening. Hence, since strain hardening enhances the flexural
capacities of a section, and thus its rotation capacity, higher values are reached for low

L / h ratios.

Moreover, in 3-pt bending configurations, local buckling occurs at mid-span. As the average
stress in this region depends on the moment gradient, hence for a same maximum moment, a
steeper gradient means a smaller average stress which will delay local buckling and provide a

greater amount of deformation capacity.
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Nonetheless, it is also worth noting that for a same section, the buckled region has about the
same length, but that beams under a steep moment gradient would lead to a relatively smaller
yielded region since a higher level of restraint from the adjacent segment is present. However,
the rotation capacity R is calculated by dividing the beam end rotation &by its plastic value Gy
given in Equation 5.23. From the plastic rotation capacity equation, we can expose its
dependency on the span length whereas the beams ends rotation #is mainly a result of the
deformation of the buckled region which has about the same length for a long or for a short
span. These observations were reported theoretically by Lay & Galambos, 1967 [32] and
experimentally by Kuhlmann, 1989 [37], that stated that yielding in a beam under a point load
will be limited to a certain length that is independent from the span of the beam and the
moment gradient. As a consequence, the deformation caused by local buckling has greater

importance on the rotation capacity of a short span beam.

All these effects leads to the conclusion that specimens with a steep moment gradient buckle
later and provide a greater amount of deformation capacity. These conclusions have also been
observed both experimentally and theoretically by Ricles & al, 1998 [39], Lay & Galambos,
1993 [116], Kuhlmann, 1989 [37] and Wang & al, 2016 [40].
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Figure 5.75 — Normalised ultimate moment capacity for Square, hot-formed section with 3-pt bending

configuration and S235 yield stress for various L / 4 ratios.
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Figure 5.76 — Rotation capacity for Square, hot-formed section with 3-pt bending configuration and S235 yield
stress for various L / & ratios.
Moreover, in the 3-point bending configuration of hot-formed sections, the aspect ratio is seen
to influence the rotation capacity. An example in Figure 5.77 is given for S235, L/ h=10
under different 4 /b ratios. In Figure 5.78, the rotation capacity is plotted for all the
considered hot-formed sections of S235 yield stress, and for different moment gradient. It can
be evidenced here that the differentiation between curves is not very noticeable since, as seen
previously, many parameter influence the cross section response (aspect ratio, yield

strength. ..) which justify the big scatter in the rotation capacity.
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Figure 5.77 — Effect of the aspect ratio on the rotation capacity for 3-pt bending beams
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Figure 5.78 — Rotation capacity for hot-formed section with 3-pt bending configuration and S235 yield stress for

In Figure 5.79, experimental results from literature are plotted with the numerical ones. This

figure highlight the fact that experimental and numerical results are in agreement and exhibit

the same tendencies.
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various L / h ratios.
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Figure 5.79 — Experimental and numerical data for hot-formed section in the 3-pt bending arrangement

5.3.2.4 Cold-formed sections in 3-point bending configuration

For cold-formed section in 3-pt bending arrangement, as we can observe in Figure 5.81,
rotation capacities lower than the case of a constant moment are reached. Moreover different
tendencies are observed for the different yield stresses. The drop in ductility that appear for
stockier sections is due to the material law affected to corners, as explained for the case of a
constant moment for cold-formed sections. Moreover, it is worth noting that the S460 grade

reach rotation capacities lower than 3 for practically all the considered sections.

In Figure 5.82, different tendencies are displayed when different moment gradients are
applied, with higher rotation capacities reached for low L / 4 ratios (steep moment gradients),

similarly to the hot-formed cases.

Few experimental results are present in the literature for cold-formed sections tested in 3-pt
bending. The available results have been reported in Figure 5.83 and are in accordance with

the numerical results.
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Figure 5.80 — Normalised moment capacity of cold-formed sections in the 3-pt bending configuration and for

different yield stresses
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Figure 5.81 — Rotation capacity of cold-formed sections in the 3-pt bending configuration and for different yield

stresses
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Figure 5.82 — Rotation capacity of S235 cold-formed sections in the 3-pt bending configuration for different

moment gradient.
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Figure 5.83 — Rotation capacity of experimental and numerical data for cold-formed section under 3-pt bending

arrangement.
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5.4 Conclusions

Based on the numerical investigation carried in this section, many parameters were identified
as influencing the inelastic flexural behaviour of hollow structural sections. Conclusions can

be summarised as follows:

= [t was concluded that beams in a 4-pt bending configuration can be represented by a
small beam of length equal to 3 times the average of the clear width of both flanges

and webs with a constant moment applied at its ends.

= The effect of membrane residual stresses is negligible on the rotation capacity of hot-
formed sections while flexural residual stresses had a small impact on the inelastic

flexural behaviour of cold-formed section and lead to slightly higher values.

= The initial geometrical imperfections, both in amplitude and shape, lead to
considerable differences in the rotation capacity and justified why experimental results
are scattered. In order to remain on the safe side, an amplitude of a / 200 was adopted

with square half-waves.

= The considered material law was seen to lead to different behaviour. Strain hardening
was identified as delaying the onset of local buckling and improving the post-buckling
behaviour. Hence, higher rotation capacities were achieved for higher strain hardening
modulus. It was also identified that for a same material law, lower rotation capacities

are reached for high steel grades.

= Different tendencies were reached for different aspect ratio 4/ b with square section
leading to the higher values. This was due to the interaction between the plate
elements of the cross-section. Hence, for a square section in bending, the web provides
high restrains to the flange and thus delay the onset of inelastic local buckling. The

higher the aspect ratio, the lower the restraint from the flange becomes.

= (Cold-formed sections lead to higher rotation capacity than hot-formed section for a
cross-section slenderness 0.35 <Acs < 0.6, due to the material non-linearity of cold-
formed sections (where strain hardening is reached as low strain). Nonetheless, for
stocky sections Acs < 0.35, cold-formed sections displayed lower rotation capacity due

to the brittle material law affected to the corner.
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Sections tested under a point load (cold-formed and hot-rolled) displayed lower
rotations than those under a constant moment while achieving higher moment
capacities. This is due the fact that buckling is restraint to a small region whereas in

the constant moment case, buckling is free to develop.

For steeper moment gradients, higher rotation capacities are reached. The steepness of
the moment gradient was expressed by the L / & ratio. Hence, a high moment gradient
would enable a greater participation of strain hardening which enhances the flexural

capacities of a section.

- 191 -



Proposed design formulations

6 PROPOSED DESIGN FORMULATIONS

An extensive parametric study that covered hot-rolled and cold-formed sections tested in
bending has been performed. A large set of parameters from section dimensions, steel grade
and testing configuration have been varied and different trends have been observed for the
rotation capacity. Consequently, some recommendations and some design curves will be

proposed regarding the rotation capacity of square and rectangular cross-sections.
Two methodologies to allow for plastic design are developed:

The first is similar to the one presently adopted in current design standards. A limiting value
of the plate slenderness, which ensures that the cross-section can reach a rotation capacity
equal to 3 (given by Eurocode3 and AISC), is proposed. The rotation demand value of 3 was
seen as sufficient to approximately all common structures in order to develop a plastic
mechanism and was adopted in the present work. Here, new and accurate limiting values are
given based on the present numerical data. These recommendations, in term of the cross-
section or plate slenderness, are only based on the numerical case of a constant bending
moment, since this case provides the full rotation capacity of a cross-section without any
restraint occurring from the presence of a moment gradient. On that account, it have been
previously shown that when a beam is subject to a point load (which lead to a moment
gradient) lower rotation capacity are reached. Nevertheless, since this methodology is a
simplified procedure that consists in adopting a rotation demand of 3 for all structures, and is
thus very penalizing on the rotation demand part, we were therefore less restrictive for what
concerns the rotation capacity. It is to be kept in mind that the numerical results are generated
with safe-sided parameters, and the proposed limitations will also be based on the numerical
data lower bound. In conclusion, this methodology is a rapid procedure that is generally
conservative since the majority of structures require a smaller amount of rotation demand than
3; nevertheless, for some few complex cases, as stated in the state of the art, it may also be

unconservative.

A second and more precise procedure consisting in linking the rotation demand to the section
rotation capacity is also developed. For this procedure, a continuous relationship between the
cross-section slenderness and the cross-section rotation capacity is given. In a first step, the

engineer calculates the required rotation that a structure should undergo in order for plastic
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analysis to be performed. Then based on the cross-section slenderness and the type of loading
applied on the structure, he can identify whether the section is able to deliver the required
rotation. This continuous relationship is bounded by two limits, the first limit is based on a
maximum rotation capacity of 15 so that no excessive deformation occurs, the second limit
concerns the maximum cross-section slenderness after which sections will undergo elastic
local buckling (elastic local buckling will prevent moment redistribution and the formation of
a plastic mechanism). This limit was based on the fact that a section would reach a minimum

of 95% of the plastic capacity for hot-formed and cold-formed sections.

6.1 Hot-formed sections, constant bending moment

For hot-formed sections, a continuous function of the general form given by Equation 6.1 was
fitted to the test data. This function is similar in form to the Euler relation between normalized
critical elastic buckling strain and plate slenderness. However, in order to derive a relationship
between the rotation capacity and cross-section slenderness, the effects of inelastic buckling,

imperfections, residual stresses and post-buckling response should be taken into account.

4
e

The values of A and B were determined following a regression fit of to the numerical data by

R 6.1

representing results in a logarithmic scale as can be seen in Figure 6.1. It is clearly shown in
Figure 6.1 that the numerical data are linearly aligned in a logarithmic scale which justify the
logarithmic curve proposed in Equation 6.1. A linear regression curve (Equation 6.2) was best
fitted using the least square approach. Then, the best-fitted curve was shifted in order to
enclose all results and in that way give a lower bound to the numerical data (Equation 6.3).
This will ensure that the proposed curve would always provide safe sided values of the
rotation capacity. Then, the A and B coefficient were obtained from the linear regression

coefficients a and b by means of Equations 6.4 and 6.5.

In(R) = a-In(Az)+b 6.2
In(R) =5.2-In(A )~ 3.9 6.3
A=¢ 6.4

B=-a 6.5
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Figure 6.1 — Hot-formed numerical results represented in a logarithmic scale

The curve derived for hot-formed section is given by Equation 6.6. This regression curve
gives a continuous relationship between cross-section slenderness and cross-section rotation
capacity.

0.02

- 52
/1cs

R 6.6

Two limits have been set to this function: an upper limit consists of R=15 and a lower limit of
Acs = 0.53, after which plastic analysis cannot be performed. The limiting value of Acs for
which plastic analysis can be performed has been set to Acs=0.53 on the basis of reaching
0.95 of My as seen in Figure 6.3. From the proposed curve given in Equation 6.6, Acs = 0.38
can be obtained as the limits for section who can reach a rotation capacity of 3 from those

who cannot.
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Figure 6.2 — Proposed curve for hot-formed sections under constant moment
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Figure 6.3 — Cross-section slenderness limiting value that ensures 95% of Mpl is reached.

In addition, the rotation capacity of hot-formed sections was also plotted as a function of the
plate slenderness 4, in order to compare it to the EC3 actual design procedure and to propose
a new suitable value based on the cross-section dimensions, as currently prescribed by the
Eurocode. Results are displayed in Figure 6.4 as a function of the plate slenderness as defined
in EC3. We can note that when the rotation capacity is plotted as a function of the plate
slenderness, a bigger scatter is displayed in comparison with the results plotted against the
cross-section slenderness computed numerically, which was expected since the plate
slenderness disregard the cross-section plates interactions . Moreover, in Figure 6.4, results
were differentiated for sections where failure is governed by flange buckling from those
governed by web buckling. For the numerical data represented in Figure 6.4, a limiting value

of Acs =0.33 was set which ensures that all sections can deliver a rotation capacity of 3. This

limit would lead to a new proposed flange slenderness limit b —t2re % =18 as opposed to
.. h=2r | f, . )
the current EC3 value of 33 and a web slenderness limit ) ¢ E =45in comparison to

72. From these values we can conclude that the EC3 prescription are considerably
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unconservative and would compromise the safety of the structures. Results are graphically

represented in Figure 6.5 and Figure 6.6.
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Figure 6.4 — Rotation capacity of hot-formed sections under constant moment as a function of plate slenderness.
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Figure 6.5 — Proposed flange slenderness limit for hot-formed sections.
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Figure 6.6 — Proposed web slenderness limit for hot-formed sections.
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6.2 Cold-formed sections, constant bending moment

As seen previously for cold-formed sections, different tendencies are observed for each steel
grade (S23, S355 and S460). In this respect, a curve was proposed for each grade. Moreover,
numerical data of a same steel grade present two trends: an increase in rotation capacity for
low slenderness followed by a decreasing part. The increasing part is due to the corner
material that predominate in the stocky range, and the decreasing part, where the section is
more slender, have a similar behaviour to the Euler relationship between critical elastic
buckling strain and plate slenderness. Hence, in order to derive a curve that represents the
mechanical behaviour of cold-formed sections, a curve was suggested for each fragment and

then combined to describe cold-formed section behaviour in a continuous manner.

For the increasing part, the behaviour was also modelled by a logarithmic curve denoted C
given by Equation 6.7. The initial C stand for the corner material that have a predominant

effect in this portion.

R.=4-2," 6.7
The decreasing part was modelled in the same manner as previously for the case of hot-
formed sections. The logarithmic curve is denoted F that stands for the material of the flat

region and is given by Equation 6.8 as followed.

R:C 6.8

F D
ﬂ’CS

The interaction between both curves can be obtained by linking the effect of both observed
behaviour as given in Equation 6.9. This equation can be rearranged as in Equation 6.10 and
was adopted in this study. It is worth noting that combining two mechanical behaviour consist
the basis of the present process for determining a member capacity. They were introduced by
merchant-Rankine and Ayrton-Perry. More details on the derivation of the member

interaction curves can be found in Rondal ([117] and [118]).

11 .1 6.9
R R. R,
|
R=—— :
T 6.10
A" C
/ICSD
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Figure 6.8 — Cross-section slenderness limiting value that would eventually permit plastic analysis.

For cold-formed sections, the limit after which plastic analysis cannot be considered was also

set to Acs = 0.53 like for the hot-formed case since it has been seen to be adequate as seen in

Figure 6.8.

Proposed curves for cold-formed sections are given in Equation 6.15, 6.16 and 6.17. Variables

has been deducted in order for the proposed curve to stand as a lower bound for numerical

results. A relationship between the cross-section rotation capacities of different steel grades

was found. This relation was based on the yield strength and was expressed with the use of

235/ fy ratio. Thus, parameters A, B, C and D are given for S235, S355 and S460 as a

function of 235 / f, ratio.

A=25.222
/

235

y

B=0.33~1/L
235

235

C=0.065-—

D =5.

y

(4]
235

6.11

6.12

6.13

6.14
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For the S235 steel grade, the rotation capacity is given by:

R= L 6.15
1 A

+
252,5"% " 0.065

For the S355 steel grade, the rotation capacity is given by:

R= L 6.16
1 Aes”

+
16.50.""  0.043

For the S460 steel grade, the rotation capacity is given by:

R= L 6.17
1 Aes”

+
12.82,°  0.033

Derived curves have also been presented separately for each steel grade in Figure 6.9,
Figure 6.10 and Figure 6.11 for S235, S355 and S460 respectively. From these curves’
equations, the rotation capacity reached can be determined. For S235, we can conclude that a
maximum rotation capacity of 14 is achieved for a cross-section slenderness Acs=0.21. For
S355, a maximum rotation capacity of 8.8 is reached for Acs = 0.26 and for S460, a maximum
rotation capacity of 6.7 is attained at Acs = 0.29. Hence these curves clearly denote the fact
that less ductility is reached for high yield strength due to the material law (in the flat and
corner regions) and the ultimate to yield ratio. Moreover they also represent the fact that the
Peak rotation capacity is reached for lower slenderness when the steel grade increases which
is due to the corner material law parameters as explained previously. For higher slenderness

(Acs > 0.4), all curves converge altogether since failure occurs at low strain.

From the proposed curves of cold-formed sections (Equation 6.15, 6.16 and 6.17), a unique
limit of Acs = 0.46 can be obtained that bounds section that can reach a rotation capacity of 3

from those who cannot.
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Figure 6.11 — Proposed curve for S460 cold-formed sections under constant moment

Moreover, in an attempt to simplify the mathematical formulation of the rotation capacity for
different steel grades, a single curve was also proposed for all cold-formed sections —
comparably to the hot-formed case — but bounded by different values for each grade. This
curve was computed for all numerical data that have a cross-section slenderness greater than
0.4 since it has been observed that the behaviour of sections in this range is comparable. The
numerical data considered are plotted in black dots in Figure 6.12; these considered data are
represented in a logarithmic scale in Figure 6.13 to obtain the corresponding parameters that
depict the flexural behaviour of cold-formed sections. The proposed curve is given by

Equation 6.18.

£ 0.26

= 6.18
From this equation, the limiting value of Acs=0.46 is also deducted and ensures that a
rotation capacity of 3 is reached. For S235, a rotation capacity of R =12.5 is set as an upper

bound. For S355, the value is established for R="7.5 and R = 5.5 for S460.
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Figure 6.12 — Proposed single curve for cold-formed sections under constant moment
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Numerical results has also been represented as a function of the plate slenderness in order to
define a criteria that is Eurocode like. Results are shown in Figure 6.14 in which sections that
fail due to flange buckling has been identified from those who fail from web buckling. From
this representation a value of 4, = 0.4 can be identified as ensuring a rotation capacity of 3.
Rotation capacity is also presented as a function of flange and web slenderness in Figure 6.15

and Figure 6.16. The limiting value of flange slenderness that certify a rotation capacity of 3

can be deduced as # %=23 and the one for web slenderness is identified
h=2r, | [,
as ; £ E:%. These values also demonstrate that Eurocode3 (also AISC LRFD,

AS 4100...) limitations are unconservative and that a number of sections, which are currently
classified as Class 1 (or compact), demonstrate insufficient rotation capacity for plastic
design. It is nonetheless mentioned here that the gap between the proposed limit and the one
in the current standard is bigger for the case of hot-formed sections than that of cold-formed.
This was expected since actual standard defines one limit for both cold and hot-formed
sections whereas it has been previously shown that cold-formed sections exhibit higher

rotation capacities.
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Figure 6.14 — Proposed plate slenderness limit for cold-formed sections
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Figure 6.15 — Proposed flange slenderness limit for cold-formed sections
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Figure 6.16 — Proposed web slenderness limit for cold-formed sections
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6.3 Hot-formed sections, moment gradient

As seen previously for hot-formed sections, one tendency is observed for all yield stresses
expect for the case of S460 where the rotation capacity is seen to be limited to a value around
6. Hence, all results has been plotted in a logarithmic scale except for those of grade S460 that
reached rotations higher than 6. Results are plotted in Figure 6.17 and display a linear
tendency. A curve depicting the behaviour of cross-sections has been best fitted and a lower
bound was also suggested to the numerical data given by Equation 6.19 and as represented in
Figure 6.17. The curve proposed for hot-rolled sections under a point load is given in
Equation 6.20 and represented graphically in Figure 6.18. An upper value of R=15 was
allocated to S235 and S355 whereas a rotation of 6 was seen suitable for S460 grade.
Concerning the lower bound, the minimal value of cross-section slenderness Acs = 0.53 was
also seen appropriate for hot-rolled sections under a moment gradient as shown in
Figure 6.19. Nevertheless, it is worth noting that although beams under a point load exceed
the plastic moment for Acs = 0.53, the rotation capacity delivered is trivial for such cross-

section slenderness.

The rotation capacity has also been plotted as a function of the plate slenderness in
Figure 6.20. It can be point out that for cases under a moment gradient, numerical results
represent a slightly larger scatter compared to those represented with the cross-section

slenderness.
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Figure 6.17 — Numerical results of hot-formed section under a point load represented in a logarithmic scale
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Figure 6.18 — Proposed curve for hot-formed sections under a point load
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Figure 6.19 — Cross-section slenderness limiting value for plastic analysis.
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Figure 6.20 — Rotation capacity of hot-formed section under a moment gradient as a function of plate

slenderness.

6.4 Cold-formed sections, moment gradient

For cold-formed sections under a moment gradient, same tendencies as for the case of cold-
formed section subject to a constant moment are observed with the difference that lower
rotations capacities are reached. Hence, in a first step curves have been proposed as an
interaction between two main curves, and are represented in Figure 6.21. A transition between
curves of different yield stresses has also been made with the use of the 235 / f, ratio and was

found suitable. The A, B, C, and D parameters has been expressed accordingly.

A=16 % 6.21
y
B=0.6- 2?5 6.22
C =0.035 % 6.23
¥
0.3
D:4-[2];y5j 6.24
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These values led to the expression of the curves for S235, S355 and S460 steels.

For the S235 steel grade, the rotation capacity is given by:

R= L 6.25
1 Acs

+
164."°  0.035

For the S235 steel grade, the rotation capacity is given by:

R= L 6.26
1 Aes”

+
10.64,"°  0.023

For the S235 steel grade, the rotation capacity is given by:

R= L 6.27
1 At

+
8217 0018

The proposed curves are represented in Figure 6.23, Figure 6.24 and Figure 6.25. From these
figures we can notice that for S355 grade, the proposed curve provides slightly lower values
that the numerical results rotations capacities and this for the range of Acs <0.3. However,
this curve was accepted and found suitable for ensuring a transition between curves of
different steel grades and because this proposed curve for S355 provides safe-sided values.
Moreover, the lower value of Acs = 0.53 was also perceived as adequate for limiting the use of
plastic analysis, if sufficient rotation capacity is reached to form a mechanism. This
conclusion was achieved based on the normalized ultimate moment capacities for cold-formed

sections plotted in Figure 6.22.
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Figure 6.21 — Proposed curve for cold-formed sections under a point load
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Figure 6.22 — Cross-section slenderness limiting value to allow for plastic analysis.
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Figure 6.23 — Proposed curve for S235 cold-formed sections under a point load
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Figure 6.25 — Proposed curve for S460 cold-formed sections under a point load
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Moreover, a single curve was also proposed for cold-formed section under a moment gradient
and was derived from the numerical data of section having a cross-section slenderness
Acs > 0.4. Considered data are graphically represented in Figure 6.26 and Figure 6.27 and the
resulting curve is given by Equation 6.28. An upper bound of R=4.5 was attributed to S235
grade, while R=2.5 and R=1 was assigned for S355 and S460 respectively.

R= 30? 6.28
cS
1 O | ‘ | | 1 1
\ : : ———— Rotation R=3
] \ | ° CF_pt_S235
| R | ° CF_pt_S355
8 ® _{ ° CF_pt_S460
1 | | ———  proposed continuous curve
] | L Data considered
6 4 0@ @ | = Y —————
o]
< ]
4 i T
: OOk
] R=22 o S Lower bound that secure
2 5355 upper b?nd 78 ’ e t=— the possibility of moment
1 R=1 @ 1 ) I redistribution
1 S460 upper bound N
0o +———m——— — S
Aes =0.53
0.0 0.2 0.4 0.6 0.8

Figure 6.26 — Proposed single curve for cold-formed sections under a point load
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Figure 6.27 — Numerical data of Cold-formed sections under a point load with Acs < 0.4 in a logarithmic scale

6.5 Summary of recommendations

6.5.1 Hot-formed sections

Method 1

Sections satisfying Acs < 0.38 or 4, < 0.33 are eligible for plastic design

Method 2: detailed method to be used after R, has been computed

Loading Steel grade Proposed curve Upper bound Lower bound
0.02
Constant moment fr <460 R= 17 R=15 Aes<0.53> R=0.5
cs
) Jr<355 0.0035 R=15
Moment gradient R=—F7 Aes<0.53 > R=0.09
355< f, <460 Acs R=6
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6.5.2 Cold-formed sections

Sections satisfying Acs < 0.46 or 4, < 0.4 are eligible for plastic design

Loading Steel grade Proposed curve Upper bound Lower bound
R 1
$235 1 s | Aes=0.1>R=11.7 | 1;s<0.53> R=1.6
254" 0.065
R 1
Constant moment S355 1 + ﬂcs” Aes=0.12> R=64 | As<0.53> R=1.6
16.52.5"*  0.043
R 1
S460 I 2™ | As=01>R=44 | 2s<0.53> R=1.6
12.82,"  0.033
R 1
$235 L des=0.1> R=4.0 | Acs<0.53> R=0.4
164, 0.035
1
Moment gradient R= s
S355 1 N Acs Acs=0.1>R=1.3 | As<0.53> R=0.4
10.64."°  0.023
R 1
S460 LA™ | As=01>R=0.6 | Aes<0.53> R=0.4
8.21.,7 0.018

Loading Steel grade Proposed curve Upper bound Lower bound
S235 R=12.5
0.26
Constant moment S355 R= FEH R=7.5 Aes<0.53> R=1.9
S460 R=5.5
S235 R=4.5
. 0.06
Moment gradient S355 R= Pk R=2.5 Aes<0.53> R=0.4
CS
S460 R=1
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6.6 Worked example

6.6.1 Example 1

The particular case of a continuous beam of two identical span of length L charged with 2
point loads at mid-span is considered. The cross-section is considered hot-formed with

fy=235 Mpa.

For this particular case, the first plastic hinge occur at the central support denoted 1 after
which moment is redistributed to the mid-span where the second hinges occur simultaneously
at point 2 and 3 and a mechanism is formed. The limiting load values and rotations are

reported in Table 6.1. This leads to a rotation demand Rdem = 0.25 as detailed in Equation 6.29

Table 6.1 — Theoretical limit values

M 2
F, . =16-M , /(3L M
iF LF " e O gl 32
2 T ‘3
L/2 L/2 L/2 L/2
‘ 9 Fual8 P2
Fpr2 =Fpis =g o Opi2 =0pn * g
SFI?
0p12,3 - epll 0p12,3 /28E[y
Ra’ = = -1= 5 -1=0.25 6.29
e 0 0 FIL
pit pil 32E1

y
To determine the limiting cross section slenderness for which plastic analysis can be

performed, both methods were used.

Method 1: for the case of hot-formed sections, sections providing Acs <0.38 can be used

while disregarding the rotation demand.

Method 2: After calculating the rotation demand that is equal to 0.25 for such a structure, the

continuous curve proposed for hot-formed section under a point load, that is represented by

the following equation: R = /1'0035

5.14 2
cS

is considered. From this formula we can deduct that

sections having Acs < 0.44 can be considered. This emphasize the fact that when the detailed

approach is considered, design become more economical.
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6.6.2 Example 2

A propped cantilever of span of length L loaded with a point load at 1/3 the length from the

pinned support is studied. Beams are considered to be cold-formed with S460 steel grade.

For this case, the first plastic hinge occur at the position of the position of the point load P,
then moment is redistributed to the fixed support where the second hinge forms and leads to
the structure failure. The limiting load values and rotations are reported in Table 6.2. This

leads to a rotation demand Rasem = 0.3 as detailed in Equation 6.30.

Table 6.2 — Theoretical limit values

P 81M 3M L
P = L 2 P
1 pll
14L 14E]1
U2 Y
1 s
2L/3 L/3 6Mpl SMPIL
L Fu=—1 Ty
5M L
0, " Aser,
R, = 7 _1:3MplL -1=0.3 6.30

il 14E1,

When considering the simplified method 1 for cold-formed sections, plastic analysis can be

performed for sections satisfying Acs < 0.46, while disregarding the rotation demand.

Method 2: since for this structure the rotation demand Ruem = 0.3, the continuous curve
proposed for cold-formed section under a point load for S460 is used and is given

1
1 N A/CS4'9
82,2  0.018

byR= The continuous curve possess a lower bound Acs<0.53. This

limiting values leads to a rotation capacity R=0.36 which lead to the conclusion that cold-
formed sections eligible for plastic design can deliver a minimal rotation capacity of 0.36.
Hence, for our specific case of propped cantilever, sections satisfying Acs < 0.53 can be used
for plastic design. From this value, it can also be highlighted that the detailed approach

provides more economical recommendations.
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6.7 Concluding remarks

With respect to the numerical results, new recommendations that allows the use of plastic

design were proposed. The recommendations were given through two approaches.

The first approach is in line with the Eurocode and consists of giving a slenderness value that

would ensure enough rotation capacity is available for a plastic mechanism to develop.

When determining the limiting values of cross sections slenderness that ensures a rotation
capacity of 3, only the case where a constant moment is applied was taken into account. This
resulted in a value of Acs=0.38 or A, =0.33 for hot-formed sections and Acs=0.46 or
Ap = 0.4 for cold-formed sections. These recommendations highlight the fact that the current

standards provisions are unconservative.

The second approach consists of linking the rotation demand to the rotation capacity of
section and thus establishing continuous curves for the rotation capacity as a function of the

cross-section slenderness.

Based on the extensive numerical parametric analysis, different behaviours were observed for
cold-formed-sections and hot-formed sections and for beams under a constant moment as well

as for beams subject to a moment gradient.

Since a large scatter is expected when representing the rotation capacity of sections, a lower
bound curve was proposed. Moreover, the effect of the aspect ratio and the moment gradient
was disregarded when proposing a suitable continuous curve for determining the rotation
capacity. Moreover, for the case of hot-formed sections, the influence of the steel grade was
negligible due to the presence of the yield plateau and was therefore disregarded; whereas for

cold-formed section the effect of the yield stress was significant and thus taken into account.

Based on the conclusions underlined previously, new actual recommendations regarding the
rotation capacity of square and rectangular cross section should be proposed since actual
standard are unconservative. The most suitable procedure would be to link the rotation

demand to the rotation capacity to obtain the most economical and reliable result.
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7 CONCLUSIONS AND FUTURE STEPS

The present dissertation was devoted to the characterization of hollow section shapes’
rotational capacity. The objective was to establish a relationship between the rotation capacity

Reqp with the cross-section slenderness Acs.

After introducing the subject, development made toward the characterization of the rotation
capacity and the rotation demand of a structure was reported in chapter 2 along with how

current design standard allow the use of plastic design.

Experimental work was performed in order to investigate the rotation capacity of hollow
structural sections and are detailed in Chapter 3; preliminary measurements relative to the
material law and geometrical dimensions were described together with the beam response in
respect to its ultimate capacity and deformation capacity. Sections were seen to experience
insufficient plastic rotation capacity although classified as class 1. This highlighted the fact
that current codes provisions should be revised. It was also attributed to high level of stress

concentration due to the loading method imposed.

Then, the experimental tests have been accurately modelled with the use of the finite element
software FINELg in Chapter4. A good agreement was found between numerical and
experimental results when comparing the ultimate capacity of a section and some divergence
was observed at the beam deformation at failure. This was predictable since the rotation
capacity is very sensible to initial geometrical imperfections. In all, the numerical model was
found to well simulate the behaviour of beams in bending and it was then extensively used to
launch a numerical campaign to study the rotation capacity of cold-formed and hot-formed

section in addition to investigate their sensibility to various parameters.

Subsequently, an extensive numerical campaign was reported in Chapter 5 along with some
comprehensive analysis. Numerical investigations highlighted the influence of the initial
geometrical imperfections on the rotation capacity and explained the big scatter observed
experimentally when reporting the rotation capacity of a section as a function of the plate
slenderness. Moreover, it was identified that the material law influences the inelastic
behaviour of the beam and that strain hardening improves its post-buckling behaviour. Cold-
formed sections were seen to achieve higher rotations than hot-formed sections. For very

stocky cold-formed sections, a decrease in the rotation capacity was observed due to the
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brittle behaviour of the material law in the corner (attributed to the cold-forming process). In
addition, sections tested under a point load displayed lower rotations than those under a

constant moment since buckling is restraint to a small region.

Accordingly with the obtained results, new propositions were made to allow the use of plastic
design in Chapter 6. The personal contributions made in this thesis are listed below and

consist in:

= Collecting an experimental database of 109 results from literature. These data were
compared to the numerical results and served as reference for deriving the adequate

limits and curves needed to allow the use of a plastic analysis.

= Proposing stricter element slenderness values based on the EC3 definition to allow
sections to be used in plastic design. A comparison between the Eurocode 3

recommendations and the new proposed limit was made

= Development of a continuous curve capable of describing the rotation capacity of
sections as a function of the cross-section slenderness in order to compare it with the

rotation demand.

= Different curves were proposed to cold-formed and hot-formed sections in contrast to
current design standards that generally ignore the production route. The yield strength

was also identified as a key parameters for the determination of the design curves.

= The loading arrangement imposed on the beam was reported to be a governing
parameter on the rotation capacity of sections and was taken into consideration to

allow the use of plastic design.

= [t has been stated that the procedure that consist in imposing a ductility requirements
for plastic design, which is based on the traditional practice, can lead to both very
conservative recommendations for simple structures and unreliable results for complex
constructions. Hence, the best procedure recommended is to check the plastic rotation

capacity of a sections against the required plastic rotation of a structure.

Chapter 6 also gives a summary of the proposed design recommendations for practical design
followed by worked examples to illustrate the design procedure and the benefit from the

newly developed design proposals.
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The investigations carried out in this thesis represent a first step towards the improvement of

current design standards. Several areas where further research is required were identified and

consist in the following:

The rotation capacity of sections should be studied under more loading configurations

like for instance distributed loading.

The case of high strength steel should be examined to identify if enough ductility can

be obtained to allow moment redistribution.

Rectangular hollow sections with high aspect ratios should be inspected. In addition to

failing by web buckling, these sections becomes sensible to lateral torsional buckling.

The effect of shear should also be investigated since the rotation capacity may be

affected when shear stresses exceed the web buckling strength.

Web crippling due to high stress concentration should be considered and design

recommendation should be given to include its effect or determine ways to avoid it.

Combined actions of bending moment and axial force should also be investigated.
This study is important for the case of framed structures. When normal forces are
applied to a beam, the cross section may cripple due to axial force while the section is

undergoing plastic bending.

These area of research should be extended to the case of open sections. For this case,
the effect of lateral torsional buckling should be considered and recommendations
toward the complex relationship between the unbraced length and the cross-section
slenderness to the rotation capacity should be specified. In other terms, rules that
control lateral and local buckling until sufficient rotation capacity develops should be

presented.

The application of the current design method should include other materials (stainless

steel...) and composite beams.

The ability of the connections to act as plastic hinges in a structure should also be

inspected.

Ways to determine the rotation demand of a structure that include the second order
effect should be examined in order for the plastic analysis method to be faster, more

accurate, and more economical.
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= Research should also be extended to include seismic cases, cyclic loading, fatigue and

fire.
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APPENDIX 2 — Theoretical values for the propped cantilever configurations

11.2 APPENDIX 2 - Theoretical values for the propped cantilever

configurations

11.2.1 Propped-cantilever centrally loaded

From the cinematic method, the system peak load is computed.

i

P, = L” 11.1

1% step:
Mjeq=3PV/16
%
Ist step
Figure 11.1 — Propped-cantilever centrally loaded - step 1
. : . 3PL
Maximum moment is reached at the fixed end giving M fived = ? =M, ;
16 M ol
The loading corresponding to Mjixed = My is then F} = 3L and the moment at mid-span
M- SMpl
span
6
g PL g ML
Rotation at the hinged end is given b = ; and for the load P1, U, =
s SV Y Er b T 6El
Th ical displ id is f i d for the load P1, f| 7ML
e vertical displacement at mid-span1s J = ; and tor the loa R =
P P 6EI b T 44Er

2" step: the first hinge is reached at the fixed-end giving the following moment distribution

represented in Figure 11.1.
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Mpieq=M, P P P
M, /2

WZM *CL %

Mpan=PL/4-M,/2

NS

PL/4

L2 L2 L2 L2 L2 L2
L L L

2nd step: hinge at fixed-end = System 1 + System 2

Figure 11.2 — Propped-cantilever centrally loaded - step 2: hinge at fixed-end
According to Figure 11.2, system maximum load P, is reached when the mid-span moment

Mspan equal the plastic moment Mp::

PL M, N 6M
T2 Maeving =y

pl

The rotation at the hinged-end is computed as the sum of the rotation from systems 1 and 2.

P> ML SM L
0 = ——"— giving for P=Pp 6 =———
16EI  6EI SV T T oa gy
pE M p,Lz
As well for the vertical displacement at mid-span: f = ASE] - 6] giving for P = Py
2
LML
> 16EI
As a summary:
1t step 2" step
16 M oM
Load P P1 e Pl — pl
3L g L
Moment at fixed-end Mjeq M ol Mpl
SM
Moment at span Myyq, M. an = p o M ol
M L SM L
Rotation at hinged end [ Hl £ 92 =P
6E1 24FE1
S ‘ M I? M 1L2
Vertical displacement at mid-span f f1 =—F fz =2
144E1 16E1
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11.2.2 Propped-cantilever off-centrally loaded

pl
P = 7 11.2
Ist step:
M, —~4P1/27 P
Z
MpanT-14P1/81
2L73 L3
L
Ist step

Figure 11.3 — Propped cantilever centrally loaded - step 1

Maximum moment is reached at the span (at the position of the point load)

14PL
Mc an =T = M /5
i 81 P
81M
The loading corresponding to Mpan = M is then B, = 4L and the moment at fixed-end
oM ,
M fixed = 7p
PL 3M L
Rotation at the hinged end is given by &= TE] ; and for the load P1, 0, = Y
o , . 20PC 10M 17
The vertical displacement at mid-span is f = m; and for the load P1, f, = h89—EI

2nd step: the first hinge is reached at the load point position giving the following moment

distribution represented in Figure 11.3.
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Mﬁxed P
7
A
Ms an:Mp RB
2L/3 L/3
L

2nd step: hinge at span

Figure 11.4 — Propped cantilever centrally loaded - step 2: hinge at span

According to Figure 11.4, and in order to compute the system maximum load Py, the support

3IM
L

pl

. . . L
reaction Rz at the hinged end is computed: Rj g =M o thus Ry =

Then the moment at the fixed-end is calculated and equalled to the plastic moment M

M 2L Ry L=M,, giv oM,
fived = P ‘?_ s L =M, giving the system peak load P, = I
3M ,

The load increment AP is then calculated: AP = sz -B = 4L

The beam deflection increment at the hinged-end is computed as for a cantilever of span L/3

shown in Figure 11.5.

2
P(%4L) aM 1
Af = —2=—"— giving for AP: Af =———— ; hence the total displacement

3EI 189E1
Py 14M I
= + =

2o 189E1
AP
%
2L/3

Figure 11.5 — Propped cantilever centrally loaded — considerations for the calculation of the additional deflection
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The rotation is then computed: & = arctan(

3M L

12M L
92 = arctan £ +
189E1

As a summary:

14E1

3A
Lf j + 6, giving

1%t step 2™ step
8IM oM
Load P R _ pl = pl
14L b L
6M
Moment at fixed-end Mjyeq fixed = — 2 M pl
fixe 7
Moment at span Mya, M Pl M pl
3IM L 12M L\ 3M L
Rotation at hinged end [] 01 = £ 92 = arctan o + o
14E1 189ET 14E1
Vertical displacement at mid- ~ 10M pLz B 14M » le
span.f ' 189EI * 189EI
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11.3 APPENDIX 3 — Detailed experimental results

11.3.1 Geometrical dimensions of tested specimens

Figure 11.6 — Cross-section dimensions

b
(( A
I
t
\= /)

Table 11.1 — Measured parameters

hi hy hs b b2 bs ti t2 t3 ts ts t6 t7 ts to tio ti ti2
Test #
[mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [mm]
149.50 | 149.26 | 150.37 | 99.91 |99.94 |100.13|8.32 |820 |842 |838 |826 [827 |820 |84l |875 |84l |821 |836
: 149.36 | 149.16 | 149.97 | 100.04 | 99.85 |99.79 |8.74 |7.78 |8.17 |827 |844 |8.62 |853 [826 |851 [837 |815 |8.28
179.00 | 179.09 | 179.75 | 78.25 | 78.48 | 79.05 |4.97 |4.66 |4.56 434 |4.68 [4.59 |5.02 [496 |4.60 |506 |539 |534
? 179.80 | 179.09 | 179.38 | 78.54 | 78.22 | 78.58 |4.44 |4.66 |4.77 |483 |4.63 [4.17 |4.57 [4.64 |476 |503 |533 |5.16
149.20 | 148.63 | 148.93 [ 99.14 |99.32 | 99.21 |5.64 |542 |4.77 |5.08 |5.15 [5.15 |555 [527 |557 [538 |523 |544
; 149.45 | 148.59 | 149.01 [ 99.10 | 99.08 |99.15 |4.89 |538 |521 [529 |526 [4.75 |579 |[546 |536 |[5.11 |5.03 |5.15
219.50 | 219.10 | 218.90 | 120.54 | 120.58 | 120.72 | 6.42 | 6.47 | 6.38 [6.38 |6.18 [6.19 |6.76 |6.45 | 630 |6.51 |6.23 |6.41
! 219.70 | 218.80 | 219.50 | 120.62 | 120.48 | 120.63 | 6.15 | 6.29 | 6.46 [6.19 | 649 |645 |6.23 [6.18 |6.13 |6.65 |6.78 |6.59
218.00 | 216.90 | 217.90 | 120.89 | 120.91 | 120.82 | 6.28 | 6.08 | 6.05 [6.57 | 6.49 |6.54 |6.60 |6.55 |6.59 |[630 |6.28 |6.42
: 217.80 | 216.80 | 217.90 | 120.64 | 120.60 | 120.61 | 6.40 | 6.38 |6.34 [6.27 |6.23 [631 |6.81 [6.63 |6.82 [629 |6.13 |6.23
179.55 | 178.82 | 179.24 | 179.67 | 179.85 | 179.67 | 6.97 |6.72 | 6.68 |6.59 |6.40 |6.40 | 694 |6.68 |6.76 |7.17 |7.19 |6.87
¢ 179.55 | 179.51 | 179.82 | 179.75 | 179.35 | 180.26 | 6.99 | 6.43 | 6.37 627 |6.02 |584 |6.59 |[648 |633 |6.64 |6.15 |64l
179.65 | 178.83 | 179.38 | 179.35| 179.20 | 179.39 | 7.97 |7.80 |7.59 |7.98 |7.86 |7.71 |822 |[821 |820 |7.47 |7.38 |7.54
! 179.94 | 179.37 | 179.60 | 179.16 | 179.98 | 179.41 | 8.27 |8.08 |7.99 |7.73 |7.59 |8.13 |8.00 [8.07 |833 |7.51 |7.77 |7.90
200.07 | 201.46 | 200.61 | 200.56 | 202.27 | 200.09 | 5.75 |6.02 |5.83 [6.00 | 591 |6.04 |6.14 [6.01 |582 [594 |577 |596
’ 200.64 | 200.56 | 199.81 | 200.76 | 201.47 | 200.06 | 5.78 |5.74 |5.72 [5.66 |5.73 [572 |5.72 |5.71 |5.76 |581 |5.66 |5.68
150.13 | 148.96 | 149.42 1 99.83 | 99.94 |100.01 |7.54 |7.48 |8.15 830 |800 |[7.60 |802 |7.86 |814 |822 |7.82 |8.67
’ 149.81 | 148.90 | 149.66 | 99.69 |99.84 |99.82 |8.35 [845 |825 [801 |7.81 [836 |860 |[8.19 |8.65 |845 |845 |847
180.02 | 179.88 | 179.70 | 79.89 | 81.35 |80.83 |4.61 |4.27 |4.33 (449 |4.63 |504 |504 [504 |524 |[487 |4.87 |53l
10 179.80 | 178.72 | 179.40 | 78.57 | 78.54 | 79.06 |4.77 |4.49 |4.90 |4.57 |4.39 [438 |5.04 [500 |5.14 [505 |4.96 |4.97
149.14 | 148.04 | 148.78 | 99.61 |99.43 |99.31 |5.55 [550 |531 [548 |537 [4.78 |532 [523 |535 [539 |5.00 |5.14
a 149.79 | 148.97 | 150.05 | 99.46 | 99.46 |99.61 |4.93 (493 |4.78 |4.89 |4.21 |[S5.11 |537 [527 |540 [495 |4.85 |4.89
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219.50 | 219.20 | 219.40 | 120.67 | 120.88 | 120.74 | 6.72 | 6.30 | 6.40 [6.68 |6.53 |6.28 |6.50 |[6.20 |6.36 |6.69 |6.55 |6.75
= 219.50 | 219.40 | 219.40 | 120.79 | 121.16 | 120.92 | 6.56 | 6.46 |6.41 |6.25 |6.12 |6.14 |6.54 | 649 |6.59 [6.05 |6.10 |6.52
179.76 | 178.77 | 179.62 | 180.34 | 179.48 | 180.92 | 6.69 | 6.42 |6.42 |6.81 |6.56 |6.55 [6.45 |646 |6.54 |[7.06 |7.06 |7.09
. 179.72 | 179.10 | 179.63 | 179.81 | 179.37 | 179.68 | 6.52 | 6.40 |6.34 |7.19 |7.11 |7.07 |6.51 [6.59 |6.87 |622 |6.53 |6.81
179.40 | 178.80 | 179.35 | 179.57 | 179.12|1 179.56 | 8.10 |7.97 |8.01 |[7.99 |7.78 |8.05 |810 [7.99 |820 [7.85 |7.79 |8.03
1 179.53 | 178.74 | 179.38 | 179.57 | 179.57 | 180.10 | 7.66 |7.34 |7.46 |8.11 |8.17 |829 (813 |7.86 |7.71 [795 |7.69 |7.55
200.14 | 202.13 | 201.64 | 200.28 | 201.62 | 200.35 | 5.96 |5.84 [584 |5.76 |5.70 |579 |5.88 |596 |6.02 [594 |587 |590
& 200.04 | 201.32 | 199.76 | 199.74 | 200.38 | 200.16 | 5.71 |5.73 [5.80 |5.77 |5.74 |5.78 |5.70 |5.70 |5.73 |5.67 |5.67 |5.381
179.23 | 178.75 | 179.58 | 78.63 | 79.11 | 79.53 |4.76 |4.46 |4.75 |4.81 |4.67 [3.98 |4.86 [4.75 |495 [520 |4.95 |492
1 179.25 | 178.72 1 179.61 | 79.05 | 79.51 |78.55 |4.74 | 448 |476 479 |4.69 |421 (483 |4.77 [490 [5.02 |[4.93 |494
149.49 | 148.04 | 148.79 { 99.89 [99.19 |99.37 |4.94 |520 |5.04 |528 |548 |[492 [5.63 |543 |548 [492 |490 |523
7 149.30 | 148.42 | 148.62 (99.20 | 99.88 |99.39 |4.92 [522 |5.05 [526 |550 [5.13 |542 [545 |523 [494 |5.08 |525
219.60 | 218.49 | 219.20 | 120.38 | 120.58 | 120.39 | 6.58 | 6.41 |6.48 [6.51 |6.39 |6.24 |6.71 |6.63 |6.63 |6.68 |6.31 |6.52
' 219.63 | 218.50 | 219.18 | 120.39 | 120.57 | 120.41 | 6.56 | 6.38 |6.50 [6.46 |6.41 |6.46 |6.53 |6.64 |6.61 |[6.70 |6.29 |6.55
179.38 | 179.87 | 179.39 | 180.12 | 179.12 | 179.86 | 7.04 | 6.76 |7.05 |6.48 |6.73 |7.02 [6.66 |6.65 |7.08 |6.35 |6.45 |6.42
" 179.05 | 179.86 | 179.07 | 180.05 | 179.23 | 179.84 | 7.00 | 6.94 | 6.88 |6.66 |6.81 |6.80 |6.61 |6.67 |6.83 |6.57 |6.48 |6.44
179.10 | 179.69 | 179.31 | 179.16 | 179.11 | 179.40 | 8.43 |8.16 |8.24 |7.89 |7.80 |[7.77 |7.83 |7.74 |7.71 |7.78 |7.85 |8.04
20 179.12/| 179.65 | 179.35 | 179.21 | 179.19 | 179.33 | 8.10 |8.22 |8.19 | 791 |7.88 |7.79 |7.79 |7.85 |7.77 |7.83 |7.83 |gqg
179.26 | 178.61 | 178.99 | 79.18 | 79.84 | 79.28 |4.14 |4.30 |4.60 |[4.87 |4.55 [433 |4.89 [496 |4.81 [4.68 |4.56 |4.73
2 179.27 | 178.59 | 179.02 | 79.73 | 79.42 | 79.23 |4.28 |4.33 |4.56 [4.89 |4.50 [4.34 |4.86 [502 |479 [4.70 |4.53 |4.96
219.50 | 218.46 | 219.10 | 120.50 | 120.71 | 120.77 | 6.67 | 6.53 | 6.59 [6.39 | 641 |6.28 |6.56 |6.43 |6.74 |6.48 |6.51 |6.57
2 219.54 | 218.55 | 219.05 | 120.51 | 120.69 | 120.80 | 6.61 | 6.56 [6.53 |6.34 | 643 | 634 |[6.54 | 640 |6.76 |[6.45 |649 |6.59
180.00 | 179.89 | 180.14 | 178.88 | 179.41 | 178.91 | 6.75 |6.72 |6.48 |645 | 628 |626 [6.83 |6.74 |6.49 [6.57 |6.50 |6.35
2 180.05 | 179.92 | 180.10 | 178.93 | 179.46 | 178.87 | 6.93 | 6.49 |6.50 |642 |6.26 |628 [6.77 |6.77 |6.43 [6.52 |6.52 |6.41

11.3.2 Tensile tests

Table 11.2 reports on the material properties from tensile tests: Young’s modulus E, tensile
yield strength f; and ultimate yield strength f. ... (For the determination of the average Young
modulus E, Values higher than 220000 and lower than 190000 have been disregarded).

A Z
Face F1
— Weld
B ///
Q
z Y

Tensile coupon

Face F1

Figure 11.7 — Locations of the tensile coupons
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Table 11.2 — Geometric dimensions and material properties of tested profiles

. Coupon S S E & &2 &
Section reference # .
location [N/mm2] [N/mm2] [N/mm2] [%] [%] [%]
flange 1 383.65 548.99 B -~ -~ B
web 1 394.77 567.13 1976438.92 0.20 1.34 11.53
RHS_150*100*8_SS
- - flange 2 395.02 548.46 196012.99 0.20 1.80 14.66
web 2 391.24 551.61 231637.92 0.17 1.47 13.98
flange 1 385.37 525.93 194288.19 0.20 1.88 24.49
web 1 393.08 555.44 1.44 15.43
RHS_180*80*4.5_SS = =
- - flange 2 390.19 540.39 166549.90 0.23 1.77 15.35
web 2 388.14 535.74 202720.00 0.19 1.95 12.64
flange 1 422.04 571.52 215135.82 0.20 1.74 21.88
web 1 431.11 594.62 235298.12 0.18 1.50 9.44
RHS_150*100*5_SS
- - flange 2 419.58 573.77 215784.47 0.19 1.78 14.10
web 2 406.57 551.95 198805.20 0.20 1.88 14.16
flange 1 389.51 536.33 206278.63 0.19 1.74 17.72
web 1 401.74 537.67 206394.77 0.19 1.60 21.88
RHS_220*120*6.3_SS*
- - flange 2 386.78 531.31 216536.39 0.18 1.78 14.07
web 2 398.88 532.32 206519.83 0.19 227 14.26
flange 1 392.83 537.52 202589.20 0.19 1.66 13.42
web 1 394.21 536.33 208539.30 0.19 1.63 19.80
RHS_220*120%6.3_SS
flange 2 398.03 530.67 216060.80 0.18 2.15 14.32
web 2 400.83 539.09 217159.55 0.18 2.06 13.60
flange 1 392.72 531.42 210915.62 0.19 2.08 18.49
web 1 385.21 531.52 212558.95 0.18 1.54 11.76
SHS_180*6.3_SS
flange 2 402.98 516.18 227400.14 0.18 2.11 13.48
web 2 391.75 516.25 176739.05 0.22 3.04 15.78
flange 1 395.83 546.29 208368.11 0.19 1.73 25.06
web 1 378.08 527.03 204513.54 0.18 1.64 16.11
SHS_180*8_SS
flange 2 381.16 526.55 209586.10 0.18 1.68 15.24
web 2 380.97 526.19 330469.60 0.12 1.70 13.47
flange 1 502.00 608.15 192957.19 0.26 not applicable 10.79
web 1 460.00 562.80 154402.82 0.30 not applicable 11.63
SHS_200*6_SS_3P -
- - - flange 2 480.00 550.92 214596.13 0.18 not applicable 26.79
web 2 484.00 556.67 279001.00 0.17 not applicable 26.79
flange 1 403.11 562.85 172131.31 0.23 1.68 9.48
web 1 381.73 539.81 199588.00 0.19 1.68 13.11
RHS_150*100*8_PR_C
- - - flange 2 399.79 552.28 183481.38 0.22 1.81 14.56
web 2 401.18 555.99 206946.45 0.19 1.70 13.30
flange 1 390.10 535.64 191034.35 0.20 2.00 21.15
web 1 385.40 525.22 213568.56 0.18 1.73 25.14
RHS_180*80*4.5_ PR_C
flange 2 374.45 519.99 177444.79 0.21 2.12 16.18
web 2 390.75 528.37 213406.79 0.18 1.29 _
flange 1 413.43 558.94 B -~ -~ B
web 1 393.43 544.35 225522.77 0.17 1.64 18.27
RHS_150*100*5_PR_C
- - - flange 2 407.31 545.11 210685.60 0.19 232 15.29
web 2 401.39 540.87 190517.03 0.21 2.13 14.90
flange 1 396.90 538.90 212755.32 0.19 1.52 23.65
web 1 387.56 533.91 192962.53 0.20 1.58 18.23
RHS_220*120%6.3_PR_C
- — ~ | flange2 390.90 520.41 198995.53 0.20 2.16 12.80
web 2 396.54 534.15 205047.30 0.19 2.07 13.98
flange 1 386.34 532.02 200670.53 0.19 1.53 18.19
web 1 390.68 533.34 203457.07 0.19 1.54 22.46
SHS_180*6.3_PR_C
- - - flange 2 395.85 533.39 211953.33 0.19 2.07 14.65
web 2 390.74 530.25 211195.84 0.19 2.04 15.18
SHS_180*8_PR_C flange 1 390.89 545.42 215722.81 0.18 1.37 14.22
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web 1 381.28 527.27 212070.75 0.18 1.51 20.22
flange 2 384.74 523.52 20716221 0.19 1.94 14.37
web 2 382.36 521.94 218513.61 0.17 1.97 14.78
flange 1 396.38 555.14 208390.32 0.19 1.89 23.69
web 1 373.69 529.95 1.53 22.76

RHS_180%80*4.5 PR_O = =

- == | flange 2 388.90 540.87 182761.10 0.21 1.82 15.04

web 2 387.41 52232 202438.46 0.19 2.17 12.39
flange 1 387.38 527.88 199415.47 0.19 1.75 21.03
web 1 402.96 544.20 223101.85 0.18 1.54 24.08

RHS 220%120%6.3_ PR_O
flange 2 385.28 523.84 207146.46 0.19 1.96 14.73
web 2 398.67 536.82 211724.40 0.19 2.10 14.48
flange 1 381.30 520.17 205047.56 0.19 1.60 17.42
web 1 388.69 536.80 183180.57 021 1.55 20.94

SHS_180*6.3 PR O
flange 2 388.11 531.63 213714.67 0.18 1.93 14.55
web 2 385.63 527.22 207164.35 0.19 1.99 15.43
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11.3.3 Back-calculated moment from strain measurements

Calculations were based on the Bernoulli assumption (i.e. that plane sections remain plane and
normal to the deflected neutral axis) which lead to the conclusion that the deformation diagram
remains linear. The strain on the compression flange was taken equal to that of the tension
flange (where the strain gauge was positioned) and the strain diagram was assumed linear in

between.

11.3.3.1 Analytical method

After the strain diagram is determined, the corresponding stress diagram was then calculated
from the measured material law of the specimen as shown in Figure 11.8. Then, it was integrated
around the major plastic axis of the section as detailed in the formulas below in order to

determine the moment M.

b <€, £,<e<g
- N
=&/ L EE 12
h
t Iy h)
h K
hy hpl
T = £=¢,
N tp‘
CSCY £y<£§£v2 8>8v2
Step 1: e<g, Step 2: Ey<ESE )
, b , o<ty , o=f.
N\
N — —\
\.ﬁp[ 12
¢ hy hpl
h 4 {
h
pl
\'\
N— tp\i t)l —
o<t oty yT=m’
Step 1: e<g, Step 2: ey<e<e, Step 3: £8,,

Figure 11.8 — Reconstruction of the stress diagram from the strain measurements
Basic assumptions:

3

t

+b-t><(%j +(h-2t)  —

12

bt
I =2-
’ 12
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) (22)

h
- g, A and 7, = %— h,

y
&

I
Stepl: €<&,: W, =—and M, =W, -(E-¢)

12
Step 2: 8y<838y2
Ift, <t
3 2
b h t h 1
— _ pl o Tpl _ ]
Wy=1, 2{ 12 +1,-b [2 2}} h, and Wp,—2-(tpl-b [2— %j
Ift, >t

M, = (We/ + Wpl )'fy

Step2: €>¢&),
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W, = 2.&@% + (2-(h/2—f)'t'(%m

W, =2 0 tb(h—’j2+(h/2 gl (/ hy =)t h+(h/2_h’”_t)2 (hj

12 2 2

M., :sz -fy+ w,, E, -(5—5y2)

Finally, the resistant moment is nomalised by the plastic moment calculated for the approximate

section: M, / M

pl,app

11.3.3.2 Numerical
The moment M was also computed using a specially developed Matlab tool which is capable to
take into account the effect of the cross-section corners. The cross-section plates elements and

corners are discretized into n elements as shown in Figure 11.9 for example.

Figure 11.9 — Discretization of a RHS by Matlab tool
After the strain diagram is determined, the stress corresponding to each meshing element is then
calculated from the measured material law of the specimen. Then, the stress of each element is
integrated around the major plastic axis of the section in order to determine the major axis

moment M.
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11.3.4 Summary of 3-point bending results and numerical validation

11.3.4.1 RHS_220x120%6.3_SS_3P*

Specimen name

Nominal Details

Average measured material
properties

RHS_220x120x6.3_SS_3P*

Shape: Rectangular Hollow
Section
Nominal Steel grade:

fy=1394.2 N/mm?
Jfu=534.4 N/mm?
E =208932 N/mm?

223

222

123

+2.2 mm

221

122

220
219 -
218 £=
217 -
216 -
215

hy h hs hy  hs he

Average h =219.25 mm

121
120
119 £
118 1
117 1+
116 1
115

by b, bs by bs be

Average b =120.60 mm

355 N/mm? &=0.19%
Load case: 3-point bending &2=1.85%
h=200mm b=120mm t=6.3mm | ¢, =16.98 %
Fabrication process: Hot-
rolled

h [mm] b [mm]

4 ta

Average t = 6.39 mm

RHS_220%x120%6.3_SS_3P* at failure
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220x120%6.3_SS_3P* at failure
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11.3.4.2 RHS_220x120x6.3_SS_3P

Specimen name

Nominal Details

Measured material properties
(average)

RHS_220x120x6.3_SS_3P

Shape: Rectangular Hollow
Section

Nominal Steel grade:

355 N/mm?

Load case: 3-point bending
h=200; b=120; =6.3
Fabrication process: Hot-
rolled

fy=396.5 N/mm?
Jfu=535.9 N/mm?
E =211087 N/mm?

&=0.19 %
52=1.88 %
& =15.28 %

h [mm]

223

b [mm]

t [mm]

222

123

+22mm

122

221

Average h =217.55 mm

121
120
119 &
118 1
117 +
116 +
115

by b by by bs  bg

Average b = 120.75 mm

4 by

Average t = 6.40 mm

RHS_220x120x6.3_SS_3P at failure
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MM, ]
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0.6 1
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Impl Imp2 Imp3 Imp4 ImpS Imp6 Imp7

Loadl

Load2 Load3

Mesh2 Mesh2

11.3.4.3 RHS_150x100x8_SS_3P

Specimen name

Nominal Details

Measured material properties
(average)

RHS_150x100x8_SS_3P

Shape: Rectangular Hollow
Section
Nominal Steel grade: 355

fy=391.2 N/mm?
= 554.0 N/mm?
E =205737 N/mm?

N/mm? 5=0.19 %
Load case: 3-point bending | g,=1.49 %
h=150mm b=100mm t=8mm | ¢, =12.93 %
Fabrication process: Hot-
rolled

153 fmml 103 2 Lmm] 1o Hmml

152 + 1.5 mm 102

151 ] 101 1 mm_| 9

150 100

149 -
148 -
147 -
146 -

145
hy hy h; hy hs he

Average h = 149.60 mm

99
98 1
97 +
96 1
95

by by by by bs b

Average b =99.94 mm

t g

Average t = 8.35mm

RHS_150x100x8_SS_3P at failure
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150x100x8_SS_3P at failure

Yield pattern of RHS

Test data
FE results

Test peak load
FE peak load
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