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Abstract This work provides a unified treatment of arbitrary kinds of microscopic
boundary conditions usually considered in the multi-scale computational homog-
enization method for nonlinear multi-physics problems. An efficient procedure is
developed to enforce the multi-point linear constraints arising from the micro-
scopic boundary condition either by the direct constraint elimination or by the
Lagrange multiplier elimination methods. The macroscopic tangent operators are
computed in an efficient way from a multiple right hand sides linear system whose
left hand side matrix is the stiffness matrix of the microscopic linearized system
at the converged solution. The number of vectors at the right hand side is equal to
the number of the macroscopic kinematic variables used to formulate the micro-
scopic boundary condition. As the resolution of the microscopic linearized system
often follows a direct factorization procedure, the computation of the macroscopic
tangent operators is then performed using this factorized matrix at a reduced
computational time.

Keywords Computational homogenization · Boundary conditions · Multi-
physics · Tangent operator

1 Introduction

The complex microstructure of heterogeneous materials and the complex physical
behaviors of their constituents lead to a complex physical response at the structural
scale. The accurate evaluation of the microstructure evolution is mandatory to
predict the structural response and to allow the material tailoring, in which the
required material properties can be obtained by manipulating the microstructure.

With the development of the finite element method (FEM) for problems gov-
erned by partial differential equations (e.g. mechanical, thermal, electrical, mag-
netic problems), the numerical simulation of heterogeneous systems can be directly
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Fig. 1 Multi-scale computational homogenization strategy for heterogeneous materials

carried out by considering all local heterogeneities. However, if the characteristic
size of the heterogeneities is much smaller than the structure dimensions, the cal-
culation could not be performed since an enormous numerical system arises. An
effective remedy, known as computational homogenization method (so-called FE2),
was pioneered in [1–5] to predict the effective properties of a material possessing
complex microstructures, see also the review in [6] for more details. The basic idea
of the FE2 is to obtain macroscopic constitutive relations from the resolution of
a microscopic boundary value problem (BVP) defined on a representative volume
element (RVE) with an appropriate boundary condition as sketched out in Fig. 1.
This technique does not result in the macroscopic constitutive relations in a closed
form but they are always available through the resolution of the microscopic BVPs.

The FE2 method was mainly applied to mechanical problems, see references [1–
5,7–14] as a non-exhausted list. This technique has also received the attention from
other applications including purely thermal problems [15,16], thermo-mechanical
problems [17–19], electro-mechanical problems [20–22], magneto-mechanical prob-
lems [23], electro-magneto-mechanical problems [24,25]. The FE2 strategy relies
on the principle of the separation of scales [6] which leads to assume that the
microscopic BVP can be considered in a steady-state and can be formulated in
a conventional form for mechanical, thermal, electrical, and magnetic parts. The
evolution of the different physical fields (mechanical, thermal, electrical, etc) at the
microscopic level is considered on a RVE, whose characteristic size is small with
respect to the characteristic length of the macro-scale loading, but is large enough
compared to the heterogeneities size so that all essential information of the un-
derlying microstructure is provided in a statistically representative way [9,26–28].
The resolution of an RVE associated to a macroscopic material point can be seen
as a model of the material microstructure: the underlying microscopic BVP acts
as a “virtual test” allowing the homogenized material behavior to be estimated.
Therefore, the definition of the RVEs affects the accuracy in the modeling of the
heterogeneous materials. In case of microstructure periodicity, the RVE can con-
sist in one or several periodically repeated patterns as it contains all the necessary
information. However, a real material is generally more complex and consists of
different constituents which are randomly distributed. In this case, the RVEs can
be constructed from micro-structural images using either the direct image pro-
cessing [29,30] or from the microstructure reconstruction [31,32]. In general, the
homogenized properties are shown to approach the effective values when increasing
the RVE size with a rate which depends not only on the nature of the underlying
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microstructure (properties of constituents, their distribution, and their interac-
tion), but also on the proper choice of the microscopic boundary conditions [26].
Besides being used to extract bulk effective properties, the RVEs can be considered
to study damage and failure, in which case their representativeness is also linked
to the objectivity of the strength, fracture toughness, and traction-displacement
jump softening response [33–37]. As the computation time increases with the RVE
size, it is important to provide a critical size of the RVE allowing to capture the
homogenized behavior at a reasonable computational cost [9,26,28]. However lack
of representativeness of the volume element can also be exploited in order to study
the material uncertainties on Statistical Volume Elements (SVEs) [38,27], allowing
defining meso-scale random fields [39–45], or propagating material uncertainties
to the structural behavior [40,46–48].

In the context of the kinematically admissible FEM, the FE2 framework re-
quires a priori an appropriate microscopic boundary condition, in which the
macro-micro transition (downscaling) is constrained by the macroscopic kinematic
variables. During the micro-macro transition (upscaling), the macroscopic quanti-
ties are evaluated by satisfying the energy consistency statements. Three conven-
tional boundary condition types, i.e. the linear displacement boundary condition
(LDBC), the minimal kinematic boundary condition (MKBC), and the periodic
boundary condition (PBC), are often used [9,7,49,12]. Other possibilities are avail-
able in the literature: e.g. the interpolation-based periodic boundary conditions
(IPBC) [50], which are able to enforce the PBC in a general mesh setting and
surf kinematically from the LDBC to the PBC when the interpolation degree
increases; and the mixed boundary conditions (MBC) which combine different
kinematic boundary conditions (LDBC, PBC, IPBC, and MKBC) on different
parts of the RVE boundary. In the MBC category, the hybrid periodic boundary
condition (HPBC) considered in [51,52,34] is a combination of the LDBC and the
PBC; the orthogonal uniform mixed boundary conditions (OUMBC) combines the
LDBC and MKBC in each facet of the RVE boundary as discussed in [53,54,47];
a broad range of allowable mixed boundary conditions inspired from using the
Irving-Kirkwood procedure were considered [55]. The choice of the microscopic
boundary condition affects numerical results not only in the homogenized consti-
tutive behavior [9,56] but also on the type and extend of damage taking place at
the microscale [56]. The use of LDBC implies that the field at the RVE boundary is
only controlled by a mapping of the macroscopic kinematic variables and results in
a upper bound of the homogenized stiffness. The lower bound is obtained with the
MKBC since the macroscopic kinematic variables are enforced at the microscale in
the weakest sense [49]. For a given RVE size, the PBC provides in general a better
estimation of the homogenized stiffness for both periodic and random microstruc-
tures [9]. The PBC naturally simulates the constraining effect of the surrounding
material, although that constraint is in default when the microstructure is not
periodic [56]. When considering microscopic problems with damage, the LDBC is
too restrictive and suppresses the propagation of the localization band at the RVE
boundary. The PBC results in a RVE deformed shape compatible with the peri-
odic assumption of single or multiple localization bands. These nonphysical results
can be avoided by using either the MKBC [49,56], the OUMBC [36], or by using
“Percolation Path Aligned Boundary Conditions (PPABC)” [35]. Although these
mentioned boundary conditions were first considered in mechanical problems in
which the displacement is the unknown field, their application to other unknown
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fields in multi-physics problems is not limited, see [17,25, e.g.]. This work focuses
on the unified treatment of these boundary conditions (at the exception of the
PPABC type) in a multi-physics microscopic BVP.

Once the microscopic boundary conditions defined, the finite element dis-
cretization of the microscopic BVP is completed by a system of multiple-point
linear constraints. To treat these multi-point constraints, two approaches are com-
monly used: (i) the direct constraint elimination; and (ii) the Lagrange multiplier
method. The direct constraint elimination method allows reducing the total num-
ber of degrees of freedom of the microscopic BVP, see [4,12, e.g.]. However its
computational procedure depends on the microscopic boundary condition type.
The second approach consists in formulating the microscopic BVP using Lagrange
multipliers to treat the multiple-point linear constraints arising from the micro-
scopic boundary condition in a unified way. The resolution of the microscopic BVP
can then be achieved using either the static multiplier condensation approach [8],
the multiplier elimination approach [57], or the combined approach in which both
the displacement unknowns and Lagrange multipliers are considered as total un-
knowns of the problems [58]. The static multiplier condensation approach requires
the estimation of the Schur complements of the boundary nodes b in terms of
the internal nodes i (under the matrix form K̃bb = Kbb −KbiKii−1Kib), which
is costly in terms of both the computational time and the allocated memory in
general and should be avoided. The use of the combined approach alters the posi-
tive definitive nature of the structural stiffness matrix with the saddle equilibrium
point and increases the number of unknowns of the microscopic BVP. The mul-
tiplier elimination procedure following [57] allows a unified multiple constraint
treatment and has been successfully applied to enforce microscopic boundary con-
ditions as demonstrated in [11,13,59]. In comparison with the direct constraint
elimination method, the multiplier elimination method allows formulating the mi-
croscopic BVP in a path following strategy for problems involving instabilities
[13]. Herein, the treatment of the microscopic BVP is considered by both direct
constraint elimination and Lagrange multiplier elimination approaches.

When considering a two-scale problem with a nested iterative resolution, the
microscopic BVP at each integration point can be viewed as a “numerical mate-
rial law”, which provides the homogenized stresses and tangent operators of the
homogenized behavior, see [10,34], or the microscopic BVP resolution can be di-
rectly coupled with the iterative resolution of the macroscopic BVP [60]. The first
approach is adopted herein because the resolution of a large multi-scale problem
can be easily handled in parallel using the ghost finite elements based on the Dis-
continuous Galerkin method [13]. Moreover, we will develop a method allowing
the macroscopic tangent operators to be evaluated at a reduced computational
time without the need of estimating Schur complements, while the coupled micro-
scopic/macroscopic BVP resolution [60] requires this Schur complement evalua-
tion, which is computationally expensive and requires a high memory storage.

When performing the two-scale simulations, the macroscopic stresses and macro-
scopic tangent operators of the homogenized behavior are required at every macro-
scopic integration points. As the explicit forms of these macroscopic data do not
exist, they have to be numerically estimated from the finite element resolutions
of the microscopic BVPs. From the generalized energy consistency condition be-
tween macroscopic and microscopic problems, the macroscopic stresses can be
easily computed either from the volumetric averaging integrals of the microscopic
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counterparts or from interface integrals based on the microscopic internal forces
at the boundary nodes. The macroscopic tangent operators follow often either (i)
from a numerical differentiation of the variations of the macroscopic stresses by
applying variations on the macroscopic strains as suggested by [61], or (ii) from a
stiffness condensation of the local microscopic stiffness matrix at the equilibrium
state. The first approach is often considered for linear problems in which differ-
ent deformation modes are separately applied to the microscopic problem and the
macroscopic tangent operators directly result from the homogenized stresses [11,
50]. For problems involving nonlinearities, the resolution procedure of the micro-
scopic BVP is reapplied for each perturbed macroscopic strain tensors but the
computation time increases with the dimension of the macroscopic strain tensors
(e.g. from 9 in first-order mechanical homogenization to 36 in a second-order me-
chanical homogenization). The second approach can be achieved in combination
with the Lagrange multiplier method [8] or by performing a static condensation
procedure [7,17,19, e.g.]. With the methods based on the stiffness condensation,
the stiffness matrix needs to be partitioned, and dense matrices based on the Schur
complements need to be estimated. These operations can be very time-consuming
and require a lot of memory depending on the number of degrees of freedom of the
problems. This work proposes an efficient method based on the linearization of the
governing equations at the converged solution of the microscopic BVP (so-called
in-system approach), allowing the macroscopic tangent operators to be computed
without a significant effort.

The main contribution of the present work is twofold. On the one hand, al-
though computational homogenization schemes are largely described in the lit-
erature, the numerical treatments of the constrained micro-scale BVP and of its
boundary condition are often specialized to the physics and problem nature un-
der consideration. In the work, we propose a unified micro-scale boundary value
problem formulation for multi-physics problems in which an arbitrary number of
extra-fields can be considered besides the mechanical field. As a result a library
of constraint elements is available and allows constructing different kind of micro-
scopic boundary conditions. On the other hand, we propose an original resolution
of the constrained microscale BVP –for any kind of (“consistent”) microscopic
boundary condition– which yields the macroscopic tangent operators without re-
quiring the evaluation of Schur complements, contrarily to the usually considered
formulations. This resolution can be based either on the constraints elimination
method or on the Lagrange multiplier elimination method, in which case it can
be seen as an extension of the methodology developed in [57] to homogenization.
The macroscopic tangent operators are computed from the linear system of the
microscopic stiffness matrix, which does not need to be partitioned, with multiple
right hand sides. Moreover, as the resolution of the linearized system of the micro-
scopic BVP often follows a direct factorization procedure (e.g. LU factorization),
the estimation of the macroscopic tangent operators is then performed with this
factorized matrix so that the required computational time is much smaller than
the one required to solve the linearized system of the microscopic BVP. As a result
the concurrent multi-scale method gains in computational efficiency and in mem-
ory requirement as the macroscopic tangent operator is evaluated at a negligible
cost.

The paper is organized as follows. The general strong form for a multi-physics
BVP is summarized in Section 2. The unified finite element resolutions based on the
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constraint elimination and Lagrange multiplier elimination procedures are detailed
in Section 3, in which the explicit expressions of the macroscopic quantities are
provided. Several numerical applications, such as first-order mechanical, thermal,
and second-order mechanical homogenizations, and a thermo-mechanical two-scale
problem are considered in Section 4 to demonstrate the efficiency of the proposed
unified framework.

2 Microscopic multi-physics boundary value problem

Different possibilities have been used to formulate the FE2 for mechanical prob-
lems such as the first-order, second-order, continuous-discontinuous homogeniza-
tions, see the review [6] and references therein. Although macroscopic formula-
tions can vary depending on the nature of the macroscopic problems (e.g. classical
Cauchy, Mindlin strain gradient, enriched-discontinuity continua, respectively for
first-order, second-order, and continuous-discontinuous homogenizations), the mi-
croscopic BVPs are normally formulated in terms of the classical continuum me-
chanics. The required constitutive relations at the macro-scale are obtained from
the resolution of the microscopic BVP through the scale transition between the
macroscopic and microscopic problems. Apart from mechanics, the microscopic
BVP can also deal with other physical phenomena (e.g. thermal, electrical, and
magnetic ingredients), and the microscopic BVP should thus be formulated in
terms of multiple physical fields, leading to a corresponding microscopic multi-
physics BVP. By assuming the principle of separation of scales, these phenomena
are governed by the conventional steady balance laws. The governing equations of
the microscopic multi-physics BVP are summarized in this section.

2.1 General strong form

Considering a RVE whose reference configuration is denoted by V0 and whose
boundary is denoted by ∂V0, the deformed configuration is characterized by a
two-point mapping xm = xm (Xm), where xm and Xm denote respectively the
current and the reference positions of a material point in V0. The deformation
gradient Fm is defined at that point by

Fm = xm ⊗∇0 , (1)

where ∇0 is the gradient operator with respect to the reference coordinates. In
terms of the first Piola-Kirchhoff stress Pm, which is energetically conjugated with
Fm, the local mechanical equilibrium state is governed by

Pm ·∇0 = 0 on V0 , (2)

in the absence of body forces.
Apart from the mechanical field, the microscopic BVP is assumed to combine

some other scalar fields (e.g. thermal, electrical, magnetic fields), so-called extra-
fields and denoted by θkm with k = 1, ..., N and N being the number of extra-fields.
Similarity to the mechanical part, the extra-field gradients are given by

ϕkm =∇0θ
k
m with k = 1, ..., N . (3)
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The extra-field fluxes T km with k = 1, ..., N are defined as conjugate quantities
with ϕkm respectively. Depending on the nature of θkm, such as temperature, electric
potential, or magnetic potential, one has respectively the heat flux vector, electrical
displacement vector, or magnetic flux density vector. The steady balance laws
governing the extra-fields read

∇0 · T km = 0 on V0 for k = 1, ..., N , (4)

as considered in thermal problems [15], electrical, and magnetic problems [25].
In the FE2 technique, the constitutive relations at the micro-scale are given

under the fully-coupled forms{
Pm = Pm

(
Fm, θ

1
m,ϕ

1
m, ..., θ

N
m,ϕ

N
m;Z

)
T km = T km

(
Fm, θ

1
m,ϕ

1
m, ..., θ

N
m,ϕ

N
m;Z

) with k = 1, ..., N , (5)

where Z is a vector including all historic-dependent internal variables in order to
follow the historic-dependent processes. Eq. (5) represents fully-coupled constitu-
tive relations. The microscopic boundary condition needs to be specified to close
the formulation statement of the microscopic problem following the macro-micro
transition as detailed in the next section.

Since the mechanical and extra-field governing equations following Eqs. (2, 4)
are similar to each other, a generalized representation is introduced. The micro-
scopic generalized position Xm is defined by including all microscopic primary
variables over V0 as

Xm =
[
xTm θ1m ... θNm

]T
. (6)

The dimension of Xm is d+N , where d is the dimension of the mechanical prob-
lems. This work develops the methodology for d = 3 as a general case. The gen-
eralized position can be divided into two parts: (i) XNCm consists of components,
which do not appear explicitly in the constitutive relations (e.g. position, electrical
potential, or magnetic potential), and (ii) XCm includes all remaining components,
which participate explicitly to the constitutive laws (e.g. temperature). From the
definition of the generalized position in Eq. (6), the microscopic generalized strain
and microscopic generalized stress can be defined respectively by

Fm =
[
FTm ϕ1

m ... ϕNm

]T
, and (7)

Pm =
[
PTm T 1

m ... T Nm
]T

. (8)

Considering an arbitrary generalized tensor A =
[
AT

1 AT
2 . . .A

T
N

]T
, an arbi-

trary generalized tensor B =
[
BT1 BT2 . . .B

T
N

]T
and an arbitrary tensor C, one

can define an arbitrary tensorial operator •

A • B =


A1 •B1

A2 •B2

...
AN •BN

 ,A •C =


A1 •C
A2 •C

...
AN •C

 , and C •A =


C •A1

C •A2

...
C •AN

 . (9)
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Using the generalized representation, the strong forms (2, 4) are rewritten as

Pm ·∇0 = 0 on V0 . (10)

The microscopic generalized strain can be rewritten from Eq. (7) as

Fm = Xm ⊗∇0 . (11)

As XNCm does not participate explicitly to the constitutive relations, Eq. (5) can
be rewritten in the generalized representation as

Pm = Pm
(
XCm,Fm;Z

)
. (12)

The microscopic generalized tangent operators are defined from Eq. (12) yielding

Lm =
∂Pm
∂Fm

, and Jm =
∂Pm
∂XCm

. (13)

The macroscopic quantities XM , XNCM , XCM , FM , PM , LM , and JM are defined
as counterparts of their respective microscopic quantities.

2.2 General microscopic boundary condition

The local equilibrium state over the RVE is commonly driven by the macroscopic
kinematic variables by defining a microscopic boundary condition. Considering an
arbitrary field1 X km ofXm, in order to downscale the related macroscopic kinematic
variables to the microscopic BVP, its value at an arbitrary point Xm ∈ V0 can be
decomposed as

X km = Φkm +Wk
m on V0 , (14)

where Φkm is a truncated Taylor series around the RVE geometric center andWk
m is

the the microscopic fluctuation of the field X km, which represents the field fluctua-
tion due to the microscopic heterogeneities. The expression of the truncated Taylor
series Φkm depends on the homogenization order as a function of the macroscopic
kinematic quantities and of the local coordinates. In the context of the first-order
homogenization

Φkm = X kM +FkM ·Xm , (15)

and in the context of the second-order homogenization, a second-order term en-
hances Eq. (15), leading to

Φkm = X kM +FkM ·Xm +
1

2
GkM : (Xm ⊗Xm) . (16)

In the last two equations, X kM , FkM , and GkM are the macroscopic quantities (field
value, its gradient, and its second-order gradient) and Xm is the microscopic po-
sition in the coordinate system attached to the RVE geometric center satisfying∫
V0

Xm dV = 0.

1 The position vector xm can be considered as three scalar components from which the
deformation gradient Fm can be rewritten as a group of three vectors.
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The macro-micro kinematic coupling is satisfied by assuming the equality of the
volume average of the microscopic field gradient and the macroscopic counterpart
[5,7,10] leading to ∫

∂V0

Wk
mNm dS = 0 , (17)

where Nm is the outward normal to the RVE boundary ∂V0 in the reference config-
uration. In the case of the second-order homogenization, the following additional
constraint ∫

∂V0

Wk
mNm ⊗Xm dS = 0 , (18)

needs to be considered [10,11] in order to enforce the second-order gradients at the
micro-scale while remaining the microscopic BVP in the conventional continuum.

If the field value X km appears explicitly in the microscopic constitutive relations
(X km in XCm), the enforcement of X kM to the microscopic BVP has to be considered.
For this purpose, the field equivalence condition needs to be considered

1

V0

∫
V0

wkm dV = wkM if X km in XCm , (19)

where wkm and wkM are the microscopic and macroscopic field capacity indicators,
which are defined as functions of the field values X km and X kM , respectively. The
explicit expressions of wkm and of wkM depend on the nature of X km and on the
problem statement. In a straightforward way, this condition can be formulated in
terms of the field capacity equivalence by considering2{

wkm = CkmX km
wkM = CkMX kM

, (20)

where Ckm is the field capacity per unit of X km and where CkM is its macroscopic
counterpart which is given by

CkM =
1

V0

∫
V0

Ckm dV . (21)

In problems involving temperature, the temperature transition can be enforced by
the heat energy equivalence condition following Eq. (20) as considered in [15,17].
As the group XNCm does not explicitly participate to the constitutive relations,
the condition (19) does not have to be considered for the fields belonging to XNCm
but additional conditions might have to be provided in order to prevent rigid body
motion modes if necessary.

The kinematic constraints (17, 18, 19) are fundamental requirements of the
macro-micro transition for each field X km. The separation of the macro-micro tran-
sition statement allows combining a first-order homogenization of one field with
a second-order homogenization of another field. By considering a general three-
dimensional parallelepiped RVE, its boundary ∂V0 can be divided into 6 facets,

2 In a general case, a nonlinear function can be considered, providing it is linearized at the
current time step.
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denoted by Sj with j = 1, ..., 6 so that Si and Si+3 are opposite for i = 1, 2, 3.
For each facet Si, the outward normal is constant and denoted by Ni

m. Clearly,
one has Ni

m = −Ni+3
m , and Eq. (17) can be rewritten as∫

Si

Wk
m dS −

∫
Si+3

Wk
m dS = 0 with i = 1, 2, 3 . (22)

Similarly, Eq. (18) can be rewritten as∫
Si

Wk
mXm dS −

∫
Si+3

Wk
mXm dS = 0 with i = 1, 2, 3 . (23)

Clearly, the kinematic constraints can be separately considered for each pair of
facets (Si, Si+3). Some microscopic boundary conditions result naturally in sat-
isfying a priori Eqs. (22, 23) as detailed in Section 3. The condition (19) has to
be directly constrained as it is formulated on the whole RVE. Moreover, it pre-
vents the rigid body motion mode of the field X km. In the following sections, only
a parallelepiped RVE is considered.

2.3 Extraction of the macroscopic quantities

Considering an arbitrary field X km, the generalized Hill-Mandel condition results
in the averaging relation of the macroscopic generalized stress and its microscopic
counterpart [10,25],

PkM =
1

V0

∫
∂V0

Pkm dV . (24)

If the second-order homogenization is employed, the macroscopic generalized higher-
order stress (QkM ) can be estimated by the following relation [10]

QkM =
1

2V0

∫
∂V0

Pkm ⊗Xm + Xm ⊗Pkm dV . (25)

The macroscopic generalized tangent operators defining the variations of the
macroscopic generalized stress with respect to the variations of the macroscopic
generalized strain and with respect to the variations of the generalized position
participating to the constitutive laws are respectively estimated by

LM =
∂PM
∂FM

and JM =
∂PM
∂XCM

. (26)

The computation of the generalized tangent operators cannot be obtained in a
straightforward way from their microscopic counterparts (Lm and Jm) since they
are defined through partial derivatives of volumetric integrals.

Besides the generalized stresses, some microscopic fields (e.g. thermoelastic
heating [19], average strain over active damage zone [34]), denoted by Zm, need
to be upscaled by a volumetric integral

ZM =
1

V0

∫
V0

Zm dV . (27)
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Their related tangent operators need to be estimated by

YFM
=
∂ZM
∂FM

and YXC
M

=
∂ZM
∂XCM

. (28)

Similarly to the computation of the generalized tangent operators in Eq. (26),
the computation of YFM

and YXC
M

is not straightforwardly obtained from their
microscopic counterparts YFm

and YXC
m

, which are explicitly provided from the
microscopic constitutive law.

2.4 Variational form of the microscopic boundary value problem

As a consequence of the generalized Hill-Mandel condition [12,25], the weak form
of the microscopic BVP is stated as findingWm ∈ U such that∫

V0

Pm � (δWm ⊗∇0) dV = 0 ∀δWm ∈ U , (29)

where � is the scalar product operator defined with two nth order tensors A and
B by

A�B = Ai1i2...inBi1i2...in , (30)

and where the admissibility kinematic field U is defined from the kinematic func-
tion space Uk of each field X km by

U = U1 ×U2 × . . .×Ud+N . (31)

with Uk constructed following Eqs. (19, 22, 23). The weak form (29) is resolved
by means of the finite element method (FEM) in Section 3.

3 Finite element resolution of the microscopic BVP

This section provides a unified finite element resolution of the weak form (29)
within a non-linear finite element framework. The vector-matrix notations are
used in this section instead of the tensor ones. A general rule allowing to convert
an arbitrary tensor into its vector-matrix representation is provided in Appendix
A. In the vector-matrix representation, Eq. (14) can be rewritten under a matrix
form

Ukm = SkmKkM +Wk
m , (32)

where Ukm is the degree of freedom of the field X km at Xm and given by

Ukm =

{
X km if X km ∈ XCm
X km −X kM if X km ∈ XNCm

, (33)
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where KkM is a vector including all macroscopic kinematic variables participating
to the constitutive relations related to the field X kM

KkM =


[
X kM FkMT GkMT . . .

]T
if X km ∈ XCm[

FkMT GkMT . . .
]T

if X km ∈ XNCm
, (34)

and where Skm is the kinematic matrix depending only on the material coordinates
at that point

Skm (Xm) =


[
1 XT

m
1
2X

T
sq . . .

]
if X km ∈ XCm[

XT
m

1
2X

T
sq . . .

]
if X km ∈ XNCm

. (35)

In the last equation Xsq = vec (Xm ⊗Xm). Following Eq. (32), the unknown
fields are defined as functions of the macroscopic kinematic variables and of the
microscopic fluctuations.

The RVE V0 is discretized into finite elements such that V0 =
⋃
e V

e
0 . The kine-

matic constraints resulting from the microscopic boundary conditions described in
Section 2 have to be applied on the finite element mesh of the RVE boundary. The
test and trial functions are defined over an element V e0 in terms of the standard
interpolation concept{

Um (Xm) = Ne (Xm) [Um]V e
0

δWm (Xm) = Ne (Xm) [δWm]V e
0

over V e0 , (36)

where Um denotes the unknown fields at Xm, where Ne is a matrix consisting of
the shape functions, and where [•]V e

0
defines a vector over V e0 by collecting the

nodal quantity •.

3.1 Treatment of the microscopic boundary condition

With the finite element discretization of the RVE, the microscopic boundary con-
dition leads to a muti-point linear constraints system, from which the resolution
procedure of the microscopic BVP depends on the microscopic boundary condition
type [8,12]. Owing to the diversity of microscopic boundary condition kinds, it is
necessary to provide an unified strategy for the constraints treatment. For that
purpose, this work follows a strategy based on the constraint elements. A library
of constraint elements is first created based on the basic microscopic boundary
conditions (LDBC, MKBC, PBC, etc.). Then the muti-point linear constraints
system arising from a proper microscopic boundary condition can be represented
by a group of suitable constraint elements from the library. This strategy provides
an efficient way allowing, not only to easily manage the multi-point constraints
resulting from the microscopic boundary condition, but also to apply their unified
treatment. A mixed boundary condition can be easily generated using this library.
A typical constraint element e possesses a general form

CeUe − SeKkM = 0 , (37)
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where Ce is the elementary constraint matrix, Ue is a vector containing all the
related unknowns of the field X km, Se is the elementary kinematic matrix. Some
typical constraint elements and their matrices Ce, Se, Ue, which depend on the
microscopic boundary condition type, are described in the following.

3.1.1 Zero fluctuation constraint element

The conditions (22) and (23) can be trivially satisfied using the zero fluctuation
boundary condition (ZFBC)

Wk
m = 0 on Si ∪ Si+3 . (38)

The term ”linear displacement boundary condition (LDBC)” is often used to call
this boundary condition type when considering the first-order homogenization.

On an arbitrary mesh node Xm satisfying Eq. (38), Eq. (32) leads to

Ukm = SkmKkM . (39)

The constrained elementary matrices following Eq. (37) can be expressed by

Ue =
[
Ukm
]
,Ce =

[
1
]
, and Se = Skm , (40)

where Skm is given in Eq. (35).

3.1.2 Zero average fluctuation constraint element

This constraint element comes from the minimal kinematic boundary condition
(MKBC) by directly satisfying Eq. (22) using stronger conditions∫

Si

Wk
m dS =

∫
Si+3

Wk
m dS = 0 . (41)

This kind of constraints leads to consider a general form∫
S

W (Xm)Wk
m dS = 0 , (42)

where W is the weight function defined as a function of Xm and S =
⋃
e S

e is an
arbitrary surface finite elements group. The kinematic constraints following Eqs.
(41) can be obtained by particularizing W = 1.

Using Eq. (32), Eq. (42) can be rewritten as

1

S

∫
S

W (Xm)Ukm dS − 1

S

(∫
S

W (Xm)Skm dS

)
KkM = 0 . (43)

Following the finite element discretization S =
⋃
e S

e, the elementary unknowns
vector is given by

Ue =
[
Ukm
]
S
, (44)
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where
[
Ukm
]
S

consists of all unknowns from the mesh nodes over S. The standard
interpolation concept applies for each element Se so that

1

S

∫
S

WUkm dS =
1

S

∑
Se∈S

∫
Se

WNe dS
[
Ukm
]
Se

= CeUe , (45)

where Ne is the matrix of shape functions over the element Se. Using Eqs. (44,
45), the elementary constraint matrices following Eq. (37) are given by

Ce =
∧
Se∈S

(
1

S

∫
Se

WNe dS
)
, and (46)

Se =
1

S

∫
S

WSkm dS , (47)

where
∧
Se∈S is the assembly operator over S and where Skm is given in Eq. (35).

3.1.3 Periodic average fluctuation constraint element

This constraint element comes from the minimal kinematic boundary condition
(MKBC) by directly satisfying Eqs. (22, 23). These constraints lead to consider
an arbitrary pair of facets (S1, S2), the periodic condition of the average fluctuation
is formulated by

1

S1

∫
S1

W1 (Xm)Wk
m dS − 1

S2

∫
S2

W2 (Xm)Wk
m dS = 0 , (48)

where W1 and W2 are respectively the weight functions on S1 and S2. The kine-
matic constraints following Eqs. (22, 23) can be obtained using W1 = W2 = 1 and
W1 = W2 = Xm respectively.

Using Eq. (32), Eq. (48) can be rewritten as

1

S1

∫
S1

W1Ukm, dS −
1

S2

∫
S2

W2Ukm, dS

−
(

1

S1

∫
S1

W1Skm dS − 1

S2

∫
S2

W2Skm dS

)
KkM = 0 . (49)

Following Eq. (37) one has

Ue =

[
UeMKBC (S1)
UeMKBC (S2)

]
,Ce =

[
CeMKBC (S1) −CeMKBC (S2)

]
, and (50)

Se = SeMKBC (S1)− SeMKBC (S2) , (51)

where UeMKBC, CeMKBC, and SeMKBC are given in Eqs. (44, 46, 47), respectively.
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3.1.4 Periodic fluctuation constraint element

This constraint element comes from the periodic boundary condition (PBC). Eq.
(22) can be satisfied if the fluctuation periodicity is stated

Wk
m

(
X+
m

)
−Wk

m

(
X−m

)
= 0 , (52)

where
(
X+
m,X

−
m

)
∈
(
Si, Si+3

)
is matching nodes. Using Eq. (32), one has

Ukm
(
X+
m

)
− Ukm

(
X−m

)
−
[
Skm

(
X+
m

)
− Skm

(
X−m

)]
KkM = 0 . (53)

Following Eq. (37) one has

Ue =

[
Ukm

(
X+
m

)
Ukm

(
X−m

)] ,Ce =
[
1 −1

]
, and Se = Skm

(
X+
m

)
− Skm

(
X−m

)
, (54)

where Skm is given in Eq. (35).

3.1.5 Interpolation-based periodic fluctuation constraint element

In a general mesh setting, the matching node condition can not always be satis-
fied. For this mesh type, applying the first-order or the second-order PBCs is not
trivial. This has motivated the development of the interpolation-based periodic
boundary condition (IPBC) in both the first-order homogenization [50] and the
second-order homogenization [13]. In this case, interpolation forms are introduced
to approximate the PBC. By considering a pair of facets (Si,Si+3) satisfying the
PBC, one can defined an interpolation form

Si =

n+1∑
k=1

Nik (Xm) aik (no sum on i) , (55)

where n is the interpolation degree, Nik with k = 1, ..., n+ 1 are the interpolation
shape functions, and aik with k = 1, ..., n + 1 are additional degrees of freedom.
The IPBC is naturally obtained by enforcing{

Wk
m

(
X+
m

)
= Si

(
X−m

)
∀X+

m ∈ Si+3

Wk
m

(
X−m

)
= Si

(
X−m

)
∀X−m ∈ Si .

. (56)

This microscopic boundary condition can be applied on a general mesh setting. The
ZFBC can be considered as a special case of the IPBC with a linear interpolation.

Considering an arbitrary mesh node Xm on the RVE boundary ∂V0, the
interpolation-based constraint element following the interpolation form (55) is
given by

Wk
m (Xm) = Si

(
Xm, a

i
1, . . . , a

i
n+1

)
= AUI , (57)

where aij with j = 1, ..., n+ 1 are the additional unknowns, where

UI =
[
ai1 a

i
2 . . . a

i
n+1

]T
, (58)
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is a vector containing all additional degrees of freedom used in the interpolation
form Si, and where A is the constraint coefficients matrix constructed from the
values of the interpolation bases at Xm. By switching the fluctuation Wk

m to the
unknown with Eq. (32), Eq. (57) becomes

Ukm − SkmKkM −AUI = 0 . (59)

The matrix components following Eq. (37) of this kind of constraint element are
given by

Ue =

[
Ukm
UI
]
,Ce =

[
1 −A

]
, and Se = Skm , (60)

where Skm is given in Eq. (35).

The matrix A at a boundary point Xm depends on the interpolation method.
Theoretically, an arbitrary interpolation form can be considered. A simple interpo-
lation form is suggested in [62] to enforce the PBC in a two-dimensional periodic
RVE by enforcing a linear displacement field at intersections of fibers with RVE
sides and a cubic displacement field at intersections of matrix with RVE sides.
This work was later enhanced in [50] with an arbitrary interpolation form. In that
work, the Lagrange and cubic spline interpolants were considered to demonstrate
the implementation framework in 2-dimensional problems. From 2-dimensional
interpolation formulations, the application on 3-dimensional cases can be easily
derived using a bilinear patch Coons formulation. The finite element-based inter-
polation formulation, resulting in the so-called quasi-periodic boundary condition,
was considered to apply the periodic boundary condition on a foamed RVE [63].
Finally, the master/slave approach [64] can be considered as a special case of finite
element-based interpolation by considering directly the finite element mesh at the
RVE boundary as interpolation bases.

3.1.6 Field equivalence constraint element

This constraint element comes from the field equivalence condition following Eqs.
(19, 20). As X km is considered as unknown when considering this kind of kinematic
constraint, one has

1

V0

∫
V0

CkmUkm dV = CkMUkM , (61)

where

1

V0

∫
V0

Ckm dV = CkM . (62)

From the finite element discretization of the RVE following V0 =
⋃
e V

e
0 , the

elementary unknowns vector is given by

Ue =
[
Ukm
]
V0

, (63)
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where
[
Ukm
]
V0

consists of all Ukm over the volume V0. Equation (61) is thus rewritten
as

1

V0

∫
V0

CkmUkm dV =
1

V0

∑
V e

0 ∈V0

∫
V e

0

CkmNe dV
[
Ukm
]
V e

0

= CeUe , (64)

where Ne is the matrix of shape functions over the element V e0 . Using Eqs. (63,
64), the elementary constraint matrix is estimated by

Ce =
∧

V e
0 ∈V0

(
1

V0

∫
V e

0

CkmNe dV

)
, (65)

where
∧
V e

0 ∈V0
is the assembly operator over V0. The kinematic matrix is given by

a simple formulation

Se =
[
CkM 0 . . . 0

]
, (66)

where all components of Se are equal to 0 except for the first component and the
dimension of Se is equal to the one of the kinematic variable KkM .

3.1.7 Remarks

It can be seen that Eqs. (22, 23) can be satisfied by constraining independently
each component of the generalized fluctuation field following the ZFBC, MKBC,
PBC, or IPBC following each pair of facets (Si, Si+3). Therefore, two categories
of microscopic boundary conditions can be distinguished:

– A uniform microscopic boundary condition is obtained if one type of the kine-
matic constraint (ZFBC, MKBC, PBC, or IPBC) is applied to all fields (de-
noted by the same name ZFBC, MKBC, PBC, or IPBC respectively).

– A mixed microscopic boundary condition is obtained if the generalized fluctu-
ation field is constrained by combining the ZFBC, MKBC, PBC, and IPBC.
In this boundary condition type, the orthogonal uniform mixed boundary con-
ditions (OUMBC) [53,54,47] can be given by combining the ZFBC and the
MKBC on each facet Si, in which the ZFBC is considered following the direc-
tion normal to the facet while the remaining directions are constrained by the
MKBC.

– The kinematic constraint (23) is not always satisfied and need to be directly
enforced.

In general, different kinematic constraint types lead to different macroscopic consti-
tutive responses. The increase of the number of kinematically constrained degrees
leads to a stiffer response of the homogenized behavior [27,12].

3.2 Final constraints and kinematic matrices

From the explicit representation of the constraint elements in the previous section,
an arbitrary microscopic boundary (both uniform and mixed ones) described in
Section 2 can be discretized into a group of possibly different constraint element
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types. All constraint elements resulting from the microscopic boundary condition
can be assembled to the final form

CbUb − SKM = 0 , (67)

where Cb is the final constraint matrix, S is the final kinematic matrix, where
Ub is a vector containing the unknowns of the microscopic BVP related to the
constraint elements (so-called constrained unknowns)3, andKM is the macroscopic
kinematic variable vector defined by collecting all macroscopic kinematic variable
vectors from the field components as

KM =
[(
K1
M

)T (K2
M

)T
. . .
(
Kd+NM

)T ]T
. (68)

One can define the matrices Le, Te, so that for each constraint element e and
for each field X km, one has

Ue = LeUb , and (69)

KkM = TeKM . (70)

The explicit expressions of Cb and S are easily deduced as

Cb =


C1L1

C2L2

...
CNc

LNc

 and S =


S1T1

S2T2

...
SNc

TNc

 . (71)

In these last equations, Nc is the number of the constraint elements resulting
from the microscopic boundary condition. Clearly, with the determination of the
microscopic boundary condition, all duplicate linear constraints appearing in Eq.
(67) can be eliminated so that the matrix Cb satisfies

rank (Cb) = rCb
, (72)

where rCb
is its number of rows.

3.3 Resolution using the multiplier elimination method

As Ub is a part of the total unknowns vector U of the microscopic BVP, one can
decompose

U =
[
UTi UTb

]T
, (73)

where U i is the unconstrained unknowns. Eq. (67) can be rewritten as

CU − SKM = 0 , (74)

where C =
[
0 Cb

]
.

3 In general, both boundary and internal degrees of freedom can be part of Ub for the
constraints of the type described in Section 3.1.6
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3.3.1 Iterative resolution

The weak form (29) combined with the linear constraints system given in Eq. (74)
results in the non-linear system of equations [59,13]{

fm (U)−CTλ = 0

CU − SKM = 0
, (75)

where fm is the internal force vector and where λ is the Lagrange multiplier vector
used to enforce the constraints system (74).

In the nonlinear range, the system of equations (75) is iteratively resolved by
the multiplier elimination method [57,61], see also [59,13]. For that purpose, the
multiplier Lagrange vector λ is eliminated from the first equation of the system
(75) using

λ = RT fm , (76)

where RT =
(
CCT

)−1
C. The matrix inversion

(
CCT

)−1
exists because the

constraints system (74) is linearly independent as shown in Eq. (72). The system
(75) is thus rewritten as{

r = fm −CTλ = QT fm = 0

rc = CU − SKM = 0
, (77)

where r is the internal force residual with Q = I −RC and rc is the constraint
residual. The linearization of the system (77) in terms of both the increment of the
unknowns vector ∆U and the increment of the macroscopic kinematic variables
vector δKM reads [13]{

QTKQ∆U + r−V (rc − SδKM ) = 0

C∆U + rc − SδKM = 0
, (78)

where V = QTKR.

The equilibrium state is obtained by considering δKM = 0 in the system (78),
in which case a unique solution is obtained [57]

∆U = −K̃−1r̃ , (79)

in which

K̃ = CTC + QTKQ , and (80)

r̃ = r +
(
CT −V

)
rc . (81)

The solution of U at the equilibrium state is obtained by Newton-Raphson itera-
tions.
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3.3.2 Extraction of the macroscopic properties

From the finite element discretization V0 =
⋃
e V

e
0 , the homogenized quantities

PM , ZM are estimated following the volumetric integrals (24, 27)[
PM
ZM

]
=

1

V0

∑
e

∫
V e

0

[
Pm
Zm

]
dV . (82)

Based on the finite element interpolation in Eq. (36), the macroscopic generalized
tangent operators following Eqs. (26, 28) are estimated using Eq. (82) by[

LM JM
YFM

YXC
M

]
=

[
∂PM

∂KM
∂ZM

∂KM

]
= D

∂U
∂KM

, (83)

where

D =
∧

V e
0 ∈V0

(
1

V0

∫
V e

0

[
LmBe JmNe

YFm
Be YXC

m
Ne

]
dV

)
. (84)

In the last equation, Be is the matrix of the gradients of shape functions esti-
mated from the finite element interpolation (36); the local microscopic generalized
tangent operators (Lm, Jm, YFm

, and YXC
m

) are explicitly provided through the

microscopic constitutive law (12).
In order to estimate the homogenized generalized tangent operators following

Eq. (83), ∂U
∂KM

, specifying the variation of the microscopic unknowns vector U with
respect to the applied macroscopic kinematic variables KM , should be specified.
For that purpose, the system (78) is reconsidered at the equilibrium point, leading
to r = 0 and rc = 0, and yielding{

QTKQδU + VSδKM = 0

CδU − SδKM = 0
. (85)

Similarity to Eq. (78), the system (85) leads to a unique solution

∂U
∂KM

=
(
K̃
)−1

Y , (86)

where Y =
(
CT −V

)
S is the kinematic right hand sides vector and where K̃ was

already computed and possibly factorized in Eq. (80) at the converge solution.

3.4 Resolution using the constraints elimination method

By formulating under the form (67) the microscopic boundary condition presented
in Section 3.1, the resolution of the microscopic BVP can be achieved by the
constraints elimination method. The total unknowns vector U of the microscopic
BVP can be decomposed by

U =

[
U i
Ub

]
, (87)
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where U i is the unconstrained unknowns. As all linear constraints expressed in (67)
are independent, the constrained unknowns Ub can be divided into three parts:
(i) dependent unknowns (denoted by Ud); (ii) independent unknowns (denoted by
Uf ); and (iii) direct unknowns (denoted by Uc). The direct unknowns Uc, whose
values are directly enforced, are used to account for the zero fluctuation constraint
elements described in Section 3.1.1. From each linear constraint given in each line
of Eq. (67), one unique degree of freedom can be chosen and to be part of Ud.
After defining Uc and Ud, Uf is the remaining part. From this decomposition, the
constraints system (67) can be rewritten as{

CdUd + CfUf + CcUc = SdKM
Uc = ScKM

. (88)

From the choice of Ud, the matrix Cd is invertible. As a result, Eq. (88) can be
rewritten as {

Ud = CdfUf + SdfKM
Uc = ScKM

, (89)

where Cdf = −C−1
d Cf and Sdf = C−1

d (Sd −CcSc). When considering the con-
straints system (89), the true independent unknowns of the microscopic problem

are given by Ũ =
[
UTi UTf

]T
and Eq. (89) is rewritten as

U =


U i
Ud
Uf
Uc

 = TŨ + S̃KM , (90)

where

T =


Ini 0ni×nf

0nd×ni Cdf

0nf×ni Inf

0nc×ni 0nc×nf

 and S̃ =


0ni×(3+N)

Sdf
0nf×(3+N)

Sc

 , (91)

are the constraints elimination, and the constraints kinematic matrices, respec-
tively. In Eq. (91), ni, nd, nf , and nc are the respective dimensions of U i, Ud,
Uf , and Uc; In denotes an identity matrix of size n; and 0n1×n2 denotes a zero
matrix of dimensions n1 × n2.

3.4.1 Iterative resolution

For a given value of the macroscopic kinematic variables, in the nonlinear range,
the microscopic BVP is iteratively solved to find the equilibrium solution. Consid-
ering the finite element discretization of the microscopic BVP, the weak form (29)
becomes

δUT fm = 0 . (92)

The combination of Eq. (90) and Eq. (92) yields

δŨTTT fm = 0 , (93)
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leading to a nonlinear system of equations

TT fm = 0 . (94)

In order to solve iteratively the nonlinear system (94), this equation is linearized
and reads at iteration i ≥ 1

TT f i−1
m + TTK∆U i = TT f i−1

m + TTKT∆Ũ i = 0 . (95)

The linearized equation (95) has a unique solution

∆Ũ i = −K̃−1r̃i−1 , (96)

where

r̃i−1 = TT f i−1
m , and (97)

K̃ = TTKT . (98)

The solution of U then is then obtained by Newton-Raphson iterations.
With the explicit formulations provided in this section, no partitioned matrices

such as Kii and no partitioned vectors such as fmi are needed. The constraints
system resulting from the microscopic boundary condition is enforced into the
microscopic BVP through the use of the constraints elimination matrix T given
in Eq. (91).

3.4.2 Extraction of the macroscopic properties

Using a similar methodology as the one described in Section 3.3.2, the homogenized
generalized stress and macroscopic generalized tangent operators can be estimated.
The explicit formulation of ∂U

∂KM
based on the system resolution of the constraints

elimination method is provided in this section.
For a variation of the macroscopic generalized kinematic variable δKM , the

variation form of the constraints system reported in (90) can be rewritten as

δU = TδŨ + S̃δKM . (99)

At the equilibrium state, the nonlinear system (94) is linearized as

TTKδU = 0 . (100)

Combining Eqs. (99, 100), one has

K̃δŨ = −ZδKM , (101)

where K̃ is given in Eq. (98) and where

Z = TTKS̃ . (102)

Combining Eqs. (99, 101) yields

∂U
∂KM

= S̃−TK̃−1Z . (103)

The homogenized tangent operator is easily estimated by Eq. (83).
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3.5 Remarks

In the proposed procedures, not only macroscopic material tangent operators (LM
and JM ) but also the macroscopic internal tangent operators (YFM

and YXC
M

)
can be estimated in an efficient way. The global microscopic stiffness matrix does
not need to be partitioned. The computation relies on the resolution of a lin-
ear system of the stiffness matrix with multiple right hand sides following either
Eq. (86) when using the multiplier elimination method or Eq. (103) when us-
ing the constraints elimination method. The number of right hand sides is equal
to the number of macroscopic kinematic variables KM used in the macro-micro
transition. Moreover, if the left hand side matrix is already used to resolve the
microscopic BVP by a direct factorization procedure (e.g. LU factorization), this
factorized matrix is still used to estimate the macroscopic tangent operators with-
out new factorization operations. Therefore the computational time to extract the
macroscopic properties of the homogenized behavior is thus negligible compared
to the computation time of the resolution of the microscopic BVP.

4 Numerical examples

In this section, some finite element examples are provided to demonstrate the
ability of the proposed unified treatment of microscopic boundary conditions to
conduct multi-scale methods in an efficient way. First, the efficiency in terms of
the computational time of the current procedure (so-called in-system procedure)
is compared to the one of the condensation procedure [8] for the first-order ho-
mogenization in mechanics. Then the proposed procedure is used to estimate the
macroscopic tangent operators in the cases of the homogenization of thermal field
and the second-order homogenization of the mechanical field. Finally, a concurrent
two-scale simulation is performed in a fully-coupled thermo-mechanical framework.

4.1 First-order homogenization

4.1.1 Computational efficiency

In this section, only mechanical analyses formulated in the first-order homogeniza-
tion setting are performed. The basic constraint elementary components following
Eqs. (34, 35) are simply particularized by considering{

KkM = FkM with k = 1, 2, 3

Skm = XT
m

, (104)

where FkM is a column vector constructed from the kth row of the macroscopic
deformation gradient FM .

The linear equilibrium system resulting from the microscopic BVP is resolved
by both the Lagrange multiplier elimination procedure described in Section 3.3
(denoted by MULT ELIM) and the constraints elimination procedure described
in Section 3.4 (denoted by DISP ELIM). The results of the homogenized tangent
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operators are compared to the ones obtained by the stiffness condensation method
(denoted by CONDEN) [8].

We first consider a 3-dimensional periodic microscopic structure characterized
by the repeated unit cell consisting of a spherical void of radius 0.2Lref with
Lref = 1 mm embedded at the center of a cube of dimensions Lref × Lref × Lref.
To illustrate the ability of the proposed method with various RVE sizes, different
RVE dimensions ranging from Lref×Lref×Lref to 4Lref×4Lref×Lref are used. The
finite element models include 1176, 4704, 10584, and 18816 linear (8-node) brick
elements, respectively. In these simulations, the material behavior is a linearly
isotropic elastic model with the bulk modulus Km = 58.3 GPa and the shear
modulus Gm = 26.9 GPa.
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Fig. 2 Comparison of macroscopic tangent computations based on the condensation (CON-
DEN), current procedures including MULT ELIM and DISP ELIM with the convergence of the
macroscopic shear modulus GM with increasing RVE sizes for various microscopic boundary
condition types (LDBC, OUMBC, PBC, MKBC).

Figure 2 shows the convergence of the homogenized shear modulus GM with
respect to the RVE size using the stiffness condensation procedure and the current
approaches for different kinds of microscopic boundary conditions. The homoge-
nized results are identical for the same boundary condition types.

Figure 3a reports the computation time needed to solve the microscopic lin-
ear equilibrium system following the constraints elimination method (denoted by
DISP ELIM) and the multiplier elimination method (denoted by MULT ELIM)
when using the PBC. Both linear (8-node) and quadratic (27-node) elements are
considered. For each RVE size, the constraints elimination method allows reduc-
ing the total number of unknowns of the problems and requires less computational
time in comparison with the multiplier elimination method, in which the total
unknowns consist of the unknowns from all mesh nodes. When using quadratic
elements, the computation time increases with the RVE size with a similar trend
as using linear elements.

Figure 3b shows the computational time required to evaluate the macroscopic
tangent operators using the stiffness condensation method described in[8], and the
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Fig. 3 Comparison of the computational time for: (a) system resolution based on the
constraints elimination method (DISP ELIM) and on the multiplier elimination method
(MULT ELIM), and (b) macroscopic tangent operators computation procedures based on the
stiffness condensation (CONDEN) and current procedures (DISP ELIM) and MULT ELIM)
in case of using the periodic boundary condition. Linear elements and quadratic elements are
used in the simulations.

procedures developed herein. While the condensation method needs a significant
computational time, the current procedures (DISP ELIM and MULT ELIM) re-
quires a computational time much smaller. When considering a larger problem
with quadratic elements, the condensation procedure could not be performed with
our machine by lacks of memory (more than 30 GB reported when considering the
RVE of dimensions 3Lref × 3Lref × Lref) while the developed methods could still
be performed.

4.1.2 Thermal homogenization

In a thermal problem, both the macroscopic temperature TM and its gradient
HM are used for the macro-micro transition. The basic constraint elementary
components following Eqs. (34, 35) are particularized asKM = K1

M =
[
TM HT

M

]T
Skm =

[
1 Xm1 Xm2 Xm3

] , (105)

where TM is the macroscopic temperature and where HT
M is the macroscopic

temperature gradient. The constraints elimination method is used in this section.
The homogenized thermal conductivity of a poly-silicon layer of dimensions of

1.5µm×1.5µm×0.2µm is studied. The poly-silicon layer consists of 10 grains, see
Figs. 4a,b for its geometry and its finite element mesh. Each grain is identified by a
number 1 to 10. Based on theoretical models and experimental measurements, the
thermal conductivity of a single grain relates to its size, the impurity concentration
and type [65]. As each grain has a different size, the thermal conductivity for each
grain needs to be estimated and is given in Tab. 1, see [48].

As the grain intersected at the RVE boundary does not match on opposite
faces, a periodic mesh can not be obtained in general. Therefore, the interpolation-
based periodic boundary condition is considered with the Coons patch formulation
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Fig. 4 A RVE geometry of a poly-silicon: (a) geometry and (b) finite element mesh

Table 1 Thermal conductivity in each grain

Grain ID Thermal conductivity Grain ID Thermal conductivity
(Wm−1K−1) (Wm−1K−1)

1 82.39 6 68.92
2 99.92 7 75.23
3 86.27 8 89.26
4 74.17 9 67.19
5 50.58 10 77.17
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Fig. 5 Macroscopic thermal conductivity in the horizontal direction κM in terms of the total
number of DOFs used in the interpolation basis. The one obtained by the LDBC is also
reported.

based on Lagrange or cubic spline interpolants [50] and with the finite element-
based formulation [63]. The obtained results are shown in Fig. 5 and compared
to the one obtained by LDBC. The convergence in terms of the total number of
DOFs used in the interpolation basis is observed. The interpolation-based periodic
boundary condition provides a better estimation than LDBC. The converged value
obtained by the IPBC based on the element-based formulation is smaller than the
one obtained by the IPBC based on the patch Coons formulation as a stronger
kinematic space is used in the latter. However, the method based on the Coons
patch formulation is more efficient in terms of the number of DOFs required for
the interpolation basis.
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4.2 Second-order mechanical homogenization

In the second-order mechanical FE2 scheme [10], the macro-scale gradient of the
deformation gradient, denoted by GM = FM ⊗∇0, is used as a kinematic variable
besides FM . Therefore both FM and GM must be considered in the macro-micro
scale transition when defining the second-order microscopic boundary condition.
The basic constraint elementary components following Eqs. (34, 35) are particu-
larized by considering

KkM = [FMk1 FMk2 FMk3 GMk11 GMk12 GMk13

GMk21 GMk22 GMk23 GMk31 GMk32 GMk33]T

Skm = [Xm1 Xm2 Xm3Xsq11 Xsq12 Xsq13

Xsq21 Xsq22 Xsq23 Xsq31 Xsq32 Xsq33]

with k = 1, 2, 3

, (106)

where Xsq = 1
2Xm⊗Xm. The unit cell of dimensions Lref×Lref×Lref consisting

of 1176 quadratic brick elements as described in Section 4.1.1 is used. The macro-
scopic tangent operators are estimated by the multiplier elimination approach
(MULT ELIM). As the mesh is periodic, LDBC, IPBC, and PBC are used for the
comparison purpose.

The results of the macroscopic in-plane shear modulus GM and of the second-
order modulus JM (component 112112) obtained by the LDBC, IPBC, and PBC
in terms of the total number of DOFs used in the IPBC basis are shown in Figs.
6a and b, respectively. The macroscopic tangent properties given by the IPBC
are bounded by the ones given by the LDBC and the PBC and converge when
increasing the total number of DOFs used in the interpolation basis. The IPBC
results based on the finite elements converge to the ones given by the PBC, while
the IPBC results based on the patch Coons formulations are stiffer as a results
of a stronger kinematic statement. However, the interpolation method based on
the Coons patch formulation (both Lagrange and cubic spline) is more efficient in
terms of the number of DOFs used in the interpolation basis.
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Fig. 6 Second-order interpolation-based periodic boundary condition : (a) macroscopic in-
plane shear modulus GM and (b) macroscopic second-order modulus JM in terms of the total
number of degrees of freedom (DOFs) used in the interpolation basis of the IPBC. The ones
obtained by the LDBC and the PBC are also reported.
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4.3 Fully-coupled thermo-mechanical two-scale problem

4.3.1 Multi-scale strategy

SOLVE

Full problem
Two-scale problem

Macro-BVP

Micro-BVP

Fig. 7 Two-scale strategy for fully-coupled thermo-mechanical problems

For a problem with evolving microstructure, the direct solution could not be
performed as an enormous numerical system arises. A two-scale modeling strategy
is defined by introducing two BVPs, one at the micro-scale (denoted with the
subscript m) and one at the macro-scale (denoted with the subscript M), see Fig.
7. The macroscopic BVP takes the form [66,67]{

PM ·∇0 + B0M = 0

CM ṪM − r̂M −DM + qM ·∇0 = 0
, (107)

where PM is the first Piola-Kirchhoff stress tensor, B0M is the body force, CM is
the macroscopic heat capacity per unit temperature, r̂M is the macroscopic exter-
nal heat supply, qM is the macroscopic heat flux vector per unit reference surface,
and DM is the macroscopic mechanical dissipation. The required constitutive re-
lations {

PM = PM (FM , TM ,HM ; ZM )

qM = qM (FM , TM ,HM ; ZM )
, (108)

as well as B0M , cM , r̂M and DM are obtained from the microscopic BVP. By
assuming the microscopic characteristic time and length are much smaller than
their macroscopic counterparts [17,19], the microscopic BVP is simplified under
the steady state assumption by{

Pm ·∇0 = 0

qm ·∇0 = 0
, (109)
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with the constitutive relations{
Pm = Pm (Fm, Tm,Hm; Zm)

qm = qm (Fm, Tm,Hm; Zm)
, (110)

explicitly known as the constitutive behavior of the material laws associated to
the microstructure constituents. Possible microscopic boundary condition types
and the finite element resolution of the microscopic problem were discussed in the
previous sections. The basic constraint elementary components following Eqs. (34,
35) are particularized as

KkM =


[
FMk1 FMk2 FMk3

]T
with k = 1, 2, 3[

TM HM1 HM2 HM3

]T
with k = 4

Skm =


[
Xm1 Xm2 Xm3

]
with k = 1, 2, 3[

1 Xm1 Xm2 Xm3

]
with k = 4

. (111)

Besides the first Piola-Kirchhoff stress and the heat flux vector, the body force
B0M , the macroscopic heat capacity per unit temperature CM , the macroscopic
external heat supply r̂M , and the macroscopic mechanical dissipation DM are
upscaled by defining Z in Eq. (27) as

Zm =
[
BT0m Cm r̂m Dm

]T
and ZM =

[
BT0M CM r̂M DM

]T
. (112)

4.3.2 Numerical application

In this section, the thermo-mechanically loaded plate is considered, see Fig. 8.
The infinitely long plate is made from a particle reinforced composite material
with spherical inclusions which are periodically distributed in a matrix and with
a fiber fraction of 30 %, see Fig. 8a. The inclusion diameter of 137 µm is much
smaller than the macroscopic dimensions of the plate (30 mm × 1200 mm), which
allows formulating a macro-scale plane strain problem while considering a three-
dimensional representative volume element at the micro-scale, see Fig. 8b. The
geometry and boundary conditions at the macro-scale are the same as considered
in [17].

 
 
 

 
 
 

 
 
 

(a) (b)

Fig. 8 A two-scale thermo-mechanical test: (a) geometry and (b) two-scale model with macro-
scopic boundary conditions and representative volume element
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Table 2 Material constants at the reference temperature T0 = 293 K [17]

Constant Notation (unit) Matrix Fiber
Bulk modulus K (GPa) 73.53 213.89
Shear modulus µ (GPa) 28.19 160.42
Initial yield stress τy0 (MPa) 300
Hardening modulus H0 (MPa) 150
Thermal expansion coefficient α (10−6K−1) 23.6 5
Thermal conductivity κ (Wm−1K−1) 247 38
Specific heat capacity C (106 Jm−3K−1) 2.43 3.38

The reference configuration is defined at the initial temperature T0 = 293
K. Due to the symmetry of the macroscopic problem, a half of plate is studied.
The plate is clamped on its right side. The symmetry condition is considered for
the left side. At the top side, a uniformly-distributed load is applied following
the vertical direction by a time-dependent function qY = −10t Nm−2, and the
temperature is prescribed by a time-dependent function T = T0 + 23t K, where
T0 is the initial temperature. The bottom side is stress-free and its temperature is
kept constant to the initial value T0. The microscopic problem is considered in a
cubic representative volume element of dimensions 165 µm × 165 µm × 165 µm
with a spherical inclusion of diameter 137 µm.

The matrix is modeled by a thermo-J2-elastoplastic constitutive model, see
Appendix B. The strain hardening behavior is characterized by a linear hardening
law coupled with a linear thermal softening as

τy (γ, Tm) = (τy0 +H0γ) [1− ωT (Tm − T0)] , (113)

where τy0 is the initial yield stress, where H0 is the hardening modulus at the
reference temperature T0, where γ is the equivalent plastic strain, and where ωT is
the thermal softening modulus. In this section, a constant value of ωT = 0.002 K−1

is considered. The thermo-plastic heating is characterized by the Taylor-Quinney
factor β whose value is 0.9 and kept constant during the simulation. The fibers
obey to a linearly elastic constitutive law. The material constants of the matrix
and the fibers at the initial temperature T0 = 293 K are detailed in Tab. 2. The
fiber-matrix interface is assumed to be perfectly bonded.

The microscopic BVP is resolved by the multiplier elimination approach de-
scribed in Section 3.3. For comparison purpose, the problem is analyzed with the
PBC and the IPBC. The IPBC is considered with the patch Coons formulation
based on the Lagrange interpolant of order 9 and the cubic spline interpolant of
order 5. The simulations are performed until the final time of 10 s.

To assess the choice of the time step size, the multi-scale simulations are first
conducted using the PBC with different step sizes, leading to 10, 25 and 40 steps.
The homogenized responses in terms of the horizontal reaction force versus the
vertical displacement of the section at the symmetry plane are depicted in Fig. 9a,
showing that the time step size corresponding to 25 steps can be used to ensure
the accuracy.

The results given by the IPBC based on the Coons patch formulation are com-
pared to the one given by the PBC in Fig. 9b. The results given by the Lagrange
and cubic spline interpolants coincide as the interpolation orders used are enough
to capture the deformation modes. The IPBC results in a stronger kinematic space
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Fig. 9 Horizontal reaction force versus vertical displacement of the section at the symmetry
plane: (a) influence of number of time steps when using PBC and (b) results comparison for
25 time steps

as compared to the PBC as discussed in previous sections, and leads to a stiffer
homogenized behavior. The two-scale solution using the PBC is presented in Fig.
10 at the final time (t = 10 s). The equivalent plastic strain and the temperature
distribution at the microscopic scale are shown.

Fig. 10 Two-scale solution with the PBC at the final time t=10 s
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5 Conclusion

In this work, a unified approach is developed, which allows enforcing arbitrary
types of microscopic boundary conditions in multi-scale analyses. The microscopic
boundary condition leads to a system of multi-point linear constraints. In order to
enforce these constraints into the microscopic finite element equations, two meth-
ods based on the Lagrange multiplier elimination and on the constraints elimina-
tion are described. From the linearized system of the nonlinear equations of the
microscopic BVP, the macroscopic tangent operators can be directly estimated
without any significant computational cost. The capability of the proposed pro-
cedure is demonstrated in the microscopic analyses as well as in a fully-coupled
thermo-mechanical two-scale problem.
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A Tensor-vector conversion rule

Considering an arbitrary 3-dimensional nth order tensor A = Ai1i2...in , all its components
can be rewritten in a vector B with one index k by

B = vec (A)↔ Bk = Ai1i2...in with k = in + 31(in−1 − 1) + . . .+ 3n−1(i1 − 1) , (114)

where B is a vector of 3n components. With an arbitrary tensor group A =
[
AT

1 . . . AT
N

]T
,

its vector representation is defined by

vec (A) =

 vec (A1)
...

vec (AN )

 . (115)

B Fully-thermomechanical J2 elastoplastic material law

Under the large deformation framework, the deformation gradient F, whose Jacobian J =
detF > 0, can be decomposed as

F = Fe · Fp , (116)

where Fe and Fp represent respectively the elastic and plastic parts satisfying detFe = J
and detFp = 1 . The material model is based on the hyperelastic assumption with an elastic
potential given by

U (Ce, T ) =
K

2
[ln J − 3α (T − T0)]2 +

G

4
dev (lnCe) : dev (lnCe) , (117)

where dev • and tr • represent the deviatoric and trace operators, where K and G are bulk and
shear moduli, where α is the thermal dilatation coefficient, where T and T0 are the current
and initial temperatures, and where Ce = FTe · Fe is the elastic right Cauchy strain tensor.
The logarithmic mechanical elastic strain tensor is defined by

Ee =
1

2
lnCe . (118)
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Equation (117) can be rewritten as

U =
K

2
[trEe − 3α (T − T0)]2 +GdevEe : devEe . (119)

During the elastic stage, the first Piola-Kirchhoff stress can be estimated by

P =
∂U

∂F
= 2Fe ·

∂U

∂Ce
· F−Tp = Fe · (τ : L) · F−Tp , (120)

where

L =
∂ lnCe

∂Ce
, (121)

and where

τ =
∂U

∂Ee
=
(
KI⊗ I + 2GIdev

)
: Ee − 3Kα (T − T0) I . (122)

It can be shown that the stress measure τ is the Kirchhoff stress expressed in the elastic
corotational space [68].

The J2 elastoplastic model is considered with the von Mises yield surface in the corotational
space

τeq − τy (γ, T ) ≤ 0 , (123)

where τeq =
√

3
2

dev τ : dev τ , and where τy is the yield stress, which depends on the equivalent

plastic strain γ and on the temperature. The strain hardening modulus and thermal softening
modulus can be respectively defined by

Hγ =
∂τy

∂γ
≥ 0 and HT =

∂τy

∂T
≤ 0 . (124)

The plastic deformation evolution follows an associated flow rule by

Dp = Ḟp · F−1
p = γ̇N , (125)

where γ̇ is the equivalent plastic strain rate and where N is the flow normal given by

N =
∂f

∂τ
=

3

2

dev τ

τeq
. (126)

The thermal flux can be expressed in the reference configuration from a mapping of the
Fourier law defined in the current configuration by

q = J (κ∇T ) · F−T = χ ·∇0T , (127)

where κ is the thermal conductivity and where

χ = Jκ
(
F−1 · F−T

)
. (128)

At a temperature T , the resolution of the system of Eqs. (120, 122, 123, 125) follows the
predictor-corrector scheme during the time interval [tn tn+1] as described in [69]. The elastic
and plastic powers are respectively estimated by the relations

Ẇ el = P :
(
Ḟe · Fp

)
, and Ẇ p = P :

(
Fe · Ḟp

)
. (129)

Using Eqs. (123, 125), one has

Ẇ p = P : (Fe ·Dp · Fp) = τ : Dp = γ̇τ :
3

2

dev τ

τeq
= γ̇τy . (130)

The mechanical source D is thus given by

D = βγ̇τy + T
∂Ẇ el

∂T
, (131)

where β is the TaylorQuinney factor.
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