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4 Soft data and the hard pomeron
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We show that the introduction of an additional, hard, singularity in soft forward amplitudes enables one to

improve considerably the fits using a simple-pole structure for the soft pomeron.

1. Introduction

One of the central questions in QCD concerns
the continuation of short-distance results to the
soft region or, in other words, the extension of
the large-Q2 perturbative description of the data
(F2, F c

2 ,...) to the non-perturbative Q2 = 0 do-
main (σtot, ρ). There are several phenomenologi-
cal models that already attempt to describe such
a transition [1,2]. Most of them assume a rise
in total cross sections proportional to log2(s/s0),
which describes best the data, both for σtot and
ρ [3]. Such a behaviour in s − or 1/x − can be
used as an initial condition for evolution equa-
tions [4], and is even a very good approximation
to the result of the evolution [5]. Such a rise can
be obtained via a strong unitarisation of a BFKL-
like singularity [2].

Following [6], we want here to explore another
possibility: we shall assume that “bare” ex-
changes of Regge trajectories account for most
of the elastic amplitude, and that unitarisation
and cuts have a small, negligible, effect. This is
the standard assumption that lead Donnachie and
Landshoff [7] to a very simple and successful de-
scription of soft scattering, based on the exchange
of two degenerate leading meson trajectories and
of a soft pomeron. Recently, it was however found
that such a simple singularity structure does not
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allow a good description neither of soft forward
data [3] nor of F2. In the latter case, Donnachie
and Landshoff [8] have shown that the introduc-
tion of a second pomeron with a large intercept
αh ≈ 1.4 is consistent both with the evolution
equations and with the data. We want here to
address the former question, and show that the
introduction of the same hard singularity makes
the fit to σtot and ρ as good as that based one a
log2(s/s0) rise.

2. Improved analysis

In the analysis of ref. [3], models based on a
simple-pole pomeron were dismissed mainly be-
cause they could not describe the real part of the
amplitude well, or equivalently because the fit to
ρ, the ratio of the real part to the imaginary part
of the elastic hadronic amplitude, had an unac-
ceptably high χ2. Hence we have improved the
treatment of the real part of the amplitude by in-
troducing the following refinements:
• We include and fit the subtraction constant
present in the real part of the amplitude because
of rising C = +1 contributions;
• We use integral dispersion relations down to the
correct threshold and, at low energies (for which
the analytic asymptotic model is not correct), we
use (a smooth fit to) the data for σtot to perform
the dispersion integral.
• We use the exact form of the flux factor F =

1
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Figure 1. Difference between ρ values fitted with
(plain) and without (dashed) a hard pomeron, as-
suming all singularities are simple poles.

2mpplab and Regge variables s̃ ≡ s−u
2

propor-
tional to cos(θt) instead of their dominant terms
at large-s2.

Following [3], we fit total cross sections and ρ
for pp, p̄p, π±p and K±p, and total cross sec-
tions for γp and γγ in the region 5 GeV ≤ √

s.
Furthermore, as we are using simple poles, we use
Gribov-Pomeranchuk factorisation of the residues
at each simple pole to predict the γγ amplitude
from the pp and γp data [9].

If we define the hadronic ab amplitude as Aab =
ℜab + iℑab, we obtain the total cross section as

σab
tot ≡

1

2mbplab

ℑab (1)

with plab the momentum of particle b in the a rest
frame. The real part of the amplitude can then
be obtained from integral dispersion relations:

ℜab = Rab

+
E

π
P

∫ ∞

ma

[

ℑab

E′ − E
− ℑab̄

E′ + E

]

dE′

E′
,(2)

2In the γγ case, we use F = s
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Figure 2. Fit to the γγ total cross section using
Gribov-Pomeranchuk factorisation.

where E is the energy of b in the rest frame of a,
P indicates that we have to do a principal-part
integral, and Rab is the subtraction constant.

The models that we consider are defined by the
following equation:

ℑab ≡ s1

[

ℑR+

ab

(

s̃

s1

)

+ ℑS
ab

(

s̃

s1

)

∓ℑ−

ab

(

s̃

s1

)]

, (3)

with s1 = 1 GeV2, and the − sign in the last term
for particles. For the two reggeon contributions,

we use simple-pole expressions ℑR+

pb = Pb

(

s̃
s1

)α+

and ℑ−

pb = Mb

(

s̃
s1

)α
−

. For the pomeron contri-

bution, we allow two simple poles to contribute:

ℑS
pb = Sb

(

s̃

s1

)αo

+ Hb

(

s̃

s1

)αh

(4)

For comparison, we also consider expressions cor-
responding to a dipole or a tripole:

ℑS
pb = Db

s̃

s1

ln
s̃

sd

, (5)

ℑS
pb = Tb

s̃

s1

[

ln2 s̃

st

+ t′b

]

. (6)

3. Results

The improved treatment of ρ leads to a better
fit in all cases (a dipole pomeron (5) reaches a
χ2/dof of 0.94 and a tripole pomeron (6) one of
0.93, whereas they were both 0.98 in the standard
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analysis [3]). However, if we use only one simple
pole for the pomeron (i.e. if we set Hb = 0 in
(4), we still cannot get a fit comparable to those
obtained using (5, 6).

Parameters value

αh 1.45 ± 0.01
Hp 0.10 ± 0.02
Hπ 0.28 ± 0.03
HK 0.30 ± 0.03
Hγ 0.0006 ± 0.0002

αo 1.0728 ± 0.0008
Sp 56.2 ± 0.3
Sπ 32.7 ± 0.2
SK 28.3 ± 0.2
Sγ 0.174 ± 0.002

α+ 0.608 ± 0.003
Pp 158 ± 2
Pπ 78 ± 1
PK 46 ± 1
Pγ 0.28 ± 0.01

α− 0.473 ± 0.008
Mp 79 ± 3
Mπ 14.2 ± 0.5
MK 32 ± 1

Rpp -164 ± 33
Rpπ -96 ± 21
RpK 3 ± 26

Table 1
Parameters obtained in the fit from 5 to 100 GeV.

However, we found that the inclusion of the sec-
ond singularity in (4) has a dramatic effect: the
χ2 drops from 661 to 551 for 619 points, nomi-
nally a 10 σ effect! More surprisingly, the new sin-
gularity has an intercept of 1.39, very close to that
obtained in DIS by Donnachie and Landshoff.
However, as was already known [10], the new tra-
jectory, which we shall call the hard pomeron, al-
most decouples from pp and p̄p scattering. Never-
theless, it improves considerably the description
of πp and Kp amplitudes, and parametrisation
(4) becomes as good as (6).

The decoupling in pp and p̄p scattering can eas-
ily be understood: any sizable coupling will pro-
duce a dramatic rise with s, and only pp and p̄p

data reach high energy. For these data, the hard
pomeron contribution will surely need to be uni-
tarised (see however [11] for a different opinion).
To get a handle on the hard pomeron parame-
ters, it is thus a good idea to fit to lower energies
first. We choose to consider the region from 5 to
100 GeV (which includes all the πp and Kp data).
We checked that the parameters describing the
hard pomeron component are stable if we slightly
change the region of interest, by augmenting the
minimum energy to e.g. 10 GeV, or by decreasing
the maximum energy to e.g. 40 GeV.

Hence our best estimate for the parameters de-
scribing the hard pomeron is shown in Table 1,
and some of the fits are shown in Fig. 1.

As can be seen, the parameters are in agree-
ment with those describing DIS, although the soft
pomeron is a bit softer than assumed in [8]. In
particular, we obtain for the hard-pomeron sin-
gularity

αh = 1.45 ± 0.01. (7)

However, a new and unexpected hierarchy of cou-
plings is needed. Writing Hab = ha hb, we obtain:

1 ≈ hK ≈ 1.1hπ ≈ 3.2hp (8)

Such a hierarchy may be expected in dipole mod-
els [1], but it is stronger than expected. Size ef-
fects may thus not be sufficient to account for it.

The hard pomeron is probably not a simple
pole, but it must be close to it: as we obtain the
γγ cross section via Gribov-Pomeranchuk factori-
sation, we indeed test the analytic nature of the
singularity [9]. The result is shown in Fig. 2. One
can see that the LEP data are compatible with
our results, and that we prefer a lower value, such
as that obtained using PHOJET. Also, our value
of the coupling of the hard pomeron to protons
must be an upper limit: bigger values would lead
to too small a γγ cross section.

To obtain a fit to higher energies, one must
surely unitarise the hard pomeron contribution,
as it violates the black-disk limit around

√
s =

400 GeV. The way to do this is far from clear,
especially as there can be some mixing with the
other trajectories. We have shown in [6] that it
is possible to find a unitarisation scheme which
produces a good description of the data for all
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Figure 3. Relative contribution of the various
terms of the amplitude, compared with the C =
+1 part of the amplitude (“tot”) in the pp case.
The dashed curve is for a hard pole, and the plain
curves for the unitarised form.

energies. Its contribution, shown in Fig. 3, is al-
ways smaller than 25% of the total cross section.

4. Outlook

In conclusion, we have shown [6] that it is pos-
sible that the hard pomeron is present in soft data
and that this object may be similar to a simple
pole for

√
s ≤ 100 GeV. This means that the bulk

of the simple-pole phenomenology can be kept in
the presence of a hard pomeron. The latter how-
ever will bring corrections at large s, large Q2 or
large t. The surprising hierarchy of couplings (8),
as well as the smallness of the residues, indicates
that our results will need confirmation. It may be
worth noting here that we obtain similar results
if we exclude the ρ data from the analysis. Also,
some evidence for a hard pomeron may also be
found in elastic scattering data [12].
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