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Introduction (1)
Metal matrix composites (MMCs)

Composite = a material, such as reinforced concrete, made of
two or more distinct materials  (Collins)

Composite = matéeriau formé de plusieurs composants
élémentaires dont I'association confere a I'ensemble des
proprietés qu'aucun des composants pris séparement ne
possede (Larousse)

= New properties that none of the constituents would exhibit
on its own.



Introduction (2)

Metal matrix composites (MMCs)

Self lubricating material
exhibiting simultaneously
a low friction coefficient
and a low wear rate:

hBN and MoS, in SS
316L
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[Mahathanabodee, 2014]

Nano Hydroxyapatite coating on SS 316L
Compatibility ensured through a graded SS
316L + nHA composite layer

[Wei, 2015]
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Introduction (3)
(Powder-based) additive manufacturing of MMCs
* Allows the production of composite part with complex shape

e Potential for the production of 3D preform with optimised
out-of-plane properties

« Limited to particulate reinforcements
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[Quan et al., 2015, see also Kumar & Kruth, 2010 and Mertens & Lecomte-Beckers, 2016]



Introduction (4)
(Powder-based) additive manufacturing of MMCs

« Laser Beam Melting
« Well suited for the production of MMCs with complex shapes

* Requires the pre-mixing of the reinforcement particles with

the metallic powder

— Risk: reinforcement particles may settle down due to difference in

density leading to poor compositional control.
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Introduction (5)
(Powder-based) additive manufacturing of MMCs

« Laser Cladding
* Not so well suited for the production of MMCs with complex

shapes
* Pre-mixing of the reinforcement particles and metallic
powder Is possible but not compulsory

« Allows the production of Functionally Graded Materials
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[Bhattacharya et al., 2011]



100 %Co

10 wt.%Ti + 90 wt.%Co

J0wt.%Ti+ 70 wt.%Co

50 wt.%Ti + 50 wt.%Co

70wt. % Ti + 30 wt.%Co

90 wt.%Ti + 10 wt.%Co

Ti-6Al-4V substrate

[Dutta Majumdar et al., 2009]

Introduction (6) — Laser Cladding
Functionally Graded Materials
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Introduction (7) — Laser Cladding
Complex thermal history
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Introduction (8) — Laser Cladding
Complex thermal history

« Very high cooling rates
— Build up of high internal stresses
= Cracks, Deformations

v o

[N.Hashemi, ULg]

— Thermal history may vary locally as a function
of the position inside a part
— Microstructure may vary locally Microsegregation of Cr in
— Mechanical properties may vary locally! stainless steel, LBM

ABCDEFGHIJKLMNOPQRSTU HV,

Ti6AI4V, LC
Local hardness
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[Paydas et al. (2015)]

— Qut-of-equilibrium microstructures
e.g. chemical segregation at a very local scale |

MAG: 2500 x HV: 15.0 kV WD: 10.5 mm

[Mertens et al., 2014] 10
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Introduction (9)
Objectives

Investigating the processing of SS 316L matrix composites
— With SiC particles
— With WC patrticles

» Assessing the feasibility
 Requirements concerning the powders
o Stability of the reinforcement particles?

* Role of interfacial reactions, dissolution and secondary
precipitation?
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e« SS 316L as substrate

e Irepa Laser Cladding System
- Laser power = 500 — 680 W 16 —47 %
- Travel speed = 270 — 190 mm/s,
- Layer thickness = 700 um

100 pm
W —

Thick (15 layers) deposits



Experimental procedure (2)

e Microstructural observations were carried out by SEM, after
etching with aqua regia (i.e. 55% HCI + 20% HNO,
+ 25% methanol)

o 20 kg Vickers hardness tests were used to assess local
variations in microstructure and properties
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Results and discussion (1)
Reference SS 316L deposits
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Heat accumulates during deposition, leading to some
microstructural coarsening and loss in hardness

[Paydas et al., 2015]
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[Mertens et al., 2017]

Typical fine cellular
microstructure
~10pum

Hardness varies as
a function of
position, in
correlation with local
variations of the
thermal history
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Results and discussion (2)
SS316L + SiC

Hardness [HV20]
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» Extensive dissolution of SiC
during laser cladding

* Interdendritic spacing ~3-4 pm

= Microstructural refinement

[Mertens et al., 2017]

Hardness increases with SiC content
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Improving the cavitation erosion resistance
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« Optimised cavitation erosion resistance is obtained after complete dissolution
of WC particles and reprecipitation of an extremely fine structure

[Lo et al, 2003]
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Results and discussion (3)
SS 316L + WC

0 kY WD: 9.6 mm

e Partial dissolution of WC

e Secondary precipitation of WC, W,C and other
carbides (M,;C;, M,C; or M;C) in a fine lamellar
structure

 Interdendritic spacing: 2-4 um
Microstructural refinement [Mertens et al., 2017]
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Addition of particles for microstructural refinement
NiCoCrAlY +

o

nano CeO,

<

e

<

= Microstructural refinement [Wang et al., 2010]
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Results and discussion (4)
SS 316L + WC

« Cracks occur at high
WC content (>36%)

e Sometimes linking two
or more adjacent
particles

 Due to thermal
mismatches between
WC and matrix

7011
SF MAO ' B2Sxy HV- 100 &V e I7

[Mertens et al., 2017]
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" Results and discussion (5)

SS 316L + WC
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Hardness presents a complex variation pattern as a function of both
position and WC content

[Mertens et al




Results and discussion (6)

SS 316L + WC

Hardness presents a
complex variation pattern
as a function of both
position and WC content
Combined effect of
particles, precipitates

and solid solution
strengthening

Higher laser absorptivity of
WC compared to SS 316L
= WC content influences
the local thermal history

[Mertens et al., 2017]
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Heat balance during the processing of FGMs
Graded Ti6Al4V + TiC

w— P
Optim Zed FGM
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Friction
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FGMs Ti6Al4V + TiC is
have a better wear
behaviour when the
processing parameters
are varied as a function
of the TiC volume
fraction

[Mahamood & Akinlabi, 2015]
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Concluding remarks (1)

e Sound composite coatings were made by laser cladding
Stainless Steel 316L + SiC or WC particles

o Extensive dissolution of SiC vs partial dissolution of WC

 Hardness of both types of composite coatings was
significantly enhanced in comparison with reference SS
316L coating, due to strengthening by the surviving
particles, but also by secondary precipitates and solid
solution

 High WC contents led to cracking of the WC particles due
to thermal stresses arising between the particles and the
matrix
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Concluding remarks (2)

e Laser Cladding is a powerful technique for the production
of Metal Matrix Composites and Functionally Graded
Materials (FGMS)

 Thermal history is complex and may vary locally as a
function of position inside a part.
= Microstructure may vary locally
— Mechanical properties may vary locally

 The volume fraction of reinforcement particles is an
Important parameter that controls the microstructure
directly (chemistry) and indirectly (i.e. by influencing the
thermal history)
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