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Abstract
With the increasing share of renewable and distributed generation in electri-
cal distribution systems, Active Network Management (ANM) has become a
valuable option for a distribution system operator to operate his system in a
secure and cost-effective way without relying solely on network reinforcement.
ANM strategies are short-term policies that control the power injected by gener-
ators and/or taken off by loads in order to avoid congestion or voltage issues.
While simple ANM strategies consist of curtailing temporary excess generation,
more advanced strategies instead attempt to move the consumption of loads to
anticipated periods of high renewable generation.

Such advanced strategies mean that the system operator has to solve large-scale
optimal sequential decision-making problems under uncertainty. The problems
are sequential for several reasons. For example, decisions taken at a given
moment constrain the future decisions that can be taken, and decisions should
be communicated to the system’s actors sufficiently in advance to give them
enough time for implementation. Uncertainty must be explicitly accounted for
because neither demand nor generation can be accurately forecasted.

This dissertation presents various research contributions about ANM for dis-
tribution systems. These contributions range from the motivation of using
a framework of sequential decision-making under uncertainty to the study of
computational methods that implement ANM strategies. A particular emphasis
is placed on the formulation of the problem, which ultimately falls within the
class of Markov decision processes. The modeling of stochasticity is explored
and a novel approach that relies on a Gaussian Mixture Model is presented.
Computational methods including several relaxations and approximations of
multi-period and multi-scenario extensions of the optimal power flow problem
with discrete decision variables were considered.





Résumé
Avec la part croissante de production renouvelable et distribuée dans les réseaux
électriques de distribution, la gestion active des réseaux de distribution devient
une option crédible pour permettre aux gestionnaires de réseaux de distribution
d’opérer leurs systèmes électriques. Les stratégies de gestion active sont des
politiques de contrôle à court terme qui modulent la puissance injectée par
les générateurs et/ou consommée par les charges afin d’éviter des problèmes
de congestion ou de tension. Si les stratégies les plus simples se contentent
de réduire les excès temporaires de production, d’autres plus complexes visent
plutôt à anticiper les périodes de forte production renouvelable pour y déplacer
la consommation des charges.

De telles stratégies signifient que le gestionnaire de réseau doit résoudre des
problèmes de prise de décisions séquentielles sous incertitude et de grande
taille. Ces problèmes sont séquentiels pour plusieurs raisons. Par exemple,
certaines décisions prises à un instant donné contraignent les décisions qui peuvent
être prises dans le futur. Les décisions doivent également être communiquées
suffisamment à l’avance aux acteurs du système pour leur laisser le temps de les
implémenter. L’incertitude doit être explicitement prise en compte à cause de
l’imprécision des prévisions de consommation et de production.

Cette dissertation présente des contributions de recherche en gestion active des
réseaux électriques de distribution. Ces contributions abordent notamment la
motivation du cadre de décisions séquentielles sous incertitude et l’étude des méth-
odes de calcul qui implémentent les stratégies de gestion active. Une attention
particulière est portée sur la formulation du problème, qui est finalement présenté
comme un processus de décision markovien. Une approche originale reposant
sur un modèle de mélange gaussien est décrite pour représenter l’incertitude.
Des méthodes de calcul sont également considérées, en particuliers différentes
relaxations et approximations d’extensions multi-périodes et multi-scénarios du
problème d’écoulement de puissance optimal avec des variables entières.
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1
Overview

The first chapter introduces and motivates the active network management
problem. It also details and summarizes the main contributions contained in
this dissertation.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Main contributions . . . . . . . . . . . . . . . . . . . . 3
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1.1 Introduction

In Europe, the 20/20/20 objectives of the European Commission and the
consequent financial incentives established by local governments are currently
driving the growth of electricity generation from renewable energy sources [1].
A substantial part of the investments is made at the distribution networks (DN)
level and consists of the installation of wind turbines or photovoltaic panels.
The significant increase of the number of these distributed generators (DGs)
undermines the fit and forget doctrine, which has dominated the planning
and operation of DNs until now. This doctrine was developed when energy
was transmitted from the transmission network (TN) to consumers, through
the distribution network (DN). With this approach, adequate investments in
network components (i.e., lines, cables, transformers, etc.) are made to avoid
congestion and voltage issues, without requiring continuous monitoring and
control of the power flows or voltages. To that end, network planning is done
with respect to a set of critical scenarios in which information is gathered about
production and demand levels, in order to always ensure sufficient operational
margins. Nevertheless, with the rapid growth of DGs, the preservation of such
conservative margins implies significant network reinforcement costsi, because
the net energy flow may be reversed, from the distribution network to the
transmission network, and flows within the distribution network may be very
different from those observed historically.

In order to host a larger share of distributed generation [2] and avoid poten-
tially prohibitive reinforcement costs [3], active network management (ANM)
strategies have recently been proposed as alternatives to the fit and forget
approach. The principle of ANM is to address congestion and voltage issues via
short-term decision-making policies [4]. Frequently, ANM schemes maintain
the system within operational limits in quasi real-time by relying on the cur-
tailment of wind or solar generation [5, 6, 7]. Curtailment of renewable energy
may, however, be very controversial from an environmental point of view and
should probably be considered as a last resort. With that mindset, it is worth
investigating ANM schemes that could also exploit the flexibility of the loads, so
as to decrease the reliance on generation curtailment. Exploiting flexible loads
within an ANM scheme comes with several challenges. One such challenge is
that modulating a flexible load at one instant will often influence its modulation
range at subsequent instants. This is because flexible loads (e.g. heat pumps)

iNetwork reinforcement is the process of upgrading the transmission capacity of lines, cables,
transformers, and other devices. As distribution systems of interest in this paper mostly
comprise underground cables, upgrading them implies a lot of infrastructure work.
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are often constrained to consume a specific amount of energy over a certain
duration. In this context, it is therefore important for a distribution system
operator (DSO) to take decisions by planning operations over a sufficiently long
time horizon [8, 9, 10]. The uncertainty of future power injections from DGs
relying on natural energy sources (wind, sun, etc.), as well as the uncertainty
of the power consumption of the loads, should also be explicitly accounted for
in the ANM strategy. An accurate model of this uncertain dynamical system
is critical in order to take adequate control actions. Moreover, and contrary to
wider power systems, the uncertainty about stochastic quantities (e.g. wind
speed, solar irradiance, load consumption) is not softened by an averaging
effect because of the local nature of distribution systems.

In this work we consider the operation of the medium-voltage (MV) network of
the DSO, i.e. low voltage subnetworks are aggregated, since in general current
DSOs’ dispatching centers only monitor the MV part, and ANM in low voltage
distribution systems is generally performed using distributed algorithms [11].

1.2 Main contributions

This dissertation is mainly a collection of research publications. This section
describes the contributions contained in the dissertation and the publications
from which the content is derived.

1.2.1 Planning under uncertainty

Chapter 2 introduces the problem faced by a DSO when planning the operation
of a network in the short-term and in the context of high penetration of
distributed generation. A small test system is designed and serves a case study
that highlights the importance of explicitly taking the uncertainty into account
to efficiently operate demand-side flexibility.

This chapter is based on the following publication:

• Gemine, Q., Karangelos, E., Ernst, D., & Cornélusse, B. (2013). Active
network management: planning under uncertainty for exploiting load
modulation. In Proceedings of the 2013 IREP Symposium - Bulk Power
Systems Dynamics and Control - IX. IEEE.
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1.2.2 Multi-period optimal power flow problems

Chapter 3 presents a novel relaxation for mixed-integer nonlinear programs
(MINLP) resulting from a class of OPF applications where some loads offer a
modulation service in exchange for an activation fee. This relaxation is based
on a network-flow reformulation and, while it produces lower bounds that are
comparable with a Lagrangian relaxation, it reduces the infeasibility of the
relaxed solution with respect to the original problem.

This chapter is based on the following publication:

• Gemine, Q., Ernst, D., Louveaux, Q., & Cornélusse, B. (2014). Relax-
ations for multi-period optimal power flow problems with discrete decision
variables. In Proceedings of the 18th Power Systems Computation Con-
ference (PSCC’14).

1.2.3 Stochastic modeling

Chapter 4 exposes a novel algorithm that models a stochastic process as a
Markov process from a set of time series of observations and using a multivariate
Gaussian Mixture Model (GMM). The hyper parameters of the model, i.e. the
Markov order and the number of mixture components, are determined using
a multi-armed bandit technique, while the mixture parameters are learned
from the data using an Expectation-Maximization (EM) algorithm. Empirical
results show that the proposed approach outperforms an autoregressive moving-
average (ARMA) approach for the considered application of lookahead security
analysis, for datasets of residential power consumption and of wind speed.

This chapter is based on the following publication:

• Gemine, Q., Cornélusse, B., Glavic, M., Fonteneau, R., & Ernst, D.
(2016). A Gaussian mixture approach to model stochastic processes in
power systems. In Proceedings of the 19th Power Systems Computation
Conference (PSCC’16).
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1.2.4 Formulation, benchmark, and approximate solution

In Chapter 5, the ANM problem is formulated as a Markov Decision Process
(MDP) and then casted as a stochastic mixed-integer nonlinear program,
as well as second-order cone and linear counterparts. Three test beds of
different complexity are presented for which we provide quantitative results
using state-of-the-art solvers and perform a sensitivity analysis over the size
of the system, the amount of available flexibility, and the number of scenarios
considered in the deterministic equivalent of the stochastic program. To
foster further research on this problem, we have made the systems available
at http://www.montefiore.ulg.ac.be/~anm/ as Python code. This code
contains a simulator of the distribution system, with stochastic models for the
generation and consumption devices, and eases the implementation and testing
of various ANM strategies.

This chapter is based on the following publications:

• Gemine, Q., Ernst, D., & Cornélusse, B. (2014). Gestion active d’un
réseau de distribution d’électricité : formulation du problème et bench-
mark. In Proceedings des 9èmes Journées Francophones de Planification,
Dècision et Apprentissage.

• Gemine, Q., Ernst, D., & Cornélusse, B. (2016). Active network manage-
ment for electrical distribution systems: problem formulation, benchmark,
and approximate solution. To appear in Optimization and Engineering.

1.2.5 Realistic test system

Chapter 6 confronts the tools studied in this thesis with a test system designed
based on a real distribution system. We evaluate the performance of the
lookahead policy described in Chapter 5 in operating the realistic test system.
In addition, the GMM approach presented in Chapter 4 is used to model the
stochastic processes from actual measurement data. The obtained numerical
results highlight the sensitivity of a policy’s performance to the quality of the
lookahead model and thus to the adequacy of the historical data from which
stochastic models are learned.

http://www.montefiore.ulg.ac.be/~anm/
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1.2.6 Appendix: the microgrid case

The material presented in Appendix A falls within the context of the optimiza-
tion of the levelized energy cost of microgrids featuring photovoltaic panels
associated with both long-term (hydrogen) and short-term (batteries) storage
devices. I contributed to this research as a secondary author and mainly focused
on the problem formulation. This formulation encompasses the state and action
spaces, the exogenous variables, as well as the discrete-time dynamics of the
system.

This chapter is based on the following publication:

• François-Lavet, V., Gemine, Q., Ernst, D., & Fonteneau, R. (2016).
Towards the minimization of the levelized energy costs of microgrids using
both long-term and short-term storage devices. Smart Grid: Networking,
Data Management, and Business Models, 295-319.
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Planning under
uncertainty for
exploiting load

modulation
This chapter addresses the problem faced by a distribution system operator
(DSO) when planning the operation of a network in the short-term. The
problem is formulated in the context of high penetration of renewable energy
sources (RES) and distributed generation (DG), and when flexible demand is
available. The problem is expressed as a sequential decision-making problem
under uncertainty, where, in the first stage, the DSO has to decide whether
or not to reserve the availability of flexible demand, and, in the subsequent
stages, can curtail the generation and modulate the available flexible loads. We
analyze the relevance of this formulation on a small test system, discuss the
assumptions made, compare our approach to related work, and indicate further
research directions.
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2.1 Introduction

The principle of active network management (ANM) is to address congestion
and voltage issues via short-term decision-making policies [4], developed on
the basis of the optimal power flow (OPF) problem formulation [12]. Liew and
Strbac [5] considered a deterministic problem formulation with the objective of
minimizing the market value of the curtailed DG energy production. Dolan
et al. [7] developed a deterministic, OPF-based adaptation of the ‘last-in,
first-off’ operating practice. A multi-period framework has been considered to
account for the effects of the variability of renewable DG resources [6, 13, 14].
In this context, the problem of maximizing the utilization of the available
DG inflow has been addressed [6], as well as the minimization of the energy
losses in the electrical network [13]. The integration of advanced network
constraints, including fault levels and N-1 security, has been established within
this multi-period framework [14].

In these references, ANM schemes maintain the system within operational limits
in a quasi real-time by relying on the curtailment of wind or solar generation.
Curtailment of renewable energy may, however, be very controversial on an
environmental point of view and should probably be considered as a last resort.
In that mindset, it would be worth investigating ANM schemes that could also
exploit the flexibility of the load, so as to decrease the reliance on generation
curtailment. Let us consider a typical case where, due to a high production
of renewable energy, the distribution network sends an amount of power to
the transmission network that creates congestion at the MV/HV transformer.
By asking flexible loads of the distribution network (DN) to increase their
consumption at that time, the congestion could potentially be relieved without
having to rely on renewable generation curtailment. Well-known examples of
flexible loads are electric heaters, boilers, and electric car batteries. It is worth
noting that exploiting flexible loads within an ANM scheme comes with several
challenges. One such challenge is that modulating a flexible load at one time
is often going to influence its modulation range at subsequent times. This is
because flexible loads are often constrained to consume a specific amount of
energy over a certain duration. In the above example, this would imply that
after increasing the consumption of the flexible loads during a certain time
period, the DSO would be constrained to later decrease their consumption,
which may significantly aggravate congestion. In this context, it is therefore
important for a DSO not to take myopic decisions, but to make decisions by
planning over a relevant time horizon. Due to the uncertainty of the future
power injections from renewable sources relying on natural phenomena (wind,
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sun, etc.) and of the power consumption of the loads, this would necessarily
imply for the DSO to implement ANM scheme able to plan adequately control
actions under uncertainty, which may be very challenging.

In this chapter, we consider that the DSO can rely on both generation curtail-
ment and load modulation for the active management of the network. We focus
on a specific setting where the DSO can procure the right to control the demand
pattern of the flexible loads, in exchange for an availability fee. We also assume
that the DSO has to pay a fee per MWh of energy curtailed, and that the fee
depends on the market price of electricity at the time of curtailment. In this
context, we discuss the way the DSO should plan the control actions to operate
safely the network at minimal cost. In the following section, we describe the
main characteristics of the ANM problem. Following this, we formalize the
problem as an optimal sequential decision-making problem under uncertainty,
and discuss resolution strategies. The chapter concludes with simulation results
obtained on a six bus test system. These results show that proper management
of the uncertainty can be very beneficial.

2.2 Problem description

We focus on the problem faced by a DSO that aims at maintaining the network
infrastructure within operational limits over a one day horizon. We consider
the possibility that the DSO can impose power curtailment instructions on the
DG resources, in exchange for financial compensation. From the alternative
payment structures outlined in [15], we adopt a scheme where the per unit
compensation is defined as the electricity market price for the curtailment
period.

In addition, we account for the possibility for the DSO to procure the right to
control the demand pattern of the flexible loads in exchange for an availability
fee. Unlike non flexible loads, we consider that a load participating in this flex-
ibility market must be able to precisely follow both the instructed modulations
if the flexibility offer is selected by the DSO, or the baseline demand profile,
if this option is not selected. There is therefore no uncertainty introduced by
these loads. In summary, we characterize the flexible operating region of such
loads through the following features:

• A baseline demand profile, to be followed with certainty unless instructed
by the DSO.

• Upward and downward demand modification limits per period.
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Figure 2.1: Decision framework.

• A net energy balance requirement, so that any instruction by the DSO
should not modify the net energy volume consumed by a flexible load
over the optimization horizon, with respect to the baseline profile.

The time horizon covered in this problem is accounted by optimizing the
operation of the system over a set of t ∈ [1, T ] discrete periods. The decision
framework illustrated in Figure 2.1 consists of:

• An ex-ante stage, in which the provision of load flexibility is settled,
which can coincide with the termination of the usual day-ahead trading
process.

• A series of recourse opportunities, at the start of every market period,
during which the DSO can rely to submit curtailment orders.

Finally, we have a set of k ∈ [0, T ] decision stages. At the ex-ante decision stage
(k = 0), the energy inflow from the DG units and the demand of non-flexible
loads are uncertain for all the periods within the optimization horizon t ∈ [1, T ].
Moreover, at each recourse stage k ∈ [1, T ], these quantities are assumed to be
known with certainty for periods t ∈ [1, k] but are uncertain for the subsequent
time interval t ∈ [k + 1, T ]. Within each period, the behavior of the network
is modeled by steady-state AC power flow equations, to allow us to state
operational limits on voltage, current, and power.

2.3 Sequential decision-making under uncertainty

We gradually define the elements of an optimal sequential decision-making
problem, and then enrich the problem by modeling the uncertainty explicitly,
to allow us to state the detailed formulation of the targeted application in the
next section.
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Figure 2.2: States and control actions.

2.3.1 Optimal sequential decision-making

We place ourselves in a setting where we want to control the evolution of a
system over a time horizon discretized in T time steps. Sequential decision-
making problems arise when the decisions taken before the time t < T influence
the decisions available between times t and T . Therefore, the problem cannot
be decomposed into a sequence of T independent problems.

Let x ∈ X be the state variable, that is the vector describing the system,
and u ∈ U(x) ⊂ U the vector describing a decision, or control action, which
can be taken to modify the state x. By definition, the state contains enough
information so that knowing the control action at time t and the state at the
previous period, respectively ut and xt−1, it is always possible to compute xt,
∀t ∈ {1, 2, ..., T}. In other words, the evolution of the system is guided by the
function

f : X × U → X

such that
xt = f(xt−1, ut).

This is illustrated schematically in Figure 2.2. In our specific framework, given
that the initial decision stage does not coincide with a specific period, we adapt
the previous notation for x1 and introduce f1 : U0 × U → X , to obtain

x1 = f1(u0, u1)
xt = f(xt−1, ut),∀t ∈ {2, ..., T}

A sequence of control actions (u0, u1, u2, ..., uT ) is admissible if x stays within X
for t ∈ {1, 2, ..., T}. To ease notations, we denote (u0, u1, u2, ..., ut) by u[t] and
(x1, x2, ..., xt) by x[t] and pose T = {2, 3, ..., T}, x = x[T ], u = u[T ]. To guide
the choice of a sequence of control actions from all the admissible sequences,
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we need to define an objective function

J : X T × U0 × UT → R.

The optimal sequential decision-making problem can then be summarized as

min
x,u

J(x,u) (2.1)

s.t. x1 = f(u0, u1) (2.2)
xt = f1(xt−1, ut), ∀t ∈ T (2.3)
xt ∈ Xt, ∀t ∈ {1} ∪ T (2.4)
ut ∈ Ut(xt−1), ∀t ∈ T (2.5)
u1 ∈ Ut(u0) (2.6)
u0 ∈ U0 (2.7)

In this work, we consider that u contains generation curtailment and flexible load
modulation decisions and that x contains the flexibility availability indicator
and the energy already supplied to each flexible load. One exception is that u0
only contains flexibility provision decisions. All the variables describing the
electrical state of the system are also included in x. As we consider steady
state operation of the electrical system, these variables are time independent
knowing the energy already supplied to each flexible load. Hence, the transition
function f propagates the flexibility availability indicator and accumulates the
energy supplied to each flexible load, whereas x ∈ X ensures that the power
flow equations and operational limits are satisfied. Finally, J(x,u) is the sum
of curtailment and flexibility provision costs, and is decomposable by period.

2.3.2 Handling uncertainty

Many problems can be formulated as computing an optimal sequence of decisions
over a time horizon tarnished with uncertainty, and allowing a series of recourse
opportunities to adapt the sequence of decisions to the outcome of the random
process representing the uncertainty. One of the first power system applications
where uncertainty was explicitly considered was the unit commitment problem
[16]. In the mathematical programming community, this type of problem is
referred to as a multi-stage stochastic program (MSP). A classical way to
formulate a MSP is to optimize the expectation of an objective function of
several variables over an uncertainty set of the parameters, the variables being
required to satisfy constraints for all possible realizations of the uncertain
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Figure 2.3: States, control actions and uncertainty.

parameters, and to impose the structure of the recourse opportunities. In doing
so, control actions are taken so as to hedge against the possible evolutions of
the exogenous variables of the system.

Let ξ be a stochastic process defined on the probability space (Ω,F,P). ξt
is a realization of ξ at time t ∈ {1, 2, ..., T} and the notation ξ[t] represents
the sequence (ξ1, ..., ξt). We now consider that the evolution of the system as
well as the control actions are functions of those exogenous variables. This is
expressed by xt(ξ[t]) and ut(ξ[t]), and is illustrated schematically in Figure 2.3.
The optimal sequential decision-making problem (2.1)–(2.7) can be adapted to
handle uncertainty as follows:

min
x(ξ[T ])
u(ξ[T ])

Eξ[T ]

{
J(x(ξ[T ]),u(ξ[T ]), ξ[T ])

}
(2.8)

s.t. x1(ξ1) = f1(u0, u1(ξ1), ξ1) (2.9)
u0 ∈ U0 (2.10)
u1(ξ1) ∈ Ut(u0, ξ1) (2.11)
∀t ∈ T ,
xt(ξ[t]) = f(xt−1(ξ[t−1]), ut(ξ[t]), ξt) (2.12)
ut(ξ[t]) ∈ Ut(xt−1(ξ[t−1])) (2.13)
∀t ∈ {1} ∪ T ,
xt(ξ[t]) ∈ Xt (2.14)

As the process ξ[T ] does not have a finite number of realizations in the ap-
plications that we target, this formulation leads to an infinite dimensional
optimization problem [17]. We now present a common method of approximat-
ing this problem.
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2.3.3 Scenario tree based approximation

We approximate the random process with a discrete distribution and a finite
support in order to build scenarios (Figure 2.4a) of possible realizations of the
random process, and to optimize the objective function only for the realizations
of the random process represented by these scenarios. Non-anticipativity
constraints are imposed to enforce the structure of the recourse opportunities:
for a given recourse opportunity, all decisions related to scenarios with a
common past must be equal. Each recourse opportunity is called a stage.
To facilitate the representation of these constraints, the scenarios are often
clustered in a scenario tree as shown in Figure 2.4b. The depth of the tree

stage
0 1 2

ξ
(1)
[T ] (x(1),u(1))

ξ
(2)
[T ] (x(2),u(2))

ξ
(3)
[T ] (x(3),u(3))
ξ

(4)
[T ] (x(4),u(4))

(a) Hierarchical clustering into a scenario tree. A unique decision
corresponds to each node of the tree.

stage
0 1 2

u
(1,2,3)
0

(x1, u1, ξ1)(1,2)

(x2, u2, ξ2)(1)

(x2, u2, ξ2)(2)

(x1, u1, ξ1)(3)

(x2, u2, ξ2)(3)

(b) Scenarios and stages.

Figure 2.4: Representation of different possible sequences of realizations thanks to
scenarios. A sequence of decisions corresponds to each scenario.

constructed by this approach is equal to T . With the exception of the root
node, which corresponds to the day-ahead, each node of the tree corresponds
to a realization of the random process at a given stage and has at least one son
for t = 1, ..., T − 1. A scenario contains successive realizations of the random
variable, and is represented in the tree by going from the root node and taking
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one son at each subsequent level down to the final level. Scenario k is denoted
by ξ

(k)
[T ] with k ∈ {1, 2, ...,K} where K is the number of leaves in the tree.

Each node n ∈ {1, 2, ..., N}, where N is the total number of nodes in the tree
truncated at the root node, has an associated occurrence probability wn and
stage t. The node n = 0 corresponds to the root node. We use subscript n to
reference state, control actions and exogenous variables at node n of the tree,
and use subscript [n] to refer to the sequence of states, control actions and
exogenous variables from the root of the scenario tree to node n. Using this
notation, the scenario tree based approximation of problem (2.8)–(2.14) is

min
x,u

K∑
k=1

wkJ(x(k),u(k), ξ
(k)
[T ] ) (2.15)

s.t. xn = f(u0, un),∀n ∈ C(0) (2.16)
u0 ∈ U0 (2.17)
xn′ = f(xn, un′ , ξ[n′]) ∀n′ ∈ C(n),∀n ∈ N (2.18)
xn ∈ Xn,∀n ∈ N (2.19)
un′ ∈ Un′(xn),∀n′ ∈ C(n),∀n ∈ N (2.20)

where wk is the probability of the terminal node in scenario k, C(n) is the set
of successors of node n, and N = {1, 2, ..., N} is the set of nodes of the scenario
tree truncated at its root node.

2.4 Detailed optimization model

This section details the components of the compact formulation presented in
problem (2.15)–(2.20).

2.4.1 Network topology

The network is represented by a graph, where the set of vertices B represents
the electrical buses and the set of edges L contains the links connecting buses.
A nominal voltage level is associated with each bus. In this work we focus
on the MV level network. Several devices can be connected to each bus. We
distinguish three types of devices: generators, static loads, and flexible loads.
These devices represent either a single physical element, such as a wind turbine,
or the aggregation of elements of the same type connected to an individual bus,



16 2. Planning under uncertainty for exploiting load modulation

such as residential loads at the low voltage (LV) level. G, S and F represent the
set of generators, static loads, and flexible loads, respectively. G(b), S(b) and
F(b) represent the devices of each type connected to bus b, respectively. Links
are transformers, lines or cables. No special notation is required to distinguish
different types of links, as these are directly translated into the values of the
admittance matrix.

2.4.2 Parameters

Let Pg,n ≥ 0 be the injection of generator g and Ps,n ≥ 0 and Pf,n ≥ 0 the
off-takes of the static and flexible loads, respectively. Off-takes of each flexible
load are known with certainty and are characterized by the time-dependent
minimum, P f,t, and maximum, P f,t, power levelsi. On the other hand, wind
and solar power injections and off-takes of static loads are considered uncertain.
In addition, we consider that all devices operate at constant power factor cosφd
and their reactive power injections are thus defined by:

Qd,n = tanφdPd,n,∀d ∈ G ∪ S ∪ F .

All electrical parameters are gathered in the admittance matrixii Y ∈ C|B|×|B|.
Operational limits are V b and V b, the minimum and maximum voltage magni-
tude, respectively, and I l, the maximum current.

The cost of flexibility availability and curtailment are Cflexf , and Ccurtg,t , respec-
tively. At any decision stage k ∈ [1, T ], the cost would be uncertain, given that
the curtailed energy would have to be compensated at the real-time market
price.

2.4.3 State variables

The state variable is
x =

(
e>,y>,p>,q>,V>

)
where

• e ∈ R|F| is the vector of the energy status of flexible loads,
iFor simplicity, flexibility bids cover the whole time horizon. Removing this restriction does
not change the nature of the optimization problem.

iiThe operator | · | applied to a set returns its cardinality.
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• y ∈ {0, 1}|F| is the vector of availability indicators of flexible loads,

• p ∈ R|B| is the active power injection vector,

• q ∈ R|B| is the reactive power injection vector,

• V ∈ C|B| is the bus voltage vector (Vb = vbe
jφb).

The slack bus is fixed at the high voltage level side of the transformer connecting
the distribution network to the transmission network. By convention we refer
to this bus as bus 0, and impose v0 = 1 p.u. and φ0 = 0.

2.4.4 Feasible states

To be feasible the state xn must reside within the set Xn defined by:

• ∀b ∈ B, the active and reactive power definition

pb,n + jqb,n = Vb,n
∑
b′∈B

Y ∗b,b′V
∗
b′,n

• ∀b ∈ B, the voltage limits

V b ≤ vb,n ≤ V b

• ∀l ∈ L, the current limits (l connects buses b and b′)

|Ybb′(Vb,n − Vb′,n)| ≤ I l,

• if n is a leaf of the tree, the energy constraint of flexible orders

ef,n =
∑

k∈scenario(n)

Pf,k∆t, ∀f ∈ F .

2.4.5 Control actions

The first stage decision u0 encompasses the flexibility procurement decisions,
uf,0, ∀f ∈ F . For stages 1 to T the control variable is u = (c,m), where
c ∈ R|G| is the vector of curtailment instructions for the generation units and
m ∈ R|F| is the vector of flexible load power modulations.
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2.4.6 Feasible control actions

The control actions un′ are restricted to the set Un′(xn), where n is the parent
node of n′. This set is defined by

• ∀g ∈ G, the generator curtailment limits

cg,n′ ∈ [0, 1]

• ∀f ∈ F , the modulation limits of the flexible loads

mf,n′ ∈
[
P f,n′ − Pf,n′

Pf,n′
yf,n,

P f,n′ − Pf,n′
Pf,n′

yf,n

]
.

For the first stage control action u0, the flexibility provision variables are binary:
u0,f ∈ {0, 1}, ∀f ∈ F .

2.4.7 Transition function

The transitions xn′ = f(xn, un′) are defined by, ∀n′ ∈ C(n) and ∀n ∈ N \{0},

• the evolution of the energy provided to flexible loads

ef,n′ = ef,n + (1 +mf,n′)Pf,n′∆t, ∀f ∈ F

where ∆t is the period duration

• the propagation of the load flexibility availability indicator

yf,n′ = yf,n, ∀f ∈ F

• the net active and reactive power injections, ∀b ∈ B

pb,n′ =
∑
g∈G(b)

cg,n′Pg,n′ −
∑
s∈S(b)

Ps,n′ −
∑

f∈F(b)

(1 +mf,n′)Pf,n′ (2.21)

qb,n′ =
∑
g∈G(b)

cg,n′Qg,n′ −
∑
s∈S(b)

Qs,n′ −
∑

f∈F(b)

(1 +mf,n′)Qf,n′ (2.22)

Finally, ∀n ∈ C(0), we have simply yf,n = uf,0.
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2.4.8 Objective function

The first term of the objective function corresponds to the cost of procuring
the availability of flexible loads in advance. The second term expresses the cost
of the forthcoming energy curtailment decisions.

J(x,u) =
∑
f∈F

yfC
flex
f +

∑
n∈N

wn
∑
g∈G

(1− cg,n)Pg,nCcurtg,t .

2.4.9 Nature of the optimization problem

The presence of flexibility procurement decisions and AC power flow equations
result in a mixed integer and non-linear program (MINLP). Furthermore,
the dependency between periods and the explicit modeling of uncertainty
dramatically increase the dimensions of the problem. In the following sections,
we describe results obtained on a small test system, with a short time horizon
and a moderate number of scenarios. In the concluding section, we discuss
pitfalls and avenues for solving realistic scale instances.

2.5 Case Study

We analyze issues arising at the MV level in some Belgian distribution systems
(Figure 2.5). Often, wind-farms are directly connected to the HV/MV trans-
former, as modeled in our test system by the generator connected to bus 2.
Power off-takes and injections induced by residential consumers are aggregated
at bus 4 by a load and a generator representing the total production of PV
panels. Finally, the load connected to bus 5 represents an industrial consumer.

The cumulative capacity of DG units exceeds the capacity of the HV/MV
transformer. This leads to congestion issues when, within the distribution
network, high generation and low consumption arise simultaneously. Voltage
rises can also be induced in the downstream nodes because the power flow
is mainly directed towards the transformer. On the other hand, when the
local generation level is low and loads consumption is high, the power flow is
inverted, and this can lead to undervoltage problems.
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Figure 2.5: Model of distribution network used for the case study.

The optimization horizon covers three periods. The procurement of load
flexibility occurs before the first period. The stochastic process associated with
this time horizon relates to the uncertainty on the production of renewable
generators. It is modeled through two random variables W and S which define
the efficiency factors of wind and PV generators, respectively (cf. Figure 2.6).
The actual output level of a DG unit is thus its maximum capacity scaled by
the associated efficiency factor. Figure 2.6 shows the scenario tree used for
this case study, comprising eight possible scenarios. As both random variables
model natural phenomena (wind level and sunshine), we expect uncertainty
to increase as we move away from real-time. This is modeled by an increase
in the standard deviation associated with the random process, as shown on
Figure 2.7. Unlike renewable generators, the two loads have peak consumption
during the first two periods. However, both can provide flexibility. The baseline
demand profile and the upward and downward modulation limits are shown
in Figure 2.8. We define the flexibility price, pf , such that the flexibility fees
at buses 4 (aggregated residential load) and 5 (industrial load) equal pf and
1.5pf , respectively.

We compare two sequential decision-making policies:

• the mean scenario approach (MSA): the procurement of flexibility is first
determined by optimizing over the mean scenario. The mean scenario is
updated at each recourse stage, and we solve an optimization problem
for each stage while following the nodes defining the scenario in the tree
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Figure 2.6: Scenario tree used for the case study. The nodes show the values of
the random variables and the label on the edges define the transition probabilities
between nodes.

and fixing the variables related to former periods (i.e., ancestor nodes).
This method is evaluated for each scenario of the case study.

• the scenario tree approach (STA): this policy solves the problem by
optimizing over the whole scenario tree, as described in formulation
(2.15)–(2.20). Load flexibility is also evaluated using this stochastic
formulation.

2.6 Experimental results

We first illustrate for one scenario the control actions taken by both approaches.
The approaches are then compared in terms of expected cost and variability
of cost. Finally, we show the sensitivity of the first stage and of curtailment
decisions to the price of flexibility.

2.6.1 Scenario analysis

The selected scenario is presented in Figure 2.9. Without any action from
the DSO, two operational limits would be violated during the third period
(Figure 2.10):
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Figure 2.7: Cumulative level of power injected by the DG vs. time. Dotted lines
represent scenarios and the solid line corresponds to the mean scenario.

• the magnitude of the current in the transformer would exceed the 10 p.u.
limit (11.53 p.u.);

• an over-voltage would appear at bus 4 (1.054 p.u. for a maximum of
1.05 p.u.).

The MSA does not procure flexibility while the STA only procures the flexibility
of the residential load. Thus, for the MSA, maintaining the system within the
operational margins can only be ensured through curtailment orders: power
from bus 2 is curtailed, at a cost of $224. On the other hand, as the STA
procures flexibility from the load at bus 4 at a cost of $30, curtailment is not
required to keep the system within acceptable bounds for this scenario. The
consumption of the load instructed by the DSO is presented in Figure 2.11.

2.6.2 Features of the stochastic model

The expected cost of operation achieved over all the scenarios for both the
MSA and the STA, as well as the maximum and minimum costs among possible
scenarios, are presented in Table 2.1. The smallest expected cost of operation
was achieved by the STA. In addition, the STA also ensures a smaller variability
of the cost over the set of scenarios. On the contrary, as the MSA overfits its
decisions to the mean scenario, it achieves zero cost on scenarios close to the
mean scenario, but this is at the expense of large curtailment costs on several
possible scenarios far from the mean.
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Figure 2.8: Flexible loads. The white area is delimited by P and P , and the black
line is the baseline consumption P .

E{cost} max cost min cost std. dev.
MSA 73$ 770$ 0$ 174$
STA 46$ 379$ 30$ 72$

Table 2.1: Results for the MSA and the STA over all the scenarios (best value in
bold, column-wise).

2.6.3 Features of load flexibility

We now analyze the impact of load flexibility in terms of curtailed power
from DG units and cost of operation. Figure 2.12 shows the evolution of the
expected percentage of curtailed power, the number of activated flexible loads
and the expected cost of operation, when the flexibility price pf increases and
the curtailment prices remain constant. We observe that a very low flexibility
price induces the activation of both loads, and the DSO can avoid issuing
curtailment orders. At a given threshold, the flexibility fee of the industrial
load (bus 5 ) becomes too high and only one load is activated. With only one
flexible load, the DSO may have to curtail power, depending on the scenario,
which thus increases the expected cost. When the price of flexibility becomes
too high, the only action taken by the DSO is generation curtailment.

Hence, if the load flexibility price and curtailment prices are competitive, a
DSO can reduce both the cost of operation and the amount of power curtailed
from the distributed generators.
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Fig. 7: Flexible loads, with P , P and P represented respec-
tively by dashed, continuous and dotted lines.
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Fig. 8: Selected scenario

Scenario analysis

Interest of the stochastic model

The first thing to notice from the results presented in Table ??
is that the cost of operation achieved by STA is smaller than
the one achieved with MSA. In addition to reaching a better
objective value, STA also ensures less variables costs over the
set of scenarios.

E{cost} max cost min cost std. dev.
MSA 73$ 770$ 0$ 174$
STA 46$ 379$ 30$ 72$

TABLE I: Results for both optimization techniques over all
the scenarios. The best value of each column is in bold.

If MSA is able to reach a cost of zero for (at least) one
scenario, it is to the expense of a subset of the possible
scenarios. The sub-optimality of MSA can quite easily be
understood :

• The decision of buying DSM offers in day-ahead is not
made as a compromise given the credible futures but only
determined through a fixed scenario.

• Similarly, the modulation of the loads is not spread over
all the periods by taking into account the set of possible
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Fig. 9: Flexibility cost analysis.

scenarios.

In the considered case study, the mean scenario technique
make the decision not to buy flexibility while the tree-based
approach only buy the flexibility of the residential load.

Interest of loads’ flexibility

Highlight ability to detect whether DSM is interesting as
function of bid prices vs. issues in the system.

cf. Figure ?? !! To update with new case study !!

Implementation and algorithmic details

It is not easy to find a solver that can manage this MINLP, even
on such a small test system. We made several experiments with
SCIP [?] (with and without IPOPT to solve node relaxations),
IPOPT [?] and Knitro [?]. Finally, we decided to implement a
custom branch-and-bound algorithm that can use both IPOPT
and Knitro to solve the NLP node relaxations. We observed
that solutions of the optimization programs were insensitive
to the choice of the NLP solver.

Conclusion and Future Work

This paper proposes a novel formulation of the ANM problem
as a problem of optimal sequential decision-making under
uncertainty. We showed on a small case study that our formu-
lation is capable of efficiently tackling the problem in question
by explicitly accounting for uncertainty and allowing for the
utilization of the demand-side operational flexibility. As the
scope of this paper is to serve as a proof-of-concept, the next
step of this research is to enable the application of this proposal
on realistic systems.

The major obstacles to this are the lack of information
available on the demand side, the lack of legal and technical

Figure 2.9: Selected scenario.

2.7 Implementation and algorithmic details

It is not easy to find off-the-shelf solvers that can manage this MINLP, even
on such a small test system. We conducted several experiments with SCIP
[18] (with and without IPOPT [19] to solve node relaxations) and Knitro [20].
Finally, we decided to implement a custom branch-and-bound algorithm that
can use both IPOPT and Knitro to solve the NLP node relaxations. We
observed that solutions of the optimization programs were insensitive to the
choice of the NLP solver.

2.8 Conclusions and future work

This chapter proposes a novel formulation of the ANM problem that allows
utilization of the demand-side operational flexibility. We highlighted both the
sequential and the uncertain nature of this ANM problem and addressed it as
an optimal sequential decision-making problem under uncertainty. As the scope
of this chapter is to serve as a proof-of-concept, we benchmarked the proposed
approach on a small case study, and showed that it is critical to explicitly take
into account the uncertainty to efficiently operate demand-side flexibility.
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Figure 2.10: Operational limit violations are located at the red-dashed elements.

The model governing the interactions between the stakeholders of the distribu-
tion system must be carefully considered. We have presented one particular
flexibility model, where availability is procured one day ahead in exchange for
an availability fee, and curtailed power is remunerated at the market price. In
the next steps of this work, it would be worth analyzing alternative models
to identify the ones that offer incentives to foster demand-side flexibility and
increase the share of renewable energy. The flexibility product that we proposed
may fit a subset of the loads, but other products may be required to satisfy the
technical constraints of other consumers. For example, this work could be easily
extended to tank-like models, such as the one proposed in [21]. Furthermore,
existing configurations could already enable activation of the demand flexibility
through ON/OFF signals that actuate a relay in some domestic meters (such
as day and night meters). However, these models may necessitate more specific
information on the consumption side, and introduce more integer variables to
the optimization problem.

More or less independently of the interaction model implemented, computational
challenges are a barrier to the application of this formulation to real size systems.
Indeed, the complexity of the optimization problem is simultaneously increased
by the integer variables, the non-linearity of the power flow equations, and
the high dimensionality caused jointly by the multi-period aspect and the
explicit treatment of uncertainty. It is certainly worth considering the recent
works that propose new approaches for efficiently solving single period OPF
problems [22, 23]. Another interesting research direction would be to develop
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optimization algorithms specifically designed to tackle the complexity induced
by the scenario-tree based approach [24, 25].

In the long-term, it will also be necessary to find investment strategies that
reach the best possible trade-off between the fit-and-forget and full ANM
approaches. Assessing such a trade-off may not be an easy task, especially
since it would require the evaluation of the cost of an ANM scheme, which
may be a difficult task. Note that this cost depends not only on the price
paid for modulating the load and the generation over a long period of time,
but also on the cost required for the evolution of the infrastructure. Indeed,
deploying these types of approaches would require non-negligible ICT, metering
and control investments, amongst others.
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Relaxations for

multi-period optimal
power flow problems

We consider a class of optimal power flow (OPF) applications where some loads
offer a modulation service in exchange for an activation fee. These applications
can be modeled as multi-period formulations of the OPF with discrete variables
that define mixed-integer non-convex mathematical programs. We propose two
types of relaxations to tackle these problems. One is based on a Lagrangian
relaxation and the other is based on a network flow relaxation. Both relaxations
are tested on several benchmarks and, although they provide a comparable dual
bound, it appears that the constraints in the solutions derived from the network
flow relaxation are significantly less violated.
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3.1 Introduction

Many power system applications that require solving an optimal power flow
(OPF) problem share two features. Firstly, these applications are multi-period
because of the evolution of market prices, of the ramping limits of generation
units and of the behavior of static and flexible loads. Secondly, they contain
integer decision variables to model the acceptance or the rejection of bids,
or the start up of some generation units. As a first example, the day-ahead
energy market in Europe computes spot prices based on supply and demand
offers. This application has a multi-period and discrete nature because of the
“block bids”, and because of some ramping constraints. Active power flows
are constrained by a simple network flow model. Operational constraints on
reactive power, voltage and current are aggregated in the arc capacities of the
network flows. More realistic (so called “flow based” [26]) network models are
emerging, but they are still a linear approximation of the set of feasible flows
around a foreseen operation point. As a second example, new applications
arising in distribution networks such as operational planning aim at avoiding
the congestion of network elements and minimizing the curtailment of renewable
energy sources. To benefit from the flexibility of customers, it is necessary
to account for the time-coupled nature of the problem, and integer variables
can be used to model the reservation of that flexibility. Because the physical
characteristics of distribution networks are different from those of transmission
systems, DC power flow approximations can hardly be used.

Hence depending on the complexity of the primary goal of the application
and its scale, it is often mandatory to resort to a relaxation of the non-convex
network constraints so as to devise a robust and fast algorithm. Also, a
common characteristic of these applications is that the main decision variables
are the power injections, and especially active power flows as they underlie
most of the financial transactions. The other variables (voltage, current) can be
viewed as consequences of the power flows in the network, and we must ensure
that they stay within the operational limits. These observations motivate
the relaxation algorithms studied in this chapter. We focus on relaxations
that decompose the problem into one subproblem that works exclusively with
active and reactive power flows but encompasses the multi-period and discrete
aspects, and subproblems that assert that for each time step those flows do
not violate voltage and other technical limits. After the precise statement of
the discrete multi-period optimal power flow we are targeting in Section 3.2
and a review of the recent literature on these topics in Section 3.3, we propose
two relaxations achieving these goals in Section 3.4. The first relaxation is a
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straightforward generalization of the Lagrangian relaxation (LR) of [23] to this
problem. The downside of this LR scheme is that the power related subproblem
lacks information on the network topology. The second relaxation builds on
a network flow reformulation of the original problem by introducing link-flow
variables. It is then relaxed into a convex problem by substituting non-linear
terms with their convex envelopes. Small semidefinite programming (SDP)
relaxations are used to translate operational limits into bounds of voltage
and link-flow variables. Section 3.5 compares the two proposed approaches
on several test systems, whereas Section 3.6 concludes and gives directions of
further research.

3.2 General problem statement

We consider the problem of finding the optimal operation of a set D of devices
(i.e. loads and generators) over a certain time horizon while maintaining the
network and the devices within operational limits. The network is defined
as a set L of links, that is lines, cables or transformers that define pairwise
connections between elements of the set B of buses. Several devices can be
connected to a single bus. The time horizon is modeled by a set T of periods.
We denote by F ⊂ D the flexible loads. The consumption of a flexible load can
be modulated around a baseline profile. In particular, we use the flexibility
model presented in [8], where the right to modulate a flexible load is conditioned
to the payment of an availability fee. The operational constraints associated to
these loads are upward and downward modulation limits as well as an energy
constraint, stating that any modulation should consume the same amount of
energy than the baseline profile. We use the following notations throughout
this chapter, where the superscript (t) refers to period t:

• P (t) ∈ R|D|, the active power injections of devices (positive when power
flows from the device to the network);

• Q(t) ∈ R|D|, the reactive power injections of devices (same sign convention
as P (t));

• d ∈ {0, 1}|F|, the availability indicators of flexible loads;

• cf ∈ R|F|+ , the availability costs of the flexible loads;

• P bl(t) ∈ R|F|, the active power injections of flexible loads when operating
at their baseline;

• P (t) and P (t) ∈ R|B|, the bounds on active power injection of devices;
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• A ∈ RNc×2|D| and a ∈ RNc , matrix and vector modeling the P-Q capabil-
ity of the devices (with Nc the total number of linear constraints between
P (t) and Q(t));

• M ∈ {0, 1}B×D, mapping from devices to buses (Mi,j = 1 if device j is
connected to bus i and 0 otherwise);

• e(t) ∈ R|B|, the real part of the voltage at buses;

• f (t) ∈ R|B|, the imaginary part of the voltage at buses;

• V and V ∈ R|B|, the limits on the voltage magnitudes;

• gij the conductance of link (i, j) ∈ L;

• bij the susceptance of link (i, j) ∈ L.

The decision variables are the subset of the active and reactive power injections
for which the bounds P (t)

k and P (t)
k are not equal (k ∈ D), the voltage at all

buses, and the discrete decision variables d. The notion of optimal operation
is defined by a generic cost function f(P ) (linear or a convex quadratic) that
we want to minimize together with cf ·d, the availability fees of flexible loads.
The whole problem is modeled in (3.1-3.10) where we use the notation P , Q,
e and f to denote the concatenation of, respectively, the vectors Pt, Qt, et
and ft for all t ∈ T .

min
P ,Q
d,e,f

f(P ) + cf ·d (3.1)

s.t. d ∈ {0, 1}|F| (3.2)
∀ t ∈ T :
P (t) ≤ P (t) ≤ P (t) (3.3)

A
(
P (t)

Q(t)

)
≤ a (3.4)

∀k ∈ F :∑
t∈T

(
P

(t)
k − P

bl
k

(t)) = 0 (3.5)

∀(t, k) ∈ T × F :

P
(t)
k ≥ (1− dk)P blk

(t) + dkP
(t)
k (3.6)

P
(t)
k ≤ (1− dk)P blk

(t) + dkP
(t)
k (3.7)
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∀(t, i) ∈ T × B :

(M P (t))i =
∑

j∈N (i)

(
gij(e(t)

i

2 + f (t)
i

2 − e(t)
i e

(t)
j

−f (t)
i f (t)

j ) + bij(e(t)
i f

(t)
j − f

(t)
i e(t)

j )
)

(3.8)

(M Q(t))i =
∑

j∈N (i)

(
bij(e(t)

i e
(t)
j + f (t)

i f (t)
j − e

(t)
i

2

−f (t)
i

2) + gij(e(t)
i f

(t)
j − f

(t)
i e(t)

j )
)

(3.9)

V 2
i ≤ e

(t)
i

2 + f (t)
i

2 ≤ V 2
i (3.10)

This is a mixed-integer non-convex mathematical program where the non-
convexity comes from constraints (3.8)-(3.10) and from integer variables (3.2).
In addition, the electrical variables (i.e. powers and voltages) are coupled over
the set T of periods because of the time-coupling constraints (3.5)-(3.7) that
model the flexible loads.

3.3 Literature review

We first review the methods designed to solve "static" OPF problems, in the
sense that the problem has no temporal aspect. We then review the literature
on multi-period OPF, which is a scale up of a static problem caused by time
coupling constraints on power variables. Finally, we review the literature on
works where some discrete variables have been introduced in the OPF problem
to model the ability to act on power injections or withdrawals, that is, problems
comparable to the problem introduced in Section 3.2.

Optimal power flow problems, although non-convex, have been for long solved
using local non-linear optimization methods. Interior-point methods are proba-
bly the most widespread class of methods dedicated to this problem [27]. If
the solution they provide has no guarantee to be globally optimal, they have
been made popular by their convergence speed and their ability to solve fairly
efficiently problems of large dimension.

Recently, SDP was successfully applied as a convex relaxation to the OPF
problem [22]. The OPF is formulated over all the degree 2 monomials of the real
and imaginary parts of the voltage variables. Dropping the rank 1 constraint
of the corresponding matrix yields the SDP relaxation. For technical reasons,
the dual of this SDP relaxation is solved (strong duality holds). When the
duality gap is zero, a primal feasible optimal solution to the original OPF
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problem can be recovered from the solution of the dual SDP. The authors
report no duality gap on some standard meshed test systems and randomized
versions of these test systems. The zero duality gap property was thus observed
experimentally on standard test systems, and further research resulted in
sufficient conditions. This is the case, for example, if the objective function
is convex and monotonically increasing with the active power generation, and
the network has a radial topology [28, 29]. Another approach aiming at global
optimality relies on LR [23], which is further explained in Section 3.4.1. The
author also describes a spatial branch and bound (B&B) algorithm to close
the gap, should it exist one. The ability of both SDP and LR to decrease
the optimality gap within a B&B framework was evaluated in [30]. If SDP
appeared to be computationally more attractive, it showed that it could be
very challenging to reach a significant gap reduction within reasonable time
limits, even for small test systems.

Multi-period applications related to energy storage are investigated in [31],
where the SDP relaxation of [22] is successfully applied, as their particular
application met the conditions for having no duality gap. The authors of [32]
argue that extending [30] to a multi-period setting yields a SDP too large for
current solvers to be solved efficiently and suggest to relax the time-coupling
constraints using LR. However, it ended up being computationally too heavy
to make the B&B approach worthwhile.

Many papers consider the unit commitment problem over an AC network, which
is an instance of a multi-period OPF with discrete variables. For instance
in [33], a generalized Benders decomposition divides the problem in a linear
master problem with discrete variables and non-linear multi-period subproblems.
Benders cut are generated from the subproblems to tighten the MIP master
problem.

3.4 Relaxations description

We are looking for a computationally affordable relaxation of the problem
stated in Section 3.2 that would offer both a narrow optimality gap and
a solution close to be feasible. The main complexity sources of problem
(3.1)-(3.10) are the discrete decision variables (3.2) and the non-convexity
of (3.8)-(3.10). Furthermore the problem is large scale because of the time-
coupling constraints (3.5)-(3.7). If the set of constraints (3.8)-(3.10) could
be addressed independently, finding an optimal solution of (3.1)-(3.10) would
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result in solving less complex subproblems. This decomposition is particularly
attractive because:

• the large time-coupled problem is now a mixed-integer quadratic program
(MIQP) or a mixed-integer linear program (MILP) which are much easier
to solve than a MINLP of comparable size;

• every constraint of (3.8)-(3.10) only involves period-specific variables
and this non-convex program (NLP) can thus be split in |T | smaller
independent problems.

However, these two sets of constraints share the power injection variables
appearing in (3.5)-(3.7) and in the left-hand sides of (3.8)-(3.9). Thus some
coordination between those subproblems is required to obtain a solution to
(3.1)-(3.10).

Such a decomposition has already been proposed in [23] for single-period
continuous OPFs, where the coordination between the power and voltage
subproblems was performed using LR. The extension of this work to the
considered problem statement is presented in Section 3.4.1. In addition, we
introduce in Section 3.4.2 a novel flow-based relaxation for this class of multi-
period mixed-integer OPFs. The main idea behind this relaxation is that the
power flow equations (3.8)-(3.9) can be formulated as a network flow with
losses.

3.4.1 Lagrangian relaxation

As previously discussed, the author of [23] proposes a Lagrangian Relaxation
(LR) scheme in which the constraints (3.8)-(3.10) are dualized. He proves that
this leads to two independent subproblems: a problem involving the active
and reactive power injections, and a quadratic problem involving the voltage
variables. If we apply the same idea to the problem presented in Section 3.2,
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we obtain the Lagrangian L as

L(P ,Q,d, e,f ,λ,γ,α,β)
= f(P ) + cf ·d

+
∑

(t,i)∈N×T

λ
(t)
i

(
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2 + f (t)
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2 − V 2
i

)

where λ, γ ∈ R|T ||N | and α, β ∈ R|T ||N |+ are the Lagrange multipliers for the
relaxed constraints.

Any value of the dual function g defined as

g(λ,γ,α,β) = min
P ,Q
d,e,f

L(P ,Q,d, e,f ,λ,γ,α,β) (3.11)

s.t. (3.2)-(3.7) (3.12)

provides a lower bound on the optimal value of the original problem. The
Lagrangian dual bound is obtained by maximizing g, which is known to be a
concave function. Still following the approach of [23], the relaxation is tightened
by introducing, ∀t ∈ T , the constraints∑

i∈N
V 2
i ≤

∑
i∈N

(e(t)
i

2 + f (t)
i

2) ≤
∑
i∈N

V
2
i (3.13)

If they are redundant in the original problem, they are not in (3.11)-(3.12)
because (3.10) has been relaxed.
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More specifically we can rewrite the problem as

max
λ,γ
α,β

g(λ,γ,α,β) (3.14)

= max
λ,γ
α,β

{
L∗P (λ,γ) + L∗V (λ,γ,α,β)

+
∑

(t,i)∈N×T

(α(t)
i V 2

i − β
(t)
i V

2
i )
}

where the power subproblem LP (λ,γ) is defined as

L∗P (λ,γ) = min
P ,Q
d

f(P ) + cf ·d+
∑

(t,i)∈N×T

λ
(t)
i (MP (t))i

+
∑

(t,i)∈N×T

γ
(t)
i (MQ(t))i

s.t. (3.2)-(3.7)

and requires solving a MIQP (or MILP). The voltage subproblem LV (λ,γ,α,β)
is on the other hand defined as

L∗V (λ,γ,α, β)

=
∑
t∈T

{
min

e(t),f(t)
−
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s.t. (3.13)
}

and consists in solving |T | independent problems that, even though they
are non-convex, can be reformulated as trust-region subproblems and solved
efficiently in polynomial time.

The convex problem (3.14) belongs to the class of non-smooth (i.e. non-
differentiable) optimization. If subgradient algorithms [34] are frequently use
to solve these problems, they have shown serious convergence issues for our
particular application in the presence of a nonzero duality gap [30]. For this
reason, we suggest to use a bundle method algorithm [35] to solve (3.14).
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3.4.2 Network flow relaxation

In the LR scheme presented in Section 3.4.1, no information on the topology of
the network is used in the power subproblem LP . Here we present a relaxation
that uses the topological information by coupling the original problem with
a network flow. As the network flow formulation is a linear relaxation of
the power flow equations, it does not account for their non-convexities. In
particular it can be observed that in a linear network flow, the total amount
of power produced is equal to the total amount of power consumed, which
is rarely the case in our application. It is therefore important to tighten the
formulation by adding some new constraints that account for these losses in the
lines. In particular, we rely on a reformulation-linearization technique (RLT)
approach [36] that relaxes quadratic constraints (3.8)-(3.9) by convexifying the
set of values that each bilinear and quadratic term can take. As a prerequisite
for the network flow formulation, we first introduce some notations:

• P (t)
ij is the active power injected in link (i, j) ∈ L at bus i, positive when

power is withdrawn from bus i;

• Q(t)
ij is the reactive power injected in link (i, j) ∈ L at bus i, positive

when power is withdrawn from bus i;

• P lossij
(t) is the active power losses in link (i, j) ∈ L.

Using these variables, the conservation of the power flows through links, taking
the losses into account, can be written as, ∀(i, j) ∈ L:

P
(t)
ij + P

(t)
ji = P lossij

(t) (3.15)

Q
(t)
ij +Q

(t)
ji = − bij

gij
P lossij

(t)( = Qlossij

(t)) (3.16)

and the flow conservation at bus i ∈ B as:

(M P (t))i =
∑

j∈N (i)

P
(t)
ij (3.17)

(M Q(t))i =
∑

j∈N (i)

Q
(t)
ij (3.18)
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A connection between these flow variables and the voltage variables e and f is
achieved through the following equations:

P
(t)
ij = gij(e(t)

i

2 + f (t)
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2 − e(t)
i e
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i f (t)

j )
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j ) (3.19)
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P lossij

(t) = gij(e(t)
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2 + e(t)
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2 + f (t)
i

2 + f (t)
j

2

−2e(t)
i e

(t)
j − 2f (t)

i f (t)
j ) (3.21)

which are used together with (3.15)-(3.18) to obtain a reformulation of the
original problem:

min
P ,Q
d,e,f

f(P ) + cf ·d (3.22)

s.t. (3.2)-(3.7)
∀(t, i) ∈ T × B :

(3.10), (3.17)-(3.18)
∀(t, (i, j)) ∈ T × L :

(3.15)-(3.16), (3.19)-(3.21)

This problem is a mixed-integer quadratically constrained quadratic program
(MIQCP), which is non-convex just as the original problem. It is important to
note that there are redundant constraints in this formulation. For example,
removing (3.15)-(3.16) and (3.21) would produce an equivalent mathematical
program. However, it does not mean that the relaxed counterparts of these
constraints will also be redundant. It has indeed been shown in [37] that such
redundancy helps generating tighter relaxations.

Such a problem can be relaxed by replacing bilinear (i.e xixj) and quadratic
(i.e. x2

i ) terms by their McCormick envelopes, which can be generated by
following the procedure:

Let xi ∈ [li, ui] and xj ∈ [lj , uj ]
then xixj → wij

with wij ≥ uixj + ujxi − uiuj
wij ≥ lixj + ljxi − lilj
wij ≤ uixj + ljxi − uilj
wij ≤ lixj + ujxi − liuj
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However, before doing so, it is important to observe that such a relaxation
converges towards the original problem as the variable domain is getting
smaller, i.e. max (xixj − wij) converges to zero as (xi − xi) and (xj − xj)
tends to zero too. In other words, the closer the bounds are, the tighter is
the relaxation. Unfortunately, the bounds of e and f are initially quite loose:
e(t)
i and f (t)

i belong to [−
√
V i,+

√
V i], ∀(i, t) ∈ T × B. In order to tighten

the relaxed problem, it would be interesting to refine these bounds given the
set S of feasible solutions of (3.1)-(3.10). Because computing such bounds in
the original problem would result in the same time-complexity as the original
problem, we rely on a subset of period-specific constraints of (3.2)-(3.10) to
approximate S. For each time period t ∈ T , some constraints are removed
from the original problem to obtain an approximated set S̃t such that St ⊂ S̃t
with St the projection of the original set of feasible solutions to the set of
period-t-specific variables. In other words, the resulting bounds of e and f
deduced from sets S̃t are guaranteed not to remove any feasible solution from
the original problem. In particular, the set S̃t is defined as:

{ (P (t),Q(t), e(t),f (t)) | (3.3)-(3.4),(3.8)-(3.10) are not violated }

and finding the upper and lower bounds of a voltage variable v (i.e. e(t)
i or f (t)

i ,
∀(i, t) ∈ B × T ) is equivalent to solving the following problem:

v/v = max /min
P (t),Q(t)

e(t),f(t)

v (3.23)

s.t. (P (t),Q(t), e(t),f (t)) ∈ S̃t (3.24)

Even if this problem is much smaller than the original one, it is still non-convex.
For this reason, the bounds on e and f are finally computed by solving an
SDP relaxation [38] of (3.23)-(3.24). These are the bounds used to build the
RLT relaxation of (3.22).

The last tightening step that we perform is to bound the variables P (t)
ij , P (t)

ji ,
Q

(t)
ij , Q

(t)
ji and P lossij

(t) by solving the SDP relaxation of (3.23)-(3.24) with as
objective function their expression in equations (3.19)-(3.21).
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3.5 Quantitative analysis

3.5.1 OPF applications

In order to benchmark the relaxations presented in Section 3.4, we focus on
two applications of the OPF. The first one is the common minimization of
generation costs, where we define the cost function f(P ) as

fgen(P ) =
∑
t∈T

∑
g∈G

(
a(t)
g P

(t)
g

2 + b(t)
g P

(t)
g + c(t)

g

)
with G the set of generators. In particular, we consider that the generation
costs can vary over time. This is modeled by using time-varying parameters
{a(t)
g , b

(t)
g , c

(t)
g }. In this context, flexible load can be worthwhile to shift the

demand when generation costs are low.

The second application is a curtailment minimization and is an extension of
the deterministic version of [8]. In this case, the cost function f(P ) is defined
as

fcurt(P ) =
∑
t∈T

[
ccurt

∑
g∈G

(
P

(t)

g − P (t)
g

)
+ closses

∑
d∈D

P (t)
d

]
where the first term represents the curtailment costs and the second term
expresses the cost of network losses. Such a cost function is representative of
the objective of a distribution system operator that operates a network with
distributed generators. Flexible loads can be profitable if their consumption
is shifted when production from distributed generators is high, e.g. to avoid
congestions or over-voltages without relying too much on curtailment. For both
applications, the term cf ·d must be added to the cost function in order to
account for availability fees.

3.5.2 Implementation details

The test program is written in C++ and uses several solver libraries. For LR,
a continuous relaxation of the original problem is first solved using IPOPT [19]
to initialize Lagrange multipliers and solving the non-smooth problem is done
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with ConicBundle [39]. The subproblem LP is solved with MOSEK [40] while
LV , after being casted into a minimal eigenvalue problem, is addressed using
Eigen [41]. For the network flow relaxation (NFR), all SDP relaxations as well
as the final convex relaxation are solved with MOSEK.

The primal solutions, computed to evaluate the optimality gap of the relaxed
solutions, were obtained using SCIP [18] configured with IPOPT as NLP
solver.

3.5.3 Instances

An instance is defined by a cost function, a network and a number of periods.
Table 3.1 presents the different networks used in the test case (if the original
test contains shunt admittances, they are ignored).

Name Number of Sourcebuses |B| generators |G| flexible loads |F|
ww6 6 3 3 [42]
ch9 9 3 3 [43]

ieee14 14 5 4 [44]
anm6 6 2 2 [8]

Table 3.1: Networks used for the benchmark.

The cost function fgen is tested on (A)-(C) and fcurt on (A)-(D). For the
curtailment application on networks (A)-(C), one of the generator (the slack
bus) is modified to model a connection with another network. The power
injection at the corresponding bus can, within some limits, be either positive
or negative.

The test instances are finally generated by considering these 7 (network, cost
function) pairs over 4 and 8 periods to obtain a total of 14 instances.

3.5.4 Numerical results

Numerical results on the 14 instances are presented in Table 3.2-a and
Table 3.2-b. The relative optimality gap is computed as follow:

gap = ub∗ − lb
lb
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where lb is the optimal solution of the relaxed problem (i.e. a lower bound)
which can vary for every relaxation used and ub∗ is the best primal solution
known, and is a fixed number. For each instance, the reported time is the
duration of the program before termination, running on a 2.6 GHz processor
and limited to a single core. We observe that both relaxations have similar
performances for the optimality gap, in the sense that they are always within
the same order of magnitude. Concerning the running time performance, there
is not an approach that outperforms the other as both relaxations show very
diverse results.

We are also interested in evaluating another feature of these relaxations: the
level of infeasibility of their solutions in the original problem. This feature can
indeed affect the efficiency of a relaxation within a spatial B&B framework [45]
when seeking for a globally optimal solution of Problem (3.1)-(3.10). Relaxed
solutions that are closer to feasibility can speed up the discovery of feasible
solutions and at the same time provide upper bounds to the objective function
earlier in the space exploration procedure. Obtaining upper bounds is critical
for these approaches as it helps pruning nodes and reduces the computational
budget required before termination. Table 3.2-c presents the sum of squared
infeasibilities for the set of constraints (3.8)-(3.10) (i.e. those relaxed in LR
and NFR). We observe that NFR shows less infeasibility than LR on 9 out
of 14 instances. For some cases, NFR produces solutions that are very close
to be feasible (e.g. (A)gen and (D)curt) while LR does not exhibit similar
performances even when it is able to close the gap (e.g. (B)gen). In addition,
some of the solutions of LR are affected with a very high level of infeasibility
(e.g. (C)curt and (D)curt), which is orders of magnitude worse than NFR.

3.6 Conclusion

In this chapter, we presented a novel relaxation for multi-period OPF with
discrete variables that is based on a network-flow reformulation. While the
lower bounds it produces are comparable with the Lagrangian relaxation, the
infeasibility of the relaxed solutions is reduced. This feature suggests that it is
worthwhile to evaluate NFR beside the current state-of-the-art relaxations (i.e.
[23] and [22]) within a B&B framework.

On the other hand, this relaxation should still be improved on two aspects. The
first one is the quality of lower bounds, especially for curtailment applications.
We believe that a special care should be taken concerning the upper bounds
of the active losses in links. We observed that the SDP relaxation used to
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compute these bounds is not very informative and it penalizes the tightness of
the overall relaxation. The second aspect to improve is on the computational
side. For this purpose, we would like to consider subnetworks instead of the
whole network to infer the bounds on the voltage and link-flow variables. If it
would reduce the size of SDP problems and speed up their convergence, it could
also reduce the value of the resulting bounds. For this reason, an iterative
approach that would increase the size of specific subproblems to narrow the
most useful bounds is not to put aside.

Following the observations of this work, we think that another interesting

Lagrangian relax. Network flow relax.
Case gap (%) time (s) gap (%) time (s)

ww6gen 2.37 203.7 4.27 11.1
ch9gen 0.00 1.2 2.24 12.7

ieee14gen 0.11 143.0 5.16 84.2
ww6curt 79.69 45.0 225.72 16.0
ch9curt 9.07 20.1 12.53 23.5

ieee14curt 648.64 140.1 593.58 163.3
anm6curt 60.90 40.9 60.99 11.3

(a) Numerical results for 4 periods (|T | = 4).
Lagrangian relax. Network flow relax.

Case gap (%) time (s) gap (%) time (s)
ww6gen 2.51 2905.2 4.50 38.7
ch9gen 0.00 4.1 2.20 40.7

ieee14gen 0.24 780.5 5.07 254.7
ww6curt 124.86 83.9 255.16 82.7
ch9curt 11.90 60.9 13.22 111.0

ieee14curt 879.68 414.8 649.43 1207.9
anm6curt 65.10 112.5 60.09 64.1

(b) Numerical results for 8 periods (|T | = 8).
Nb. of periods |T | = 4 Nb. of periods |T | = 8

Case LR NFR LR NFR
ww6gen 6.02 0.02 8.72 0.05
ch9gen 70.87 99.33 141.50 196.21

ieee14gen 1.24 1.72 1.86 3.58
ww6curt 86.75 6.78 163.28 13.46
ch9curt 179.86 152.51 142.72 162.40

ieee14curt 456.88 6.91 57.57 16.35
anm6curt 854.16 0.10 1564.37 0.19

(c) Sum of squared infeasibilities of relaxed solutions for con-
straints (3.8)-(3.10).

Table 3.2: Results for the 14 instances.
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research direction would be to merge the two relaxations considered in this
chapter. Tightening the power subproblem of a Lagrangian relaxation with a
network-flow relaxation could both improve the convergence of the non-smooth
problem of LR thanks to a tighter subproblem and reduce the infeasibility of
produced solutions.





4
A Gaussian mixture
approach to model

stochastic processes
We present in this chapter an algorithm that models a stochastic process as
a Markov process using a multivariate Gaussian Mixture Model, as well as a
model selection technique to search for the adequate Markov order and number
of components. The main motivation is to sample future trajectories of these
processes from their last available observations (i.e. measurements). An
accurate model that can generate these synthetic trajectories is critical for
applications such as security analysis or decision making based on lookahead
models. The proposed approach is evaluated in a lookahead security analysis
framework, i.e. by estimating the probability of future system states to respect
operational constraints. The evaluation is performed using a 33-bus distribution
test system, for power consumption and wind speed processes. Empirical results
show that the GMM approach slightly outperforms an ARMA approach.
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4.1 Introduction

The recent massive integration of renewable generation has increased the level
of uncertainty in power systems, to the extent that probabilistic methods are
emerging for operating electrical networks [46]. This is particularly true for
the operation of distribution systems, which is progressively migrating from a
fit-and-forget doctrine to Active Network Management (ANM) strategies [47].
An accurate model of this uncertain dynamical system is critical in order to
take adequate control actions. Moreover, and contrary to wider power systems,
the uncertainty about stochastic quantities (e.g. wind speed, solar irradiance,
load consumption) is not softened by an averaging effect because of the local
nature of distribution systems.

In this chapter, we present an algorithm that models a stochastic process as a
Markov process using a multivariate Gaussian Mixture Model (GMM). Such a
parametric model learns the transition density of the process from time series
of observations. For a given order of the Markov process (i.e. the length of the
process history that is used to model the density of the next realization) and
a given number of components in the mixture, the parameters of the GMM
are learned from the data using a maximum likelihood approach. A model
selection technique that relies on a multi-armed bandit framework [48] is used
to search for the adequate order and number of components of the GMM.

We focus in this chapter on the ability of stochastic models to perform reliable
security analyses, i.e. lookahead security estimates of the operational state
of a grid. It leads to the definition of a quality measure that compares the
actual security state of a grid to the Monte Carlo simulations of a model. This
measure is used both for the model section phase and for comparison purposes
with other modeling approaches.

4.1.1 Related works

Existing approaches in the context of power system dynamic modeling and
decision making include forecasting random variables (loads, PV and wind
generation) based on the use of numerical weather prediction and time series
models [49, 50, 51]. Reference [50] surveys existing approaches for wind power
forecasting while [52] provides insight to short-term PV generation forecast.
Numerical weather prediction uses meteorological data and models to forecast
relevant variables such as wind, irradiance, etc, and further uses physical
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models or statistical techniques to forecast generation productions [49, 50, 52].
Artificial neural networks or fuzzy neural networks [49] were also considered for
improved forecasting. Time series models use observed data values (historical
data) to forecast future values of random variables. Auto-Regressive Moving
Average (ARMA) models and its variants - auto regressive integrated moving
average (ARIMA), ARMA with exogenous input (ARMAX/ARX) - are the
most popular type in the time-series-based approaches for both load and
generation forecasting [52, 51]. Neural networks and fuzzy neural networks
were also considered in the context of the use of historical data [49, 51, 50].

In the context of power system problems, GMMs were only considered within
static decision making where probabilistic power flow is a common tool to handle
uncertainties [53]. GMM is used to approximate non-Gaussian probability
density functions (Beta, Gamma, Weibull, Rayleigh) of loads [54] and generation
[53]. One of the problems related to the use of GMM in this context is the choice
of the number of Gaussian mixture components to accurately approximate
the original non-Gaussian probability density function. The work presented in
[53] compares three pair-merging methods to reduce the number of Gaussian
mixture components and proposes a fine-tuning algorithm of integral square
difference criterion for further improvements. On the other hand, a Markov
process modeling approach was considered as an option to forecast load and
wind generation. A Markov-based sensitivity model was proposed in [55] as
a look-ahead capability approach for load and wind generation short-term
forecasting.

To the best knowledge of the authors no work exist that uses GMMs combined
with Markov process modeling for dynamic modeling and decision making in
power systems. In a wider context, some developments on the use of GMMs for
time series forecasting exist. Reference [56] reports on the initial results of the
use of GMMs for time series but focuses exclusively on the forecasting abilities
of the approach though the computation of conditional expectations.

4.2 Problem description

We aim at building models of stochastic processes that arise within power
systems with the main motivation of sampling future trajectories of these
processes from their last available observations (i.e. measurements). An
accurate model that can generate these synthetic trajectories is critical for
applications such as security analysis or decision making based on lookahead
models.
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4.2.1 Problem statement

Let S∗ be a real-valued stochastic process and let

S =


(
o1

1, . . . , o
1
T

)
...

(onS1 , . . . , onST )


be a set of nS real-valued time series of length T that correspond to ob-
servations of S∗. Given this set S, we want to learn a Markov model M
that approximates the probability density function p : RL → R+ of the next
realization xt, conditional to the previous L realizations of the process, i.e.
pM(xt|xt−1, . . . , xt−L).

4.2.2 Model evaluation

We do not focus on the forecast performance but instead aim at a model that
is relevant to generate synthetic trajectories in a lookahead context. Models
are discriminated based on their ability at producing good lookahead security
estimates. Such an estimate corresponds to the probability, according to a
modelM, that an electrical system D is secure (i.e. its operational constraints
are respected) for some lookahead time horizon ∆t and given an history
x(hist) = (xt−1, . . . , xt−L). We consider that S∗ is the only stochastic process
that influences the electrical system D and that its state is fully determined
(e.g. through a power flow simulation) given a time step t ∈ {1, . . . , T} and the
realization xt or an estimate x̂t of S∗. We denote thereafter this state D(t, xt)
or D(t, x̂t).

We introduce a score function ηD,∆t,M (M,S) ∈ [0, 1] to assess the quality of
lookahead security estimates produced through Monte-Carlo simulations ofM,
when x(hist) takes as value every sequence of L successive observations in the
set S of time series, and where M is the number of sampled trajectories for
every Monte-Carlo simulation. The score function relies on a weighted Brier
score [57] (i.e. the mean of squared differences), which is reversed and scaled
so that the value of ηM,∆t(M,S) has the following interpretations:

• 0 means thatM’s security estimates are non-informative (i.e. the proba-
bility of every state to be secure is 0.5) at best;
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• 1 means thatM’s security estimates match perfectly the actual security
states observed in the set S.

The following pseudo-code details how to compute this score function:

. Overall procedure
function get_score(D,M,S,M,∆t)

distok,distko, nok, nko ← 0
for i← 1, nS do

for t← L, T −∆t do
xhist ← (o(i)

t , . . . , o
(i)
t−L+1)

p̂ok ← 0
for m← 1,M do

p̂ok ← p̂ok + is_secure(D,M,xhist,t,∆t)
M

if D(t+ ∆t, o(i)
t+∆t) is secure then

distok ← distok + (1− p̂ok)2

nok ← nok + 1
else

distko ← distko + (p̂ok)2

nko ← nko + 1
score ← 1−

(
distok
nok

+ distko
nko

)
return max(0, score)

. Single security simulation
function is_secure(D,M,x(hist), t0,∆t)

t← t0
repeat

x̂← sample pM( · |x(hist))
x(hist) ← (x̂, x(hist)

1 , . . . , x
(hist)
L−1 )

t← t+ 1
until t = t0 + ∆t
if D(t, x̂) is secure then

return 1
else

return 0
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4.3 Gaussian Mixture Model

We consider modelsMω(θ), ∀ω ∈ Ω and ∀θ ∈ Θ, that rely on a mixture of N
Gaussian components to build the density function pMω , where ω = (L,N)
are the hyper parameters of the model and where θ denotes the parameters
of the Gaussian mixture. These latter parameters are the weight, mean, and
covariance matrix of every component i ∈ {1, . . . , N} of the mixture, they are
further denoted by φi, µi, and Σi, respectively. In particular, we have:

pMω,L(θ)(xt|xt−1,...,xt−L) =
p∩Mω,L(θ)(xt,...,xt−L)∫

R
p∩Mω,L(θ)(xt,...,xt−L)dxt

, (4.1)

where

p∩Mω,L(θ)(xt, . . . , xt−L) =
N∑
i=1

φiN (xt, . . . , xt−L;µi,Σi) (4.2)

is the approximation, by modelMω,L(θ), of the joint density function of L+ 1
successive realizations. One of the advantages of using Gaussian components is
that the conditional density function in (4.1) can be easily determined given
the values of the L previous realizations xpast = (xt−1, . . . , xt−L) ∈ RL of
the process. The resulting density is also a Gaussian mixture [58] and each
component i ∈ {1, . . . , N} has the following parameters:

φ
t|L
i = φiN (xpast;µLi ,ΣLL

i )∑N
j=1 φjN (xpast;µLj ,ΣLL

j )
, (4.3)

µ
t|L
i = µti − (Λtti )−1ΛtL

i

(
xpast − µLi

)
, (4.4)

Σt|Li = (Λtti )−1
, (4.5)

with

µi = (µti,µLi ) ,

Σi =
(

Σtti ΣtL
i

ΣLt
i ΣLL

i

)
,Σ−1

i =
(

Λtti ΛtL
i

ΛLt
i ΛLL

i

)
.

For a given hyper parameter ω = (L,N), learning modelMω,L(θ) consists in
determining the mixture’s parameters θ∗ that approximate at best the density
function p∩Mω,L(θ)( · ) of the set L of nS time series, The following procedure allows
to compute θ∗ as the maximum likelihood estimate (MLE) of L:
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1. build a set L′ of L+1-length tuples:

L′ =
{

(olt−L, . . . , olt−1, o
l
t), (l, t) ∈ {1, . . . , nL′} × {L, . . . , T − 1}

}
;

2. produce the MLE θ∗ by solving:

θ∗ = arg max
θ∈Θ

∑
x∈L′

log p∩Mω,L(θ)(x) ,

which is the classical MLE equation that can be solved using an
expectation-maximization (EM) algorithm [59].

4.4 Model selection

In this section, we describe our sampling-based procedure to navigate within
the space of hyper parameters Ω = {ω1, . . . , ωK}, K ∈ N, using a multi-armed
bandit approach. Our approach relies on the following assumptions: first, we
assume that, for a given hyper parameter ω ∈ Ω, and a given set of learning
data L, we have access to a procedure, which may not be deterministic, that
allows to generate a model Mω,L (e.g. see Section 4.3). Then, we assume
that we have access to a score function η (e.g. see Section 4.2.2) to compute
noisy empirical evaluations of any model. Finally, we also assume that we have
access to a selection strategy which allows us to iteratively select which hyper
parameter to sample from based on noisy evaluations observed so far, and
progressively converge towards an optimal hyper parameter. In the following,
a standard UCB-1 algorithm [48] plays the role of this selection strategy.

Our procedure works as follows. Initially, all index values are set to +∞:

∀k ∈ {1, . . . ,K}, B(0)
k = +∞

Then, at every iteration i ∈ {1, . . . , N},

1. Select a hyper parameter ω(i) ∈ Ω according to a UCB-1 strategy; let k(i)

be the index of ω(i) in the set Ω:

k(i) = arg max
k∈{1,...,K}

B
(i−1)
k

2. Perform a random partition of the set of trajectories into two subsets of
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trajectories, a learning set L(i) and a test set T (i), formalized as follows:

L(i) =


(
o

(i),1
0 , . . . , o

(i),1
T−1

)
...(

o
(i),nL
0 , . . . , o

(i),nL
T−1

)


T (i) =


(o(i),1

0 , . . . , o
(i),1
T−1)

...
(o(i),nT

0 , . . . , o
(i),nT
T−1 )


3. Using the learning set L(i) and the hyper parameter ω(i), compute a

modelMω(i),L(i) ;

4. Compute a new noisy evaluation η(i)
k of modelMω(i),L(i) as:

η
(i)
k = η(Mω(i),L(i) , T (i)) ,

and update the UCB-1 index values as follows:

∀k ∈ {1, . . . ,K}, B(i)
k = η̄k +

√
2 ln(i)
n

(i)
k

where η̄k denotes the empirical average of evaluations of hyper parameter
ωk observed so far and n

(i)
k denotes the number of times the hyper

parameter ωk has been evaluated so far.

4.5 Numerical results

We present the results obtained for two different datasets, with the GMM
approach presented in Section 4.3 and compared with ARMA models, which
were also fitted using a MLE algorithm. For both approaches, the hyper
parameters were selected using the model selection technique presented in
Section 4.4. These hyper parameters are:

GMM: the Markov order L and the number of components N ;

ARMA: the autoregressive order Lar and the moving-average order
Lma.
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Both datasets consist in observations acquired every quarter of hour, and every
time serie spans a period of six weeks (i.e. 576 observations). The first dataset
has 14 time series (i.e. 8064 observations) of the aggregated power consumption
of 200 residential consumers, while the second dataset has 182 time series (i.e.
104832 observations) of wind speed measurementsi. The electrical system D
used for security analyses is the IEEE 33-bus distribution test system with three
additional wind farms, as illustrated in Figure 4.1. The considered operational
constraints are the voltage limits at the buses and the thermal limits of the links.
Note that the consumption was assumed to be deterministic when evaluating
the wind speed models, and conversely. When the stochastic process is the
load consumption, the consumption at each bus is defined as a scaling factor
times the consumption process. For the wind speed process, the production of
wind farms is determined from the wind speed through a usual cubic power
curve.

The performance estimations of the different models for the wind speed dataset,
a lookahead time horizon of 4h (i.e. 16 time steps), and M = 50, are presented
in Figure 4.2 for the GMM approach and in Figure 4.3 for the ARMA approach.
The performance of these two sets of models was estimated by UCB-1 runs
of 40h and 20h for the GMM and ARMA approaches, respectively. Several
observations can be made from these results:

• the best GMM outperforms the best ARMA model;

• the performance of the GMMs is less sensitive to the choice of the hyper
parameters than for the ARMA models;

• the computational budget (i.e. the average time required to make one
evaluation) is higher for the GMM approach than for the ARMA approach.

We also report the performance estimations for the consumption dataset and a
lookahead time horizon of half an hour (i.e. 2 time steps). The performance of
the two sets of models was estimated by UCB-1 runs of 3h and 2h for the GMM
and ARMA approaches, respectively. The results are presented in Figure 4.4
for the GMM approach and in Figure 4.5 for the ARMA one. We now observe
that the performance of the best GMM and best ARMA model is very close.
However, the sensitivity of the expected score to the hyper parameters is again
higher for the ARMA models.

We report in Figures 4.6 and 4.7 the expected performance of every candidate
model for both approaches, both datasets, and for lookahead time horizons of
15min, 30min, 1h, 2h, and 4h. The gray scales are defined column-wise and the
darkest cell of a column indicates the best expected score for the associated

iBoth datasets were standardized (i.e. µ = 0 and σ = 1) and diurnal seasonality was
remove.
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Figure 4.1: Electrical system D, the IEEE 33-bus test system with three additional
wind farms.
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Figure 4.2: Performance estimations for GMMs for the wind speed dataset, a
lookahead time horizon of 4h (i.e. 16 time steps), and M = 50, after a UCB-1 run of
40h.
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Figure 4.3: Performance estimations for ARMA models for the wind speed dataset,
a lookahead time horizon of 4h (i.e. 16 time steps), and M = 50, after a UCB-1 run
of 20h.
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Figure 4.4: Performance estimations for GMMs for the consumption dataset, a
lookahead time horizon of half an hour (i.e. 2 time steps), and M = 50, after a UCB-1
run of 3h.
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Figure 4.5: Performance estimations for ARMA models for the consumption dataset,
a lookahead time horizon of half an hour (i.e. 2 time steps), and M = 50, after a
UCB-1 run of 2h.
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lookahead time horizon. We also illustrate in Figures 4.8 and 4.9 how the best
model of the GMM approach performs comparing the best model of the ARMA
approach, for the wind speed dataset and consumption dataset, respectively.
We observe that, with the exception of the lookahead time horizons up to half
an hour, the GMM approach outperforms the ARMA one. In addition, the
lead of the GMM approach seems to get larger as the lookahead time horizon
increases.

Finally, the values of the parameters that were used for the simulations are
reported in Table 4.1.

Table 4.1: Parameters used for the simulations.

nL nT M
Scons 0.8nScons 0.2nScons 50
Swind 0.9nSwind 0.1nSwind 50

4.6 Implementation details

We benefited from the parallelization abilities of Monte-Carlo methods by
running the model selection algorithm in a HPC environment. A distinct
computing core was dedicated for every trajectory m ∈ {1, . . . ,M} of the
Monte-Carlo simulations. The program is written in Python and relies on the
Scikit-Learn library [60] to learn Gaussian mixtures, while ARMA models where
fitted to data using R’s arima function through a R-to-Python interface.

4.7 Conclusion and Future Work

We presented a novel approach that relies on Gaussian mixtures to model
a stochastic process from a set of time series of observations. The hyper
parameters of the model, i.e. the Markov order and the number of mixture
components, are determined using a multi-armed bandit technique while the
mixture parameters are learned from the data using an EM algorithm. Empirical
results show that the proposed approach outperforms an ARMA approach
for the considered application of lookahead security analysis, for datasets of
residential power consumption and of wind speed.
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Figure 4.6: Expected score of every candidate GMM for the both dataset, as a
function of the lookahead time horizon (in time steps).
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Figure 4.7: Expected score of every candidate ARMA model for the both dataset,
as a function of the lookahead time horizon (in time steps).
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Figure 4.8: Performance comparison of each approach for the wind speed dataset,
as a function of the lookahead time horizon (in time steps).
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Figure 4.9: Performance comparison of each approach for the consumption dataset,
as a function of the lookahead time horizon (in time steps).
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As future work we consider several extensions of the present work, including
simulations for other processes (e.g. solar irradiance), comparison with alterna-
tive modeling approaches (e.g. ARIMA and GARCH), as well as different test
systems.
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Problem formulation,

benchmark, and
approximate solution

In this chapter, we first formulate the ANM problem, which in addition to be
sequential and uncertain, has a nonlinear nature stemming from the power
flow equations and a discrete nature arising from the activation of power
modulation signals. This ANM problem is then cast as a stochastic mixed-
integer nonlinear program, as well as second-order cone and linear counterparts,
for which we provide quantitative results using state of the art solvers and
perform a sensitivity analysis over the size of the system, the amount of
available flexibility, and the number of scenarios considered in the deterministic
equivalent of the stochastic program. To foster further research on this problem,
we make available at http: // www. montefiore. ulg. ac. be/ ~anm/ three test
beds based on distribution networks of 5, 33, and 77 buses. These test beds
contain a simulator of the distribution system, with stochastic models for the
generation and consumption devices, and callbacks to implement and test various
ANM strategies.
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5.1 Notation

We present here the main elements of notation used throughout the text. Some
locally defined notation may not be covered in this section.

Indices:
d Device connected to a node.

m or n Node of the electrical system.
mn Link of the electrical system between nodes m and n.
t Time period.

Sets:
D Set of electrical devices.
G Subset of D containing distributed generators.
C Subset of D that are electrical loads.
F Subset of C that can be controlled by the DSO.
T Set of time periods.
N Set of nodes of the electrical system.
L Set of links of the electrical system.
S(i)
t Space of state vector s(i)

t (see the variables below for i ∈ {1, 2, 3}).
S Global state space of the system.
As Feasible action (or control) space in state s ∈ S.
Ad,s Feasible set of actd,t (see variables).
W Set of possible realizations of random processes.

Parameters:
Y

(br)
mn Branch admittance of link (m,n).

Y
(sh)
mn Shunt admittance of link (m,n) on the side of node m.
tmn Transformation ratio of link (m,n) on the side of node m.
Y Nodal admittance matrix.

Yn · nth row of Y .
Ymn Element (m,n) of Y .

Vn and Vn Lower and upper operational limits on voltage magnitude |Vn|.
Imn Operational limit on current magnitude |Imn|.

tanφd Reactive to active power ratio of device d (assumed constant for
all devices).

Td Duration of a modulation signal sent to a flexible load.
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∆Pd Vector of length Td representing the modulation signal sent to a
flexible load.

Nloads Length of the history of load consumption tracked in the state.
Nir Length of the history of solar irradiance tracked in the state.
Nv Length of the history of wind speed tracked in the state.
qt Index of a quarter of an hour.

Variables: Note that some variables may have an additional subscript t. Also
some variables are control variables, some represent the state of the system,
and the remaining variables are exogenous stochastic processes.

V Vector of size |N |, node voltages.
Vn Complex voltage at node n, i.e. nth component of V .
I Vector of size |N |, current injected in the nodes.
Ii If i = l, it is the complex current in link l, if i = n, it is the

complex current injected in bus n, i.e. nth component of I.
Si Apparent power injected in bus. If i = d, it is the power injected

by device d. If i = n, it is the total power injected by all devices
connected at node n.

Pi Active power injected in bus. If i = d, it is the power injected
by device d. If i = n, it is the total power injected by all devices
connected at node n.

Qi Reactive power injected in bus. If i = d, it is the power injected
by one device. If i = n, it is the total power injected by all devices
connected at node n.

Smn Apparent power entering branch l = (m,n) from the m side.
Pmn Active power entering branch l = (m,n) from the m side.
Qmn Reactive power entering branch l = (m,n) from the m side.
irt Solar irradiance level at time t.
vt Wind speed at time t.

s
(1)
t Vector representing the state of the devices at time t.
s

(2)
t Vector representing the state of the modulation instructions sent

to controllable devices, at time t.
flext Vector representing the state of the flexible loads at time t, it is a

part of s(2)
t .

s
(3)
t Part of the state of the system that, at time t, keeps track of past

realizations of the uncertain phenomena.
st Global state of the system at time t.
at Vector of control actions taken at time t.
pt Maximum level of active power injection for period t+ 1 and for

each of the generators g ∈ G, part of at.
actt Activation indicators of the flexibility services of the loads d ∈ F ,

part of at.
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actd,t Component of actt for flexible load d ∈ F .
wt Information on exogenous phenomena available at time t.

Operators and functions:
| · | Magnitude of a complex number or size of a set.
· ∗ Complex conjugate.

f : S ×As ×W → S Transition function of the system.
r : S ×As × S → R Reward function.

π : S → As Policy that returns an action for every feasible state.
G(n) Set of generators connected to node n.
C(n) Set of loads connected to node n.
F(n) Set of flexible loads connected to node n.

5.2 Introduction

Many authors have already attempted to provide solutions to the operational
planning problem faced by a DSO wishing to implement ANM strategies.
However, they mostly rely on different formulations and it can be difficult for
one author to rebuild on top of another’s work. These formulations can be
considered as an extension of the optimal power flow (OPF) problem [61]. More
specifically, they can be assimilated to sequential decision-making problems
where, at each time step, constraints that are similar to those used for defining
an OPF problem are met. Optimal power flow problems, although non-convex,
have been solved for a long time using local nonlinear optimization methods.
Interior-point methods are probably the most widespread class of methods
dedicated to this problem [27]. If the solution they provide has no guarantee to
be globally optimal, then they have been made popular by their convergence
speed and their ability to solve problems of large dimensions fairly efficiently.
Convexifications of the power flow equations have been successful, in particular
in [62] where the author models power flows in a radial distribution system
using second-order cone constraints. Recently, semidefinite programming (SDP)
was applied as a convex relaxation to the OPF problem [22]. The authors
report no duality gap on some standard meshed test systems and randomized
versions of these test systems. The zero duality gap property was thus observed
experimentally on standard test systems, and further research resulted in
sufficient conditions. This is the case, for example, if the objective function
is convex and monotonically increasing with the active power generation, and
if the network has a radial topology [28, 29]. Another approach aiming at
global optimality relies on Lagrangian relaxation (LR) [23]. The author also
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describes a spatial branch and bound (B&B) algorithm to close the gap, should
one exist. The ability of both SDP and LR to decrease the optimality gap
within a B&B framework was evaluated in [30]. Although SDP appeared to be
computationally more attractive, it showed that it could be very challenging to
reach a significant gap reduction within reasonable time limits, even for small
test systems. A different approach is considered in [63], where the authors
present a linear approximation of the power flow equations with a focus on
distribution networks. Multi-period applications related to energy storage are
investigated in [31], where the SDP relaxation of [22] is successfully applied, as
their particular application met the conditions of having no duality gap. The
authors of [32] argue that extending [30] to a multi-period setting yields an SDP
too large for current solvers to solve efficiently and suggest relaxing the time-
coupling constraints using LR. However, it ended up being computationally
too expensive to make the B&B approach worthwhile. Many papers consider
the unit commitment problem over an AC network, which is an instance of a
multi-period OPF with discrete variables. For instance in [33], a generalized
Benders decomposition divides the problem into a linear master problem with
discrete variables and nonlinear multi-period sub-problems. Benders cuts are
generated from the sub-problems to tighten the MIP master problem. Finally,
[64] focused on trying to solve a problem that is mathematically close to the
one we consider and provides more information on related research.

A first objective of this work is to facilitate the comparison of solution techniques
that have been developed in the research community. To that end, we first
propose a generic formulation of ANM related decision-making problems. More
specifically, we detail a procedure to state these problems as Markov Decision
Processes (MDP), where the system dynamics describes the evolution of the
electrical network and devices, while the action space encompasses the control
actions that are available to the DSO. Afterwards, we instantiate this procedure
on networks of 5, 33, and 77 buses, and use the elements of the resulting
MDPs to build a simulator of these systems, which is available at http:
//www.montefiore.ulg.ac.be/~anm/. As a second contribution, we provide
quantitative results for the resolution of the ANM problem cast as a stochastic
mixed-integer nonlinear program (MINLP), as well as a mixed-integer second-
order cone programming (MISOCP) relaxation and a mixed-integer linear
programming (MILP) approximation, using state of the art open source and
commercial solvers. We then perform a sensitivity analysis over the size of
the distribution system, the amount of flexibility available in the system,
and the number of scenarios considered in the deterministic equivalent of the
stochastic program. Finally, a last contribution lies in the features modeled
in this work. Compared to the work of [9] and [10], we explicitly account
for uncertainty, and for discrete variables stemming from the activation of
flexibility services. Compared to our work, [9] relies only on a continuous

http://www.montefiore.ulg.ac.be/~anm/
http://www.montefiore.ulg.ac.be/~anm/
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nonlinear programming formulation, and thus does not analyze linear or second
order cone programming formulations, but models a storage system, and [10]
also models discrete decisions variables, but they are related to capacitor banks
switching and storage system operation modes. The latter reference also uses
MISOCP and MILP formulations.

The rest of this chapter is structured as follows. The ANM problem of a DN is
described in Section 5.3, where the electrical model and the network operation
details are explained, and the operational planning problem is formulated
as a Markov decision process. This formulation is then cast as a stochastic
mixed-integer nonlinear program in Section 5.4, where a second order cone
relaxation and a linear approximation are also detailed. The test beds built
around the different distribution systems are described in Section 5.5, and test
results are presented in Section 5.6. Section 5.7 concludes and presents possible
extensions of this work.

5.3 Problem Description

5.3.1 Model of the electrical distribution system

In this chapter, we are always considering that the network and all its devices
are operating in alternating current mode. We also make the choice to represent
complex numbers in rectangular coordinates.

The electrical distribution system can be mathematically represented by a
graph, that is a set of nodes, and a set of links connecting nodes. A node is an
electrical bus characterized by a voltage Vn ∈ C. In addition to links connecting
a bus to its neighbors, several devices may be connected to a bus. Devices are
either injecting or withdrawing power. Every link (m,n) ∈ L ⊂ N 2 connects
a pair of nodes m,n ∈ N and represents an overhead line, an underground
cable, or a transformer. A link is represented by its π-model, composed of five
complex parameters: two ratios tmn and tnm, a branch admittance Y (br)

mn , and
two shunt admittances Y (sh)

mn and Y (sh)
nm (see Fig. 5.1), that are considered fixed

in this work, although opportunities to change them dynamically can exist in
practice. More details on the π-model of specific links can be found in [65].

To ensure the proper operation of the devices connected to a bus, the voltage
magnitude |Vn| at note n should not deviate too much from its nominal voltage
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Figure 5.1: π-model of a link.

level:

∀n ∈ N : V n ≤ |Vn| ≤ V n . (5.1)

If Imn ∈ C is the branch current through link (m,n), its magnitude |Imn| should
be kept below a pre-specified limit to prevent excessive heating of conductors
and insulating materials:

∀(m,n) ∈ L : |Imn| ≤ Imn. (5.2)

In reality, there are several limits depending on the magnitude and duration of
the over-current. In this work we consider only the most conservative limit,
since we want to keep a sufficient margin as we are taking decisions ahead of
time with a relatively high uncertainty. The magnitude of the current Il in link
l connecting nodes m and n can be deduced from the voltage at these nodes
by

|Imn| =
∣∣∣(|tmn|2Vm − (t(l)mn)∗t(l)nmVn

)
Y (br)
mn

∣∣∣ , (5.3)

where · ∗ denotes the complex conjugate operator.

Before defining the power injections as a function of voltages, it is convenient
to relate the current injected at nodes to the voltage by writing:

I = Y V , (5.4)

where I = (I1, . . . , I|N |) is the vector of the current injection at nodes, V =
(V1, . . . , V|N |) is the vector of the voltage at nodes, and Y is the |N | × |N |
nodal admittance matrix, which has its elements defined by

Ymn =


−(t(l)mn)∗t(l)nmY (br)

mn if m 6= n and ∃(m,n) ∈ L ,∑
(m,k)∈L |tmk|2(Y (sh)

mn + Y
(br)
mn ) if m = n ,

0 otherwise .
(5.5)

Regarding the active power Pn and reactive power Qn injected at every node n,
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they are related to the node voltages through the power flow equations [66]:

∀n ∈ N : Sn = Pn + jQn = VnI
∗
n = VnY

∗
n ·V ∗ , (5.6)

where Sn is the apparent power injection at bus n and Yn · denotes the nth row
of the nodal admittance matrix. By convention a power injection is positive if
it supplies the network and negative if it takes energy from the network.

In summary, there are four quantities attached to each node n ∈ N that
determine the electrical state of the system: Pn, Qn, and real and imaginary
parts of Vn. The power flow equations (5.6) provide 2|N | relations. 2|N |
variables should thus be fixed to obtain a solution to this system of equations.
In general, Vn is fixed on one side of the transformer between the MV network
and the transmission system, to provide a reference voltage. At other nodes,
the active power injection Pn is known, as well as either the reactive power Qn
or the voltage magnitude |Vn|, depending on the type of device connected at
the node. In this work we consider that we have some control over the power
flows in the system, hence we consider that less than 2|N | variables are fixed
and that we can act on Pn and Qn at some nodes. The system is actually
controlled by acting on the electrical devices attached to these nodes.

Electrical devices can be classified into two distinct subsets, the set C ⊂ D of
loads that withdraw power from the network, and the set G ⊂ D of generators
that inject power into the network. Within each subset, we also distinguish
two types of device models. The first ones represent individual injection and
withdrawal points. They can model certain types of DGs or consumers that
are directly connected to the MV grid (e.g., wind farms, some companies
and factories, etc.). The others model an aggregate set of devices that are
assimilated to a single connection point at the MV grid (e.g., residential
consumers and solar panels). Correspondences between some physical elements
and their device model are illustrated in Fig. 5.2. At node 3, a set of residential
loads and a set of distributed solar units have been aggregated into a single
load model and a single generator model.

An active power injection value Pd and a reactive power injection value Qd are
associated with every device d ∈ D, and, denoting the set of devices connected
at node n by D(n) ⊂ D:

∀n ∈ N : Sn = Pn + jQn =
∑

d∈D(n)

(Pd + jQd) . (5.7)

Every device d has a restricted set Od ⊂ R2 of valid (Pd,Qd) injection points.
We assume that the loads are operating at a constant power factor, i.e. the ratio
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Figure 5.2: System model

between reactive and active powers - denoted as tanφd - remains unchanged:

∀d ∈ C : Od = {(Pd, Qd) ∈ R2 | Qd
Pd

= tanφd} . (5.8)

For distributed generators, the injections points have to stay within a polyhe-
dron, as illustrated in Fig. 5.3. This set is defined by lower and upper bounds
on both Pd and Qd, as well as by two linear constraints that prevent a full
flexibility on Qg when Pg is close to its maximum. These constraints model
the limitations of the power converter and/or of the electric generator [67]. We
have:

∀g ∈ G : Og = {(Pd, Qd) ∈ R2 | Pmin,g ≤ Pg ≤ Pmax,g ,
Qmin,g ≤ Qg ≤ Qmax,g ,
Qg ≤ α+

g Pg + β+
g ,

Qg ≤ α−g Pg + β−g } . (5.9)

5.3.2 Operational planning problem statement

Considering the model of the electrical distribution network presented in
Section 5.3.1, operational planning is a recurring task performed by the DSO
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Figure 5.3: Illustration of a polyhedral set Od defining the P-Q capability area of a
distributed generator g ∈ G.

to anticipate the evolution of the system, that is the impact of the evolution of
the injection and the consumption patterns on the operational limits of the
system, and take preventive decisions to stay within these limits. Among the
available decisions in the considered timing of operations, we consider that
acting on the power injected or consumed by a predefined set of devices is the
only type of control the DSO has, as detailed in Section 5.3.1. We describe the
evolution of the system by a discrete-time process having a time horizon T ,
the number of periods used for the operational planning phase. The period
duration is 15 minutes, by analogy with the typical duration of a market period.
The power injection and withdrawal levels are constant within a single period,
and we neglect the fast dynamics of the system, which may be handled by real
time controllers [68]. The control actions in this section are aimed to directly
impact these power levels and can introduce time-coupling effects, depending
on the type of device. We now describe two control means of the system, the
modulation of the generation and the modulation of the demand, as well as
one of the possible interaction schemes between the actors of this system.

For each device belonging to the set G ⊂ D of DGs, the DSO can impose a
curtailment instruction, i.e. an upper limit on the generation level of the DG
(cf. Fig. 5.4). This request can be performed until the time period immediately
preceding the one concerned by the curtailment and it is acquired in exchange
for a fee. This fee is used to compensate the producer for financial loss related
to the energy that could not be produced during modulation periods. We
assume that this fee is defined as a per unit compensation for the energy not
produced, with respect to the actual potential that is known after the market
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Figure 5.4: Curtailment of a distributed generator.

period.

We also consider that the DSO can modify the consumption of some flexible
loads, a subset F of full set of the loads C ⊂ D of the network. An activation
fee is associated with this control mean and flexible loads can be notified of
activation until the time immediately preceding the start of the service. Once
the activation is performed at time t0, the consumption of the flexible load d is
modified by a certain value during Td periods. For each of these modulation
periods t ∈ {t0 + 1, ..., t0 +Td}, this value is defined by the modulation function
∆Pd(t − t0). An example of modulation function and its influence over the
consumption curve are presented in Fig. 5.5. Loads cannot be modulated in an
arbitrary way. There are constraints to be imposed on the modulation signal,
which are inherited from the flexibility sources of the loads, such as an inner
storage capacity (e.g. electric heater, refrigerator, water pump) or a process
that can be scheduled with some flexibility (e.g., industrial production line,
dishwasher, washing machine). In any case, we will always consider that the
modulation signal ∆Pd has to satisfy the following conditions:

• A downward modulation is followed by an increase of the consumption,
and conversely.

• The integral of the modulation signal is null in order to ensure that the
consumption is only shifted, not modified.

Other approaches that we do not consider in this work exist to control the
system, such as modulating the tariff signal(s), acting on the topology of the
network, or using distributed storage sources. We do not model either the
automatic regulation devices that often exist in distribution systems, such as
On Load Tap Changers of transformers which automatically adapt to control
the voltage level. This should be the case, obviously, in a real life application.
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(a) Modulation signal of the consumption (Td = 9).

(b) Impact of the modulation signal over the consumption.

Figure 5.5: Illustration of flexibility services.

We will discuss in the conclusion what are the implications of these non-modeled
control possibilities.

5.3.3 Optimal sequential decision-making formulation

We now formulate operational planning as an optimal sequential decision-
making problem, that is, we explain how the time, the decision process, and
uncertainty are included to extend the mathematical model described in Sec-
tion 5.3.1. The sequential aspect is induced by the modulation service that
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is provided by flexible loads. Indeed, if such a service is activated at time t0
for a flexible load d, the action will influence the system for the set of periods
{t0 +1, ..., t0 +Td}. In addition to being a sequential problem, it is also stochas-
tic, because the evolution of the system and the outcome of control actions
are affected by several uncertain factors. These factors include, but are not
limited to, the wind speed, the level of solar irradiance, and the consumption
level of the loads. In this section, we model this problem as a Markov decision
process with mixed-integer sets of states and actions. We thus consider that the
transition probabilities of the state of the system from a period t to a period
t+ 1 only depend on the state at time t. However, this state can encompass
several past values of wind speed, solar irradiance, consumption levels, and
any auxiliary modeling variables, in order to obtain a relevant model. An
automatic procedure that determines an adequate number of past values to
track in the state is presented in Section 5.5. Note that modeling the actual
system as a Markovian system is not restrictive as all properly modeled systems
are Markovian if the state variables capture all the information to model the
system from time t and onwards [69]. Finally, the notion of optimality is defined
using a reward function that associates an immediate reward (or score) to
every transition of the system. The better the cumulated reward over a system
trajectory, the better the sequence of control actions for this trajectory.

5.3.3.1 System state

The global state space S of the system is decomposed in three subsets:

S = S(1) × S(2) × S(3).

The power injections of the devices are sufficient to obtain the value of the
electrical quantities through equations (5.6) and (5.7). These injections are
determined from the realization of the exogenous consumption and generation
processes at a given time period, and from the modulation instructions for
that period. If the consumption processes require the representation of the
individual consumption of every load, it is possible to obtain the production of
DGs given the power level of their energy source (i.e. the wind speed or the
level of solar irradiance). We thus define a first state set S(1) such that the
vectors s(1)

t ∈ S(1) are defined by

s
(1)
t = (P1,t, . . . , P|C|,t, irt, vt) ,

where, at time t ∈ T , the irt and vt components represent the level of solar
irradiance and the wind speed, respectively. If, for the sake of simplicity, we
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consider only solar and wind generation, other types of generators could easily
be integrated by increasing the dimension of S(1). Note that the reactive power
withdrawals of loads are known from s

(1)
t through equation (5.8).

The vector s(2)
t ∈ S(2), defined as

s
(2)
t = (P 1,t, Q̂1,t, . . . , P |G|,t, Q̂|G|,t, f lex1,t, . . . , f lex|F|,t),

contains the upper limits P g,t on the active power injection and the reactive
set-points Q̂g,t of the DGs g ∈ G, as authorized by the DSO, and the indicators
flexd,t of the flexibility service state of the loads d ∈ F :

flexd,t =
{
number of active periods left if service is active
0 if service is inactive .

We denote by s(3)
t ∈ S(3) the part of the system’s state that, at time t ∈ T ,

keeps track of past realizations of the uncertain phenomena (i.e. wind speed,
solar irradiance, and consumption levels) and contains the optional auxiliary
modeling variables. Its purpose is to improve the accuracy of the stochastic
modeling and to allow the representation of processes that are required for
some reward functions (see Section 5.3.3.4). The number of past values can be
different for each phenomenon and, we have

s
(3)
t = (P1,t−1, . . . , P1,t−Nloads+1, . . . , P|C|,t−1, . . . , P|C|,t−Nloads+1,

irt−1, . . . , irt−Nir+1, vt−1, . . . , vt−Nv+1,

s
(aux)
1,t , . . . , s

(aux)
Naux,t

)

where Nloads, Nir, Nv ∈ Z+
0 , and Naux ∈ Z+. The value of these parameters

has to be determined when instantiating the presented abstract decision model
(see Section 5.5). A value of 1 for the three former parameters means that the
history of the corresponding phenomenon consists of s(1) only, while a value of
0 for the latter parameter means that there is no auxiliary variable. We denote
thereafter the vector of the Naux auxiliary modeling variables by s(aux)

t .

5.3.3.2 Control actions

The control means that are available to the DSO to control the system are
modeled by the set As of control actions. This set depends on the state st of
the system because it is not possible to activate the flexibility service of a load
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if it is already active. The components of vectors at ∈ As are defined by

at = (pt, q̂t,actt) ,

with pt, q̂t ∈ R|G| such that, for period t + 1 and for each of the generators
g ∈ G, pg,t and q̂g,t indicate the maximum level of active power injection and
the desired reactive set-point, respectively. On the other hand, the vector actt
represents the activation indicators of the flexibility services of the loads d ∈ F ,
where each component actd,t belongs to Ad,s, which is defined as

Ad,s =
{
{0, 1} if flexd,t = 0
{0} if flexd,t > 0 ,

(5.10)

to ensure that a load which is already active is not activated.

By using this representation of the control actions, we consider that a cur-
tailment or flexibility activation action targeting a period t must always be
performed at the period t− 1, as described in Section 5.3. We do not consider
the possibility to notify control actions several periods ahead, because it would
induce even larger time-coupling effects, while not improving the extent of
control of the DSO since in the interaction model considered in this chapter
the cost associated with an action is independent of the notification delay.

5.3.3.3 Transition function

The system evolution from a state st to a state st+1 is described by the transition
function f . The new state st+1 depends, in addition to the preceding state, on
the control actions at and on the realization of the stochastic processes:

f : S ×As ×W → S ,

where W is the set of possible realizations of a random process. The general
evolution of the system is thus governed by relation

st+1 = f(st,at,wt) , (5.11)

where wt ∈ W represents the exogenous information and follows a probability
law pW( · ). We could write equivalently that st+1 ∼ pS( · |st,at), which clearly
highlights that the next state of the system follows a probability distribution
that is conditional on the current state and on the action taken at the corre-
sponding time step. However, we favor notation of equation (5.11) as it enables
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an easier formulation of concepts that are introduced latter in this chapter. We
now describe the various elements that constitute the transition function.

Load consumption The uncertainty about the behavior of consumers in-
evitably leads to uncertainty about the power level they draw from the network.
However, over a one-day horizon, some trends can be observed. For example,
consumption peaks arise in the early morning and in the evening for residential
consumers, but at levels that fluctuate from one day to another and among
consumers. We model the evolution of the consumption of each load d ∈ C
by

Pd,t+1 = fd(Pd,t, Pd,t−1, . . . , Pd,t−Nloads+1, s
(aux)
t ,wd,t) , (5.12)

where wd,t ∼ pWd
( · ) denotes some components of wt ∼ pW( · ). Given

the hypothesis of a constant power factor for the loads, the reactive power
consumption can directly be deduced from Pd,t+1:

Qq,t+1 = tanφd ·Pd,t+1 . (5.13)

Speed and power level of wind generators The uncertainty about the pro-
duction level of wind turbines is inherited from the uncertainty about the wind
speed. The stochastic process that we consider governs the wind speed, which
is assumed to be uniform across the network. The production level of the wind
generators is then obtained by using a deterministic function that depends on
the wind speed realization, this function is the power curve of the considered
generator. We can formulate this phenomenon as:

vt+1 = fv(vt, . . . , vt−Nv+1, s
(aux)
t ,w

(v)
t ) , (5.14)

Pg,t+1 = ηg(vt+1),∀g ∈ wind generators ⊂ G , (5.15)

such that w(v)
t ∼ pW(v)( · ) denotes some components of wt ∼ pW( · ) and where

ηg is the power curve of generator g. A typical example of power curve ηg(v)
is illustrated in Fig. 5.6.

Irradiance and photovoltaic production Like wind generators, the photo-
voltaic generators inherit their uncertainty in production level from the un-
certainty associated with their energy source. This source is represented by
the level of solar irradiance, which is the power level of the incident solar
energy per square meter. The irradiance level is the stochastic process that we
model, while the production level is obtained by a deterministic function of the
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Figure 5.6: Power curve of a wind generator.

irradiance and of the surface of photovoltaic panels. This function is simpler
than the power curve of wind generators and is defined as

Pg,t = ηg · surfg · irt ,

where ηg is the efficiency factor of the panels, assumed constant and with a
typical value around 15%, while surfg is the surface of the panels in m2 and is
specific to each photovoltaic generator. The irradiance level is denoted by irt
and the whole phenomenon is modeled by the following process:

irt+1 = fir(irt, . . . , irt−Nir+1, s
(aux)
t ,w

(ir)
t ) , (5.16)

Pg,t+1 = ηg · surfg · irt+1,∀g ∈ solar generators ⊂ G , (5.17)

such that w(ir)
t ∼ pW(ir)( · ) denotes some components of wt ∼ pW( · ).

Auxiliary modeling variables The evolution of auxiliary modeling variables
depends on their meaning and must be determined when instantiating the
presented abstract decision model. The evolution of each component of s(aux)

t

can be either stochastic or deterministic and, without loss of generality, we can
write:

s
(aux)
t+1 = faux(st,w(aux)

t ) , (5.18)

such that w(aux)
t ∼ pW(aux)( · ) denotes some components of wt ∼ pW( · ).

Impact of control actions The stochastic processes that we described govern
the evolution of the state s(1)

t ∈ S(1) of the consumption of loads (flexibility
services excluded) and of the power level of energy sources of DGs. We now
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define the evolution of the components of s(2)
t ∈ S(2) by integrating the control

actions of the DSO. Concerning the modulation instructions of the generators,
we have:

∀g ∈ G : P g,t+1 =
{
pg,t if (pg,t, q̂g,t) ∈ Og ,
max(p,q̂g,t)∈Og p otherwise ,

(5.19)

∀g ∈ G : Q̂g,t+1 = q̂g,t , (5.20)

where max(p,q̂g,t)∈Og p denotes the maximal active production level that genera-
tor g can sustain with a reactive set-point of q̂g,t. It is used if needed to ensure
that the instructed (P g,t+1, Q̂g,t+1) point is a valid operating point, such a
defined by equation (5.9). As for the components dedicated to the flexible
loads, their evolution is governed by:

∀d ∈ F : flexd,t+1 = max(flexd,t − 1 ; 0) + actd,tTd , (5.21)

∀d ∈ F : ∆Pd,t+1 =
{

∆Pd(Td − flexd,t+1 + 1) if flexd,t+1 > 0
0 if flexd,t+1 = 0 .

(5.22)

From vectors s(1)
t and s(2)

t , we can determine the active and reactive power
injections at nodes and thus obtain the value of the electrical quantities at
nodes n ∈ N and links (m,n) ∈ L of the network:

Pn,t =
∑

g∈G(n)

min(P g,t;Pg,t) +
∑

d∈C(n)

Pd,t +
∑

d∈F(n)

∆Pd,t , (5.23)

Qn,t =
∑

g∈G(n)

Q̂g,t +
∑

d∈C(n)

Qd,t +
∑

d∈F(n)

tanφd∆Pd,t , (5.24)

Pn,t − jQn,t = V ∗n,tYn · Vn,t , (5.25)

|Imn,t| =
∣∣∣(|tmn|2Vm,t − (t(l)mn)∗t(l)nmVn,t

)
Y (br)
mn

∣∣∣ . (5.26)

5.3.3.4 Reward function and goal

In order to evaluate the performance of a policy, we first specify the reward
function r : S × As × S → R, which associates an instantaneous reward for



5.3. Problem Description 81

each transition of the system from a period t to a period t+ 1:

r(st,at, st+1) =−
∑
g∈G

max{0, Pg,t+1 − P g,t+1

4 }Ccurtg (s(aux)
t+1 )︸ ︷︷ ︸

curtailment cost of DGs

−
∑
d∈F

actd,tC
flex
d︸ ︷︷ ︸

activation cost
of flexible loads

− Φ(st+1)︸ ︷︷ ︸
penalty function

, (5.27)

where Ccurtg ( · ) is a per-generator function that defines the curtailment price,
while Cflexd ( · ) defines the activation cost for each flexible load. In this generic
definition of the reward, we allow both functions to depend on the auxiliary
state variables so that it can model arbitrary processes. The function Φ aims
at penalizing a policy that leads the system into an undesirable state (e.g. that
violates the operational limits or induces many losses) and, together with Ccurtg

and Cflexd , it must be defined when instantiating the decision model. Note that
equation (5.27) is such that the higher the operational costs and the larger the
violations of operational limits, the more negative the reward function.

We can now define the return over T periods, denoted RT , as the weighted sum
of the rewards that are observed over a system trajectory of T periods

RT =
T−1∑
t=0

γtr(st,at, st+1) , (5.28)

where γ ∈]0; 1[ is the discount factor. Given that γt < 1 for t > 0, the further
in time the transition from period t = 0, the less importance is given to the
associated reward. Because the operation of a DN must always be ensured, it
does not seem relevant to consider returns over a finite number of periods and
we introduce the return R as

R = R∞ = lim
T→∞

T−1∑
t=0

γtr(st,at, st+1) , (5.29)

that corresponds to the weighted sum of the rewards observed over an infinite
trajectory of the system. Given that the costs have finite values, assuming
the same for penalties, and observing that the reward function r is the sum of
an infinite number of these costs and penalties, a constant C exists such that,
∀(st,at, st+1) ∈ S ×As × S, we have |r(st,at, st+1)| < C and thus

|R| < lim
T→∞

C

T−1∑
t=0

γt = C

1− γ . (5.30)
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It means that even if the return R is defined as an infinite sum, it converges
to a finite value. One can also observe that, because st+1 = f(st,at,wt), a
function ρ : S × A ×W → R exists that aggregates functions f and r such
that

ρ(st,at,wt) = r(st,at, f(st,at,wt)) = r(st,at, st+1) , (5.31)

with wt ∼ pW( · ). Let π : S → As be a policy that associates a control action
to each state of the system. We can define, starting from an initial state s0 = s,
the expected return R of the policy π by

Jπ(s) = lim
T→∞

E
wt∼pW ( · )
t=0,1,...

{
T−1∑
t=0

γtρ(st, π(st),wt)|s0 = s} . (5.32)

We denote by Π the space of all the policies π. For a DSO, addressing the
operational planning problem described in Section 5.3 is equivalent to determine
an optimal policy π∗ among all the elements of Π, i.e. a policy that satisfies
the following condition

Jπ
∗
(s) ≥ Jπ(s),∀s ∈ S,∀π ∈ Π . (5.33)

It is well known that such a policy satisfies the Bellman equation [70], which
can be written

Jπ
∗
(s) = max

a∈As

E
w∼pW ( · )

{
ρ(s,a,w) + γJπ

∗
(f(s,a,w))

}
,∀s ∈ S . (5.34)

If we only take into account the space of stationary policies (i.e. that selects
an action independently of time t), it is without loss of generality comparing
to the space of policies Π′ : S × T → A because the return to be maximized
corresponds to an infinite trajectory of the system [71].

5.4 Lookahead optimization model

We now describe a look-ahead algorithm to build a policy based on stochastic
programming. The principle is, at each time step t ∈ T , to optimize a model
Mt of the system over a finite time horizon Tt = {t, ..., t+ T − 1} and to apply
the control action â∗t = π̂∗Mt

(st) that corresponds to the first stage of the
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model. This approximate optimal policy π̂∗Mt
can be formulated as

π̂∗Mt
(st) = arg

at

max
st′ ,at′

∀t′∈Tt

E
wt′∼pW( · )

[ t+T−1∑
t′=t

γt
′−tr(st′ ,at′ , f(st′ ,at′ ,wt′))

]
(5.35)

s.t. st′ = f(st′−1,at′−1,wt′−1) , ∀t′ ∈ Tt\{t} (5.36)
at′ ∈ Ast′ , ∀t′ ∈ Tt , (5.37)

where the shorter the horizon T , the higher the approximation error.

The finite lookahead time horizon is not the only source of approximation. First,
there is no exact numerical method to solve (5.35)-(5.37) without requiring a
discrete approximation of the continuous stochastic processes [17]. We detail in
Section 5.4.2 how to build such a discrete approximation. Then, because of the
nonlinearity of power-flow equations on the one hand, and the integer variables
that model the activation of flexibility services on the other hand, the resulting
mathematical problem is very complex to solve. For this reason, it is often
required either to resort to local optimization techniques and heuristics, or to
use relaxations and approximations of the power-flow equations. In particular,
we describe in Section 5.4.5 several models of the electrical network of different
complexity and accuracy.

5.4.1 Model instantiation

The decision model presented in Section 5.3.3 is generic on some of its elements.
We now instantiate these elements to obtain a practical model that can be
implemented to perform numerical simulations.

Auxiliary state variable We limit the vector s(aux)
t to a single auxiliary variable

that indicates the time of the day:

s
(aux)
t = qt , (5.38)

which takes values in {0, . . . , 95} to identify the quarter of an hour in the day.
This information will be used as an input of the modulation price functions
and of the transition function of both production and consumption processes.
The relation that governs the evolution of qt can be stated as a function
faux : {0, . . . , 95} 7→ {0, . . . , 95}, which is defined as:

qt+1 = faux(qt) = (qt + 1) mod 96 . (5.39)
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Modulation prices For the sake of simplicity, we consider that the curtailment
price functions Ccurtg depend exclusively on qt. The time of the day being
deterministic, these functions are deterministic too and correspond to arrays
of 96 price values, which span a whole day. Concerning the activation costs
Cflexd , they are assumed to be constant on a per-load basis. The values of both
the arrays and constants are specified in Section 5.5 when presenting the test
instances.

Penalty function We choose to penalize a policy for violating operational
limits and for the active losses in the network. This is implemented using the
following function:

Φ(st+1) = k.
( ∑
n∈N

[max(0, |Vn,t+1| − V n) + max(0, V n − |Vn,t+1|)]

+
∑

(m,n)∈L

max(0, |Imn,t+1| − Imn)
)

+ Closs(qt+1)
∑
n∈N

Pn,t+1

4 , (5.40)

where |Vn,t+1| (n ∈ N ) and Imn,t+1 ((m,n) ∈ L) are determined from st+1
using equations (5.23)-(5.26), and where k ∈ R+

0 is a typically large constant.
The per-unit price Closs(qt+1) of losses is a deterministic function of the quarter
of hour and corresponds to an array of 96 price values.

Production and consumption processes The instantiated versions of transi-
tion functions (5.12), (5.14), and (5.16), of the stochastic quantities (i.e. the
consumption of the loads, the wind speed, and the level of solar irradiance)
have the following structure:

xt+1 = fx(xt, . . . , xt−Nx+1, qt, w
(x)
t ) , (5.41)

= µx,t+1 + σx,t+1 ·w(x)
t , (5.42)

with w(x)
t ∼ pW(x)

(
· |xt − µx,t

σx,t
, . . . ,

xt−Nx − µx,t−Nx+1

σx,t−Nx+1

)
, (5.43)

where x denotes the considered process, and where µx,t±∆t and σx,t±∆t are
shortcuts for the following per-process functions:

µx,t±∆t = µx

(
(qt ±∆t) mod 96

)
, (5.44)

σx,t±∆t = σx

(
(qt ±∆t) mod 96

)
. (5.45)
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These functions normalize the processes and remove their diurnal seasonality,
and the conditional distribution of w(x)

t is then assumed to be stationary. The
details of the conditional density functions are not required for the development
of the lookahead optimization model, we specify in Section 5.5 a possible
procedure to learn these functions from time series of measurements.

5.4.2 Discretization of the random process

The random process needs to be discretized over the look-ahead horizon to
implement the policy with a computer program. A prevalent technique is to
use a scenario tree [25] for this purpose. At each time step t ∈ T , the evolution
of the stochastic components is aggregated as a finite set W̃T

t of outcome
trajectories of the exogenous variables:

W̃T
t = {(w(k)

t , . . . ,w
(k)
t+T−1)|k = 1, . . . ,W} , (5.46)

and a probability Pk is associated to each trajectory k ∈ {1, . . . ,W}. If
two trajectories i and j share the same outcomes up to stage o, i.e. if
(w(i)

t′ , . . . ,w
(i)
t′+o) = (w(j)

t′ , . . . ,w
(j)
t′+o), they can be interpreted as a single tra-

jectory of probability Pi + Pj up this stage. Fig. 5.7 provides an example of
such a scenario tree, where the nodes represent the outcomes and the edges
correspond to the transition probabilities.
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Figure 5.7: Example of scenario tree with T = 3 and W = 5.
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5.4.3 Mathematical program

The purpose of the first term in the penalty function is to be an incentive
to prevent the policy to bring the system in a state that violates operational
limits. This definition allows to evaluate any kind of policy. In a mathematical
programming setting, we remove this term from the objective function and add
operational constraints defined in equations (5.1) and (5.2) to (5.35)-(5.37).
The new objective function becomes:

cost(st,at, st+1) =
∑
g∈G

max{0, Pg,t+1 − P g,t+1

4 }Ccurtg (qt+1) +
∑
d∈F

actd,tC
flex
d

+ Closs(qt+1)
∑
n∈N

Pn,t+1

4 . (5.47)

Taking into account the discretization of the stochastic processes, the objective
function defined in equation (5.47), and the additional constraints, we can
formulate a new approximate optimal policy π̂∗M̂t

as

π̂∗M̂t
(st) = arg

at

min
s

(k)
t ,...,s

(k)
t+T ,

a
(k)
t ,...,a

(k)
t+T−1,

∀k∈{1,...,W}

W∑
k=1

t+T−1∑
t′=t

[
Pkγt

′−tcost(s(k)
t′ ,a

(k)
t′ , s

(k)
t′+1)

]
(5.48)

s.t. ∀t′ ∈ Tt :
∀i, j s.t. (w(i)

t ,...,w
(i)
t′

)=(w(j)
t ,...,w

(j)
t′

) :

a
(i)
t′ = a

(j)
t′ , (5.49)

∀(k, t′) ∈ {1, . . . ,W} × Tt :
s

(k)
t′+1 = f(s(k)

t′ ,a
(k)
t′ ,w

(k)
t′ ) , (5.50)

a
(k)
t′ ∈ As(k)

t′
, (5.51)

∀(n, k, t′) ∈ N × {1, . . . ,W} × Tt :

V
(k)
n,t′ ≤ |V

(k)
n,t′ | ≤ V

(k)
n,t′ , (5.52)

∀(m,n, k, t′) ∈ L × {1, . . . ,W} × Tt :
|Imn,t| ≤ Imn , (5.53)

where (5.50) stands for equations (5.12)-(5.26), and (5.51) for equation (5.10).
The model takes into account that decisions at stage t′ ∈ Tt only depend on
exogenous information up to stage t′, i.e. that future unknown data is not
used, which is why we integrate the nonanticipativity constraints [17] to the
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mathematical program using equation (5.49). Problem (5.48)-(5.53) is a mixed-
integer program (MIP). For a given distribution system, its complexity depends
mainly on the network model chosen to represent power-flow equations (cf.
Section 5.4.5), and on the number of scenarios representing the uncertainty.

5.4.4 Detailed model of control actions

Implementing the model of control actions of Section 5.3.3.2 in a mathematical
program is not straightforward. We now present how it can be implemented in
problem (5.48)-(5.53).

5.4.4.1 Generation curtailment

This section focuses on the curtailment decision model. To ease the reading,
we focus on one particular generator and thus omit subscript g. Note first that
the active power injection term of equation (5.23) that follows a curtailment
instruction pt ≥ 0 from stage t, i.e. min(P t+1;Pt+1), is translated in the
mathematical program by

min(P t+1;Pt+1) = Pt+1 − pcurt,t+1 , (5.54)

where pcurt,t+1 ≥ 0 is the amount of active power curtailment induced by the
power limit instruction. This quantity is easy to determine in a deterministic
setting:

P t+1 = pt , (5.55)
pcurt,t+1 = Pt+1 − P t+1 , (5.56)

where Pt+1 is the potential active production level at time step t+ 1.

Considering several scenarios leads to a less obvious definition of the amount of
curtailment. Let pt denote the curtailment instruction that, at time t, is shared
by all scenarios j ∈ {1, . . . ,W} such that (. . . ,w(k)

t−1,w
(k)
t ) = (. . . ,w(j)

t−1,w
(j)
t ).

For one generator, the maximum power allowed and the curtailed power are
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defined by the following set of constraints for each scenario k:

P
(k)
t+1 = pt , (5.57)

∆p(k)
t+1 = P

(k)
t+1 − P

(k)
t+1 , (5.58)

p
(k)
curt,t+1 = max(0,∆p(k)

t+1) , (5.59)

where P (k)
t+1 is the potential active production level in scenario k, and ∆p(k)

t+1 is
an auxiliary variable that has no physical meaning, since it can be negative
when pt is not restrictive for scenario k (i.e. when pt ≥ P

(k)
t+1). The variable

p
(k)
curt,t+1 would be the power curtailed if scenario k realizes. It contributes

linearly to the value of the objective function, proportional to the curtailment
cost and weighted by the probability of scenario k. A common relaxation of
the max operator of constraint (5.59) for a variable that tends to be minimized
is

p
(k)
curt,t+1 ≥ ∆p(k)

t+1 . (5.60)

However, this holds only if constraint (5.60) is always tight, which is not
always true in problem (5.48)-(5.53). Without preventing p

(k)
curt,t+1 to be

greater than ∆p(k)
t+1, it would allow to discriminate the curtailment decisions

between different scenarios even though the nonanticipativity constraint (5.49)
is respected. Indeed, the amount of power curtailed could be increased beyond
P

(k)
t+1 − P

(k)
t+1 and it would differ from the set point pt, which is guaranteeing

nonanticipativity by being common for all subsequent scenarios.

From this analysis, we conclude that a continuous implementation of equa-
tion (5.59) is not possible and we model it using equation (5.60) and the
following additional constraints:

p
(k)
curt,t+1 ≤ ∆p(k)

t+1 − y(k)∆P (k)
t+1 , (5.61)

p
(k)
curt,t+1 ≤ (1− y(k)

t+1) ∆P (k)
t+1 , (5.62)

y
(k)
t+1 ∈ {0, 1} , (5.63)

where ∆P (k)
t+1 and ∆P (k)

t+1 are parameters that indicate the maximal and minimal
values that ∆p(k)

t+1 can take, respectively. It corresponds to a big M formulation
[72] and can be interpreted as follow:

• if ∆p(k)
t+1 < 0, constraint (5.61) is satisfied only if y(k)

t+1 = 1, and constraint
(5.62) then forces p(k)

curt,t+1 = 0 ;

• if ∆p(k)
t+1 ≥ 0, constraints (5.60) and (5.61) can be satisfied simultaneously

only if y(k)
t+1 = 0 .
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Parameters ∆P (k)
t+1 and ∆P (k)

t+1 should be chosen such that the continuous
relaxation is as tight as possible. For instance for a wind turbine ∆P (k)

t+1 = P
(k)
t+1

and ∆P (k)
t+1 = P

(k)
t+1 −maxj P (j)

t+1.

Finally, the curtailment instruction pg,t are recovered from the solution of M̂t

upon the following processing of the solution:

∀g ∈ G : pg,t ←
{
pg,t if ∃k ∈ {1, ...,W} s.t. pg,t < P

(k)
g,t+1 ,

+∞ otherwise ,
(5.64)

This processing is introduced because, in M̂t, the value of pg,t has no meaning
when it does not induce an actual curtailment for at least one scenario. There-
fore, it makes no sense to interpret these variables as curtailment instructions
and equation (5.64) makes sure that curtailment actions sent to the system
actually corresponds to curtailment decisions in the optimization model.

5.4.4.2 Activation of flexibility services

This section details how the control actions actd,t defined in Section 5.3.3.2
are computed. To ease the reading, we focus on one particular device and
thus omit subscript d in this section. The superscript (k) is also dropped and
the following equations simply needs to be repeated for each scenario of the
lookahead model, with equation (5.49) guaranteeing the nonanticipativity of
the model. We first define several auxiliary variables:

• zt ∈ {0, 1} is a binary variable used to model the max operator for state
transitions;

• mt ∈ Z+ is a integer variable used for state transitions.

Ignoring the activation signal, the transition rule of the flexible state, i.e.

mt+1 = max(0, f lext − 1) ,

is implemented through the following big M formulation:

mt+1 ≤ flext − 1 + zt (5.65)
mt+1 ≤ T (1− zt) (5.66)
mt+1 ≥ flext − 1 . (5.67)



90 5. Problem formulation, benchmark, and approximate solution

The influence of the activation signal is then incorporated to the flexible state:

flext+1 = mt+1 + acttT , (5.68)

while the following constraint prevents a double activation of a flexibility
service:

at + flext
T
≤ 1 . (5.69)

Finally, the value of the effective modulation signal, defined in equation (5.22),
is implemented as:

∆Pt =
∑

t′:t−t′≤T
at−t′∆P (t− t′) , (5.70)

where ∆P ( · ) is the modulation curve of the load, which produces parameters
for the mathematical program.

5.4.5 Detailed network models

We detail how the network model described in Section 5.3.1 is precisely instan-
tiated in the AC non-convex case, then we describe a linearization approach
and finally a second order cone program (SOCP) model. To ease reading we
consider only one time step and omit the subscripts t and the scenario notation,
but in reality these equations are replicated for each time step or node of the
scenario tree. In this section, we define

gmn + jbmn = Y (br)
mn

and
g(sh)
m + jb(sh)

m =
∑

n:(m,n)∈L

Y (sh)
mn .

We also consider arbitrarily that node 1 is a slack bus which sets a reference
phase angle of 0 and a fixed voltage magnitude.

5.4.5.1 Non-convex AC model

We chose to express relations (5.6) in rectangular coordinates. Hence we define
variables
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• en as the real part of Vn

• fn as the imaginary part of Vn

• Pmn as the active power leaving bus m and flowing in link (m,n)

• Qmn as the reactive power leaving bus m and flowing in link (m,n)

• P shuntn as the active power shunted at bus n

• Qshuntn as the reactive power shunted at bus n.

The above powers are defined as

∀(m,n) ∈L :
Pmn = em (gmn(em − en)− bmn(fm − fn))

+ fm (bmn(em − en) + gmn(fm − fn)) , (5.71)
Qmn = fm (gmn(em − en)− bmn(fm − fn))

− em (bmn(em − en) + gmn(fm − fn)) , (5.72)
∀n ∈N :

P shuntn = g(sh)
n (e2

n + f2
n), (5.73)

Qshuntn = b(sh)
n (e2

n + f2
n). (5.74)

Then the voltage operational limits are defined for every node n as

Vn
2 ≤ e2

n + f2
n ≤ Vn

2
, ∀n ∈ N , (5.75)

and the thermal limits by

I2
mn ≤ I

2
mn, ∀(m,n) ∈ L, (5.76)

with

I2
mn = I2

real + I2
imag , (5.77)

Ireal = gmn(em − en)− bmn(fm − fn) , (5.78)
Iimag = bmn(em − en) + gmn(fm − fn) . (5.79)

5.4.5.2 Linearized model

This model proposed in [63] approximates linearly (5.71) and (5.72). Note that
this approximation does not include the shunt powers, i.e. P shuntn = Qshuntn = 0,
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∀n ∈ N . This yields

Pmn = gmn(em − en)− bmn(fm − fn), ∀(m,n) ∈ L (5.80)
Qmn = −bmn(em − en)− gmn(fm − fn), ∀(m,n) ∈ L. (5.81)

The upper voltage limits and the thermal limits are approximated by a regular
polyhedron inscribed in the respective circles of the original limits. The lower
voltage operational limit is simply modeled as a lower bound on en, which
means that we make the hypothesis that the angles are small. An iterative
method could be set up if the approximated solutions are far from feasible
solutions of the AC model. However, this turned out to be unnecessary as the
decisions taken are most of the time very coherent with those obtained with
other models, as illustrated in Section 5.5. This formulation does not account
for losses.

5.4.5.3 Convex SOCP model

By introducing variables un ≥ 0, Rmn ≥ 0 and Tmn ∈ R that substitute the
expressions

e2
n + f2

n√
2

, emen + fmfn, fmen − emfn,

respectively, constraints (5.71)-(5.74) can be rewritten without e and f as

Pmn = gmn
√

2um − gmnRmn − bmnTmn, ∀(m,n) ∈ L (5.82)

Qmn = −bmn
√

2um + bmnRmn − gmnTmn, ∀(m,n) ∈ L (5.83)

P shuntn = g(sh)
n

√
2un, ∀n ∈ N (5.84)

Qshuntn = b(sh)
n

√
2un, ∀n ∈ N . (5.85)

The additional set of constraints

2umun = R2
mn + T 2

mn, ∀(m,n) ∈ L (5.86)

are imposed to maintain a relationship between the newly introduced variables.
They are then relaxed to obtain a convex second order cone program:

2umun ≥ R2
mn + T 2

mn, ∀(m,n) ∈ L. (5.87)

Voltage limits can be easily rewritten as a function of un as

Vn
2 ≤
√

2un ≤ Vn
2
, ∀n ∈ N . (5.88)
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Thermal limits are approximated in the same way as for the non-convex AC
model. Note that as Rmn = Rnm and Tmn = −Tnm, they are in practice
replaced by a single variable per branch and constraints (5.82) and (5.83) are
updated accordingly. It is shown in [62] that this relaxation is tight for radial
networks under some conditions on the objective function. These conditions
are not met in our formulation since minimizing curtailment is equivalent to
maximizing the renewable generation. To mitigate this issue, the losses term
in the objective function must be scaled with a coefficient sufficiently large so
that (5.87) are tight, but not too large so that the original objective function
is still guiding the solution. This tradeoff is further discussed in Section 5.5.

5.5 Test instances

We describe below the three test instances of the ANM problem that are used
in the results section. The set of models and parameters that are specific
to these instances, as well as documentation for their usage, are accessible
at http://www.montefiore.ulg.ac.be/~anm/ as Python code. It has been
developed to provide a black-box-type simulator that is quick to set up. The
DNs on which these instances are based are a toy 5-bus radial test system,
a 33-bus non-radial test system [73], and a 77-bus radial test system [74].
Table 5.1 summarizes some relevant data about these instances. The test
systems are also illustrated in Figures 5.8, 5.9, and 5.10. The location of the
wind generators, which we assume to be curtailable, is indicated by a circled
W . The 77-bus instance also includes non-curtailable generators that model
residential photovoltaic panels.

case case5 case33 case77
flex level low medium high low medium high low medium high

|N | 5 33 77
|L| 4 37 76
|G| 1 4 6 curtailable (out of 59)
|C| 3 32 53
|F| 1 2 3 11 22 32 11 22 33

max flex (MW) 0.3 0.6 0.9 0.62 1.3 2 1.71 3.41 5.01
∼peak load (MW) 11 9 18

Og ,
∀g ∈ wind turbines

0 ≤ Pg ≤ 20
−5 ≤ Qg ≤ 5

Qg ≤ −0.24Pg + 6.8
Qg ≤ 0.24Pg − 6.8

0 ≤ Pg ≤ 4.5
−1 ≤ Qg ≤ 1

Qg ≤ −0.2Pg + 1.3
Qg ≤ 0.2Pg − 1.3

0 ≤ Pg ≤ 4.5
−1 ≤ Qg ≤ 1

Qg ≤ −0.2Pg + 1.3
Qg ≤ 0.2Pg − 1.3

Table 5.1: Summary of test instances.

We consider that the per-unit curtailment prices are the same for all the
generators. As described in Section 5.4.1, this price varies through the day and

http://www.montefiore.ulg.ac.be/~anm/


94 5. Problem formulation, benchmark, and approximate solution

Ext. Grid 1 2 3 4

5
W

Figure 5.8: 5-bus test system.
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Figure 5.9: 33-bus test system.

Figure 5.11 specifies the values considered in the test instances. We also use
these values for the per-unit cost of the losses, i.e. Closs( · ), while the constant
k that appear in equation (5.40) is set to 104. Concerning flexible loads, three
different penetration levels exist for each test case. For every configuration,
about half of the flexible services offer a downward modulation, followed by
an upward rebound effect, and inversely for the other half. The maximal and
cumulated modulation magnitude is reported in Table 5.1 to illustrate the
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Figure 5.11: Curtailment prices used in the test instance.

potential offered by flexible loads in every configuration. Finally, the duration
of the modulation signals is of 7 time periods for the 5-bus instances, and from
6 to 24 time periods for the 33 and 77-bus instances.

The conditional density functions defined in equation (5.43) are built using
a parametric model P(N,n) that relies on a mixture of n Gaussians to rep-
resent the probability distribution p(wt+1|wt, . . . , wt−N+1) of the next out-
come of the process, conditionally to the last N observed outcomes. In
particular, the following procedure allows to fit a model P(N,n) to a set
{(w(i)

1 , w
(i)
2 , . . . , w

(i)
L ), i = 1, . . . , I} of time series of normalized realizations

of the process of interest:

1. build a dataset of tuples (w(i)
t−N+1, . . . , w

(i)
t , w

(i)
t+1),∀(i, t) ∈ {1, . . . , I} ×

{N, . . . , L− 1};

2. model the joint distribution p(wt−N+1, . . . , wt+1) of the dataset using a
mixture of n Gaussians, by performing a maximum likelihood estimation
[59] of the mixture’s parameters (i.e. the weight ηi, mean µi, and
covariance matrix Σi of every Gaussian i ∈ {1, . . . , n});

3. ∀i ∈ {1, . . . , n}, deduce from µi and
Σi the functions µ

· | ·
i (wt−N+1, . . . , wt) and

σ
· | ·
i (wt−N+1, . . . , wt) that define the mean and standard devia-

tion of wt+1, according to the ith Gaussian in the mixture and conditional
to wt−N+1, . . . , wt [58];

4. produce p( · |wt, . . . , wt−N+1) as the following mixture of conditional
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Table 5.2: Parameters of the stochastic models used in the implementation of the
benchmark.

N n
Wind speed (Nv) 1 1
Solar irradiance (Nir) 1 10
Load consumption (Nloads) 2 10

Gaussian distributions:

p( · |wt, . . . , wt−N+1) =
n∑
i=1

ηiN
(
µ
· | ·
i (wt−N+1, . . . , wt),

σ
· | ·
i (wt−N+1, . . . , wt)

)
. (5.89)

In order to determine an adequate value of the model’s hyper-parameters n
and N for each process, we relied on an Approximate Bayesian Computa-
tion (ABC) method [75]. Such an approach consists in sampling trajectories
from each model and to compare them with the original data to estimate
its posterior probability among the set Θ of candidate models [76]. Using
Θ = {P(N,m)|n∈{1,...,20},N∈{1,...,3}}, the most likely parameters identified by
this model choice technique are presented in Table 5.2. We refer the interested
reader to [77] for more details on the modeling approach.

The datasets that we used are real measurements of the wind speedi and of
the solar irradianceii. For the residential consumption data, a single stochastic
model has been learned from measurements of a Belgian distribution network
and it is used for all the loads of the test instance. However, this model differs
among the loads through the use of a scaling factor. The implementation of
the statistical algorithms relies on both SciPy [78] and Scikit-learn [60], two
Python libraries.

5.6 Numerical results

The goals of this section are to illustrate the operational planning problem
and the test instances, as well as to provide some empirical evaluations of
the proposed lookahead policy for the considered network models and for
scenario trees of varying complexity. In particular, the policy π̂∗M̂t

(st) defined

ihttp://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html
iihttp://solargis.info/

http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html
http://solargis.info/
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by problem (5.48)-(5.53) was applied to every test instance and penetration
level of the flexible loads. The empirical expected return of the policy, for
a given test instance, level of flexibility, network model, and scenario tree
complexity, is determined from 50 runs of 288 time steps (i.e. of 3 days), each
run i corresponding to the following sequence:

1. Initialize the state vector s0 by setting all the flexible loads as inactive and
by sampling stochastic components from the joint distributions learned
when building the test instance.

2. Run a simulation of 288 time steps, where, at every time step, problem
(5.48)-(5.53) is implemented as follow:

a) sample 100 trajectories of the exogenous variables over a lookahead
horizon of length T = 10, i.e. trajectories (w(j)

t , . . . ,w
(j)
t+9), with

j = 1, . . . , 100;

b) determine the corresponding trajectories of the potential (i.e. not
accounting for modulation instructions) power injections of the
devices, as they are fully determined by the current state st and by
(w(j)

t , . . . ,w
(j)
t+9);

c) cluster the 100 trajectories of power injections into W scenarios,
using a hierarchical clustering method and Ward’s distance [79];

d) build the corresponding clusters of outcome trajectories, i.e.

W̃T
t = {(w̃(k)

t , . . . , w̃
(k)
t+9)|k = 1, . . . ,W} ,

where w̃(k)
t′ denotes the centroid of cluster k at time t′ ∈ {t, . . . , t+9},

and compute the probabilities Pk of the resulting scenarios as

Pk = number of trajectories in cluster k
100 ;

e) solve problem M̂t with a discount factor γ = 0.99 and over the sce-
nario tree defined by outcomes of W̃T

t and probabilities (P1, . . . ,PW );

f) recover the action vector at to apply to the system.

The motivation behind the use of Ward’s method to cluster trajectories is that
it is a minimum variance method, which means that the trajectories of a cluster
were selected because they are close to its centroid, in comparison to trajectories
of other clusters. Consequently, the scenarios used in the optimization model,
which are the centroids of the clusters, differ minimally from the trajectories it
summarizes.
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The implementation has been done using the Python code mentioned in Sec-
tion 5.5 to simulate the system and Pyomo [80] to build the mathematical
programs. These programs were solved by BONMIN [81] in the MINLP case,
and by Gurobi in the MISOCP and MILP cases. At each time step, a budget
of 10 minutes is allowed to solve the mathematical program. If the solver
reaches the time limit, the current best solution is applied to the system if a
feasible solution is available, or the whole simulation run fails if no solution
was found. Both solvers stop before the time limit if they reach a relative
optimality gap of 1%. Note that BONMIN performs local optimization and
must be seen as an heuristic method to solve the non-convex MINLPs, as it
comes with no optimality guarantees. In the MISOCP case, the scaling factor
of the losses discussed in Section 5.4.5.3 was fixed empirically to 3. For every
combination of test instance, level of flexibility, and network model, the same
runs were performed with a scenario tree W̃T

t of one scenario (i.e. the mean
of the sampled trajectories) and of three scenarios. A version of the problem
with perfect information, i.e. with a scenario tree consisting of the actual
future trajectory of the exogenous information, was also simulated to obtain
a reference value of performance. The overall simulation was carried on in
a high-performance computing environment with 128 cores. Each run being
limited to a single core, such an infrastructure enabled hundreds of simulations
to run in parallel and thus to speed up computations by the same factor.
Ignoring failed simulation runs, more than 1 million of mathematical programs
were solved for a cumulated time budget of approximately 1122 days.

The empirical estimations of the expected return reported in the following
results are computed as:

E
s∼p0( · )

{
J π̂
∗
(s)
}
≈ 1

50

50∑
i=1

287∑
t=0

0.99tr(i)
t , (5.90)

where r(i)
t corresponds to the instantaneous reward observed during the nth

simulation run at time step t, and where p0( · ) denotes the probability distri-
bution described at step (1). Tables 5.3, 5.4, and 5.5, summarize the results of
the simulation runs for the 5-bus, 33-bus, and 77-bus test systems, respectively.
The first columns identifies the test instance configuration and the two latter
columns report the expected return and the distribution of solution time. The
blue and red bars denote the contributions to the expected return of the ex-
pected costs (including losses) and of the penalties from constraint violations,
respectively. The box plots’ whiskers cover the whole range of the observed
solution times and the red makers indicate the median time.

We can first observe from the simulation results of the 5-bus test system that
having a perfect forecast of the evolution of the system yields significantly
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better returns than when decisions are subject to uncertainty. It also shows
that considering three possible future scenarios can significantly improve over
an optimization performed on the average future scenario, to the expense of
the solution time. Among the three network models, the SOCP relaxation is
the one that induces the most penalties. These penalties also appear in the
deterministic case, which implies that the relaxation is not always tight. We
also observe that the policy slightly benefits from an increase of the flexibility
level of loads in the deterministic setting but not in the presence of uncertainty.
Given the small size of the 5-bus test system, the solution times are very good
for every configuration with the exception of the MINLPs, for which worst-case
solution time already reaches the time limit for all lookahead models.

The results for the 33-bus test system are quite similar, with the notable
exception of the solution times. Both the SOCP and LP network models still
produce mathematical programs that can be solved within a reasonable time
budget. On the other hand, the time limit is very often reached when solving
the MINLPsiii. The simulation runs even failed in the two most complex
configurations as the solver could not find any feasible solution within the time
limit. This observation can be extended to the simulation results of the 77-bus
test system, with the difference that, in the 1-scenario configurations, the mean
and median solution times are lower while the worst-case time is even larger.
None of the 3-scenario runs succeeded for the NLP network model and even
the SOCP model produces significantly increased solution times, with worst
cases reaching the time limit.

Finally, a part of a 5-bus and low-flexibility simulation run is illustrated in
Figures 5.12, 5.13, and 5.14, with a 3-scenarios lookahead model and a NLP,
SOCP, and linear network model, respectively. The dashed lines in the upper-
left subplots represent the estimated production in the 3 scenarios of the
lookahead model at time step 101 (i.e. when computing decisions for time step
102 and onwards). The bottom-right subplots represent the generator’s P-Q
operating points for the whole simulation and the red point corresponds to time
step 102. Notable differences can be observed among the network models. At
time step 102, both the NLP and LP approaches show a violation of a thermal
constraint because of an inadequate scenario tree, but the SOCP model is, on
the contrary, quite conservative. This behavior is likely due to the scaling of
the losses term in this latter model, as suggested by its chart of P-Q set-points.
The policy did not explicitly computed a curtailment of active power but chose
an aggressive Q set-point, which led to a power curtailment due to the P-Q
capabilities of the generator. This phenomenon is observed several times in
the reported simulation, in particular at and prior to time step 102. The NLP

iiiReported solution time can be larger than the time limit. It happens when the solver is
executing a complex routine for some amount time before being able to check the limit.
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case5
Lookahead model Netwok model Flex. level Exp. return ( costs,  penalties) Solution time (s)mean

Determinist, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

Mean scenario, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

3 scenarios, T = 10
t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

0 100 200 300 400 500 600

Table 5.3: Estimation of expected return and distribution of solver time for the
5-bus test system.

and LP models show a similar curtailment pattern, with the latter inducing
more curtailment and an over-satisfaction of the thermal limit. We suspect the
cause to be the non-inclusion of the losses in the LP model, which may also
explain why this approach activates more flexible services than the two other
approaches. Another consequence of not accounting for the losses is that the
policy makes little use of the generator’s reactive capabilities, as shown by the
lower-right subplot of Figure 5.14. In accordance with results of Tables 5.3,
5.4, and 5.5, the SOCP network model is not always tight and, around time
step 110, shows constraint violations in the lower-left subplot of Figure 5.13,
while the two other network models keep the system within the operational
limits.
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case33
Lookahead model Netwok model Flex. level Exp. return ( costs,  penalties) Solution time (s)mean

Determinist, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

Mean scenario, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

3 scenarios, T = 10
t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

failed

failed

0 200 400 600 800

failed

failed

Table 5.4: Estimation of expected return and distribution of solver time for the
33-bus test system.

case75
Lookahead model Netwok model Flex. level Exp. return ( costs,  penalties) Solution time (s)mean

Determinist, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

Mean scenario, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

3 scenarios, T = 10
t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

failed

failed

failed

0 200 400 600 800

failed

failed

failed

Table 5.5: Estimation of expected return and distribution of solver time for the
77-bus test system.
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Figure 5.12: Illustrations of part of a 5-bus and low-flexibility simulation run, with
a 3-scenarios lookahead model and a NLP network model.
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Figure 5.13: Illustrations of part of a 5-bus and low-flexibility simulation run, with
a 3-scenarios lookahead model and a SOCP network model.
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Figure 5.14: Illustrations of part of a 5-bus and low-flexibility simulation run, with
a 3-scenarios lookahead model and a linear network model.
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5.7 Conclusions

Active Network Management is an alternative or a complement to network
reinforcement in case of massive integration of renewable energy in distribution
systems in the future. Mathematically, operational planning, which is the
preventive version of active network management we consider in this chapter,
is an optimal sequential decision-making problem under uncertainty. The
properties of the operational planning problem that we want to highlight
are the need to optimize over a sufficiently long time horizon, to account for
uncertainty of generation and consumption, and to model the discrete decisions
related to the activation of flexibility services. In an attempt not to restrict
ourselves to one solution method and one research community, we provide
a formulation of this problem as a Markov Decision Process (MDP), which
does not call for a particular solution method. We provide a simulator and
several test beds at http://www.montefiore.ulg.ac.be/~anm/ along with
this formulation to foster research in this field, and ease future comparison
of results. Although these benchmarks are not taken from real systems, their
properties are coherent with what system operators could face in real life.
We detail one possible solution method, which is a lookahead optimization
model, then cast the MDP as a sequence of MINLPs, MISOCPs, or MILPs,
and provide results on the benchmarks we created. Results show that state of
the art open source local solvers for MINLP can show good performance on
the test instances of limited size, at least when we approximate the stochastic
program with few scenarios. Solving the MISOCPs and MILPs is however much
more tractable, to the expense of the network model accuracy. In particular,
the results of the MILP approximation suggest that it could scale to larger
test systems and scenario trees. On the modeling side, we considered that all
buses except the slack bus are P-Q buses, and that the power factors of the
loads are constant while the generators are flexible as defined by their P-Q
capabilities. Possible extensions of this work could be to consider the control
of steerable synchronous generation, and of generators with time coupling
constraints (e.g. combined heat and power generation). As mentioned in
Section 5.3.2, other approaches exist to control the system, such as modulating
the tariff signal(s), acting on the topology of the network, or using distributed
storage sources. We did not model either the automatic regulation devices that
often exist in distribution systems, such as On Load Tap Changers (OLTCs)
of transformers that automatically adapt to control the voltage level. These
automatic regulation devices have been recently addressed in [10]. We believe
that all of these aspects should be considered in a real life solution. However,
computational experiments show that we are at the limit of what can be

http://www.montefiore.ulg.ac.be/~anm/
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achieved with modern computers and standard mathematical programing
tools. Furthermore, including a more detailed representation of the physical
system makes the problem yet more discrete (OLTCs), and more uncertain
(for instance, if flexibility services are not as well characterized as what we
have assumed). Our experiments also show that increasing the number of
scenarios, or stages of the stochastic program, would probably significantly
improve the policies. All these observations suggest further research for tailored
approximation or decomposition techniques, for instance techniques relying
on the dynamic programming framework, in particular approximate dynamic
programming, or simulation methods, such as direct policy search [82] or Monte-
Carlo tree search [83, 84], or other approaches from the robust and stochastic
programming community [85]. Actually the benchmarks that we proposed
makes the comparison of new techniques possible.





6
Applications to a real

distribution system
This chapter confronts the tools studied in this thesis with an actual distribution
test system. The test system has been provided by a Belgian distribution system
operator and has undergone some adjustments to picture its expected operating
conditions in 2020. The production of wind and solar distributed generators
is governed by generation data recorded in 2013 in the distribution system
surroundings. A lookahead policy is evaluated over a batch of two-week-long
simulations in a deterministic setting, as well as with 3-scenario and 5-scenario
lookahead models. For each run, the stochastic models are learned from time
series spanning the six weeks preceding the run.
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6.1 The Ylpic test system

The Ylpic test system originates from a real distribution system that is operated
by ORES, a Belgian DSO. The original grid was slightly modified for the
following reasons:

• sensitive information were made anonymous;

• generation and consumption devices were updated to illustrate what the
grid could face in 2020.

This latter update were performed by using the present data available to the
DSO and a potential scenario of evolution of the Walloon electricity sector,
such as defined within the GREDOR project [86].

The electrical grid of this test system has a radial configuration and is made of
328 MV buses. It is illustrated in Figure 6.1. The larger rectangle in this figure
corresponds to the main substation, which is connected to the transmission
network. The DSO does not own nor operate the HV/MV transformer but
knows that the voltage magnitude at this substation is regulated. We consider
this magnitude to be constant and set to 1.02 p.u. This value has been chosen to
prevent the consumption processes (described in Section 6.2) to cause unrealistic
undervoltage issues.

The considered operational constraints are:

• the voltage magnitude, which must stay within the [0.95p.u., 1.05p.u.]
interval for all the buses;

• the thermal limit of cables and lines, which is defined on a per-link basis.

As for the other chapters, we focus on the operational planning of the system.
Fast dynamics is neglected and the physical quantities are assumed constant
within a time period of a quarter of hour. The operation of the grid within
such a time period falls within the scope of real-time controllers [68].

6.2 Generation and consumption processes

In addition to the grid, one-year-long time series describe the power production
and consumption of all the devices of test instances. We first explain how these
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Figure 6.1: The Ylpic distribution test sytem.

time series govern the generation devices and then present the consumption
case.

6.2.1 Generation

Data consisting of one year of power production acquired from a wind farm and
a solar installation are used to set the injection of these two types of devices.
These data take the form of time series of the production level of the generator,
measured on a 15 minutes basis and covering the whole year 2013.

By contrast with the stochastic processes used in Chapter 5, i.e. the wind
speed and the solar irradiance, the ones considered here are the normalized
active production levels. A snapshot of these normalized production levels
is plotted in Figure 6.2. The actual production level of a generator is then
its generation capacity multiplied by the normalized production level. This



110 6. Applications to a real distribution system

Figure 6.2: Snapshot of the wind and solar power levels.

implies some adjustments to equations (5.14)-(5.17), which become:

p
(wind)
t+1 = fp(wind)(p(wind)

t , . . . , p
(wind)
t−Nv+1, s

(aux)
t ,w

(wind)
t ) , (6.1)

Pg,t+1 = Cgp
(wind)
t+1 ,∀g ∈ wind generators ⊂ G , (6.2)

p
(sun)
t+1 = fp(sun)(p(sun)

t , . . . , p
(sun)
t−Nir+1, s

(aux)
t ,w

(sun)
t ) , (6.3)

Pg,t+1 = Cgp
(sun)
t+1 ,∀g ∈ solar generators ⊂ G , (6.4)

where Cg [MW] denotes the generation capacity of generator g.

The time series of power levels cover a whole year and this will allow to evaluate
the adequacy of the lookahead policy for quite different production patterns.
Figures 6.3 and 6.4 illustrate the difference between July and December, for
the solar and wind production, respectively. The cumulative density function
(CDF) of the production levels shows, as expected, that the solar generation is
much more important in July than in December, and inversely for the wind
generation.
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Figure 6.3: Comparison of the CDF of the solar production level in July and
December.

The test system also includes combined heat and power (CHP) units. Their
production dispatch is assumed to be known before the operational planning
stage and they are then considered as deterministic exogenous variables.

The reactive power injection of all generators is assumed to be null unless
otherwise instructed by the control actions of the DSO. The set of acceptable
P-Q operating points is described in Section 6.3.

Figure 6.4: Comparison of the CDF of the wind production level in July and
December.
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6.2.2 Consumption

The consumption is defined on a per-load basis. A time series of the active
and reactive consumption has been provided by the DSO for every load. A
snapshot of the total active consumption within the system is presented in
Figure 6.5.

Figure 6.5: Snapshot of the total active consumption.

Similarly to the generation data, the consumption patterns vary within the
year. This variability also occurs between weekdays and weekends. Figure 6.6
illustrates the difference between July and December, for the total active
consumption within the system. A much higher power demand is observed in
December than in July.

6.3 Flexibility

The considered control scheme is the one described in Section 5.3.3.2. The
available control actions consist of active production limits, reactive injection
set-points, and activation of load flexibility services.

The wind and CHP generators support both curtailment and reactive control.
On the other hand, we assume that the solar generators, which mainly consist
of residential units, can not be controlled in any way. The curtailment price
is function of the time of the day and is illustrated in Figure 5.11 for CHP
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Figure 6.6: Comparison of the CDF of the total active consumption in July and
December.

units. For wind generators, 60e is added to this price to reflect the support
mechanism that exists for renewables in Wallonia.

The extend of reactive support that a generator can provide is constrained by
its set of acceptable injection points, which differs for wind and CHP generators.
In both cases, the region of valid P-Q set-points is a polyhedron such as defined
by equation (5.9). This region is symmetric with respect to the P-axis for wind
generators, while it is not in the CHP case. These areas have been defined by
the DSO within the GREDOR project. Figures 6.7a and 6.7b illustrate the
P-Q area of a wind farm and CHP generator, respectively.
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(a) Wind farm.
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(b) CHP generator.

Figure 6.7: Examples of region of valid P-Q set-points.
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Finally, the test system includes 100 flexible loads and each of them has its
modulation signal and price. These signals are similar to the one illustrated in
Figure 5.5a and differ in terms of length and magnitude. The distribution of
these two parameters among the flexible loads is presented in Figure 6.8. Half
of the signals starts with a downward modulation, and inversely for the other
half. The activation cost of the services is defined as 5e/MWh of demand that
is shifted by the modulation signal. This price is lesser that for curtailment
and has been chosen in order to foster, when possible, the recourse to load
flexibility.

Figure 6.8: Description of the modulation signals.

6.4 Experimental setting

The design of the experimental setting has been driven by the aim of evaluating
the performance of the lookahead policy described in Section 5.4 at operating
the realistic Ylpic test system. In addition, the GMM approach presented in
Chapter 4 is used to model the stochastic processes.

The one-year-long generation and consumption processes described in Sec-
tion 6.2 are divided into overlapping time intervals of 8 consecutive weeks, an
interval starting every 2 weeks of the year. Within each time interval, the first
six weeks are used to learn the stochastic models and the last two weeks drive
the simulation of the test system. This scheme is described in Figure 6.9.
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Run 1: historical             simulated

Run 2: historical             simulated

Run 22: historical             simulated

Run 23: historical             simulated

2 weeks

01-jan

31-dec

�1

Figure 6.9: The experimental setting takes the form of a batch of 23 simulation
runs.

6.4.1 Lookahead optimization model

The learned processes are the normalized production levels of wind and solar
generators, i.e. equations (6.1) and (6.3), while the demand is considered to be
deterministic. This assumption is motivated by the lack of real consumption
data. The available time series of power demand are synthetic data, which
do not exhibit the variability, temporal correlation, or spatial correlation that
we could expect from actual measurements. Relying on arbitrary stochastic
models could have biased the interpretation of the results.

The learning procedure for the Gaussian mixture parameters is described in
Section 4.3, while the selection of the hyper parameters (i.e. the number of
mixture components and the Markovian order) is performed using a grid search
with cross validation. For every stochastic process and every hyper parameter
value, a GMM is learned on the historical data but one week. The score of the
GMM is defined as the log-likelihood of the left out data under the learned
model [87]. The score of a hyper parameter value is then the average of the
associated GMMs for every left out week. The considered set Ω of candidate
hyper parameters ω = (L,N), where L is the Markovian order and N is the
number of mixture components, is Ω = {5} × {1, 5, 10, 15, 20, 25, 30, 35, 40}.
This set is restricted to a single Markovian order to limit the computational
burden of the approach. We chose 5 as it consistently produced good models
in the empirical analyses of Chapter 4.

6.4.2 Lookahead optimization model

The mathematical program that implements the lookahead policy is defined by
equations (5.48)-(5.53), with the linearized network model of Section 5.4.5.2.
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The two other network models were excluded as they do not exhibit the
scalability requirements for such a large test system.

The policy is applied to the test system using the procedure (2a)-(2f) of
Section 5.6, with 3 and 5 scenarios in the lookahead model.

6.4.3 Computational environment

Each batch of 23 simulations ran concurrently on a machine with 40 logical
cores of 2.4Ghz and 64Go of RAM. Gurobi was used to solve MILPs, and
we relied on Scikit-learn [60] to implement the learning of GMMs and the
clustering of trajectories into scenarios.

6.5 Numerical results

The parameters and results of the simulation runs are summarized in Table 6.1.
This table reports the empirical mean and standard deviation of both the
expected return and solver time, for the three different lookahead models as
well as when no policy is applied to the system. As expected, the deterministic
case is the most favorable one and the worst performance is reached when there
is no policy. The 5-scenario configuration produces a slightly better expected
return than the 3-scenario one but at the cost of a substantial increase in solver
time.

Parameters Expected return Solver time
T γ Mean Std. dev. Mean Std. dev.

Deterministic
10

0.999

−2357.9 904.4 53.4s 3.1s
5 scenarios −2884.6 1858.3 269.1s 29.1s
3 scenarios −2889.3 1859.4 145.9s 12.3s
No policy N/A −9853.0 13543.8 N/A N/A

Table 6.1: Simulation results and parameters.

The cumulated operational costs and magnitude of constraint violations are
plotted in Figure 6.10, for every policy. In order to improve the readability of
these results, we only considered the five simulation runs that have the most
operational issues (i.e. the largest magnitude of violations) without policy.
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The deterministic case is naturally the one that leads to the least costs and
violations. Among the two stochastic cases, the 5-scenario policy produces
smaller violations but at a higher cost.

Deterministic 5 scenarios 3 scenarios
Policy
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Figure 6.10: Operational costs and constraint violations for every policy.

When analyzing the results on a per-run basis, we observe that, in the stochastic
setting, the policies perform poorly for two particular runs. This performance
drop does not occur in the deterministic case. Figure 6.11 plots the cumulated
active production in the distribution system, both in the deterministic setting
and in the stochastic setting with the 3-scenario policy. At this time in the
simulation, the policy must take adequate control actions to prevent over-
voltages when the cumulated active production exceeds around 20 MW. In the
deterministic case, the policy activates flexible loads and, as shown in red in
the figure, performs generation curtailment. In the stochastic case however, the
scenarios in the lookahead model, illustrated by dashed black lines in the figure,
are very inaccurate and the policy can not anticipate the operational issues. A
further analysis reveals that the inaccuracy comes from the stochastic model
of the wind production levels. For the two defective runs, the 6-week-long
historical data are not representative of the stochastic process for the next two
weeks. The difference between the historical and simulated data is presented
in Figure 6.12 for one of these runs. The cumulative density function (CDF)
highlights that the production levels in the simulation reach much higher values
than in the historical data, which led to learn an inadequate stochastic model.
By contrast, Figure 6.13 shows a case where the CDFs match quite well. This
corresponds to a run where the policies perform well in the stochastic setting.
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(a) Stochastic setting with 3-scenario pol-
icy. (b) Deterministic setting.

Figure 6.11: Snapshot of a run where the stochastic policies perform poorly.
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Figure 6.12: CDF of the wind production level for the historical and simulated data
of a run in September.
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Figure 6.13: CDF of the wind production level for the historical and simulated data
of a run in November.

6.6 Conclusion

In this chapter, we confronted the tools presented throughout this dissertation
with a test system designed based on a real distribution system. The time series
considered to simulate the operation of the grid and to learn the stochastic
models are real datasets of measurements for the generation.

Two lookahead policies with 3 and 5 scenarios were compared to a deterministic
configuration as well as when no policy is applied to the system. They exhibited
much better performances than without policy in terms of expected return, but
they can not reach the performance level of the (unrealistic) deterministic case.
The policy with 5 scenarios has a slight lead over the 3-scenario version, but
requires a significantly higher computational cost. It is likely that to obtain
good performances within an acceptable time, the construction of scenarios
should be revised to limit the number of scenarios needed to reach a given
performance level.

The simulations have also highlighted how critical it is to have adequate learning
data to produce the stochastic models. The available historical data were scarce
and augmenting the historical data with measurements acquired at similar
periods of the year but covering several years would likely improve the quality
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of the stochastic models. Improving the generalization abilities of the models,
e.g. by differentiating the time series, could also help to mitigate this issue.
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This thesis focused on the operational planning problem of distribution systems,
which is the preventive part of ANM. In this chapter, we first summarize the
material of the dissertation and then highlight further research directions.

7.1 Summary

A formulation of the ANM problem that allows utilization of demand-side
operational flexibility was presented in Chapter 2. This work highlighted both
the sequential and the uncertain nature of the ANM problem and addressed it
as an optimal sequential decision-making problem under uncertainty. A case
study was designed to demonstrate that it is critical to explicitly take into
account the uncertainty to efficiently operate demand-side flexibility.

In Chapter 3, we described a novel relaxation for multi-period OPF problems
with discrete variables that is based on a network-flow reformulation. The
relaxation produces lower bounds that are comparable with a Lagrangian
relaxation, but reduces the level of infeasibility of the relaxed solutions.

We presented in Chapter 4 a novel approach that relies on Gaussian mixtures
to model a stochastic process from a set of time series of observations. The
hyper parameters of the model, i.e. the Markov order and the number of
mixture components, are determined using a multi-armed bandit technique,
while the mixture parameters are learned from the data using an EM algorithm.
Empirical results showed that the proposed approach outperforms an ARMA
approach for the considered application of lookahead security analysis, for
datasets of residential power consumption and of wind speed.

In Chapter 5, the ANM problem was formulated as a Markov Decision Process
(MDP), which does not call for a particular solution method. We provided a
simulator and several test beds along with this formulation to foster research in
this field, and ease future comparison of results. One possible solution method
was detailed, which is a lookahead optimization model. The MDP was then cast
as a sequence of MINLPs, MISOCPs, or MILPs, and we provided results on the
benchmarks we created. The results showed that state-of-the-art open source
local solvers for MINLP can show good performance on the test instances of
limited size, at least when we approximate the stochastic program with few
scenarios. Solving the MISOCPs and MILPs is, however, much more tractable,
to the expense of the network model accuracy. In particular, the results of
the MILP approximation suggest that it could scale to larger test systems and
scenario trees.
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Finally, the tools presented throughout this dissertation were evaluated on a
test system designed based on a real distribution system in Chapter 6. The
time series considered to simulate the operation of the grid and to learn the
stochastic models were real datasets of measurements for the generation. Two
lookahead policies with three and five scenarios were compared to a deterministic
configuration as well as when no policy is applied to the system. They exhibited
much better performances than without policy in terms of expected return,
but they cannot reach the performance level of the (unrealistic) deterministic
case. The policy with five scenarios has a slight lead over the three-scenario
version, but requires a significantly higher computational cost.

7.2 Future Work

7.2.1 Approximation and decomposition techniques

The discretization of uncertainty into a set of scenarios could be refined to
preserve the quality of the lookahead model as much as possible while reducing
the number of scenarios [88]-[89]. Similarly, decomposition techniques would
adapt the complexity of the lookahead model with the lookahead time horizon
[90]. Such an approach could, for example, allow for longer time horizons to be
considered by decreasing the accuracy of the uncertainty representation for the
furthest time periods. Improvements could also be made to the approximations
of the power-flow equations. The linear network model presented in Section 5.4.5
showed to have good scalability abilities and to reliably prevent operational
issues. However, it lacks the representation of losses and cannot benefit from the
flexibility to reduce the costs they induce. Augmenting this linear approximation
with a gainful representation of losses may allow for more efficient policies.

7.2.2 Heuristics

Heuristic approaches can be an appealing alternative to conventional optimiza-
tion algorithms in order to obtain a feasible solution within an acceptable
time limit. Such approaches can be designed to benefit from the specifics
of the ANM problem, while math programming solvers limit their scope to
the mathematical structure of the problem. Building on top of the network
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flow presented in Section 3.4.2, a two-step procedure could, for example, be
developed to identify the flexibility needs first, and then to procure adequate
flexibility services.

7.2.3 Stochastic modeling

Different approaches could be explored to improve the modeling of stochastic
processes. Data transformation could be applied, for example by differencing
the time series to improve the stationarity of the stochastic process to be
learned. Instead of considering density functions that are conditional on imme-
diately preceding time periods, feature extraction techniques could allow the
identification of the time lags which are the most relevant. Feature compression
could also be explored to consider a larger number of past time periods while
keeping an acceptable computational cost for the learning procedure.

7.2.4 Online learning procedure

We identified in Section 6.5 how critical the adequacy of the learning dataset
is to obtain a proper stochastic model. When the distribution of the data in
the learning set is quite different from the distribution of the process in the
near future, the lookahead scenarios are not relevant. A procedure could be
developed to identify, during the simulation, when such distributions diverge
in order to trigger a new execution of the learning procedure on the updated
historical data.
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This chapter falls within the context of the optimization of the levelized energy
cost (LEC) of microgrids featuring photovoltaic panels (PV) associated with
both long-term (hydrogen) and short-term (batteries) storage devices. First,
we propose a novel formalization of the problem of building and operating
microgrids interacting with their surrounding environment. Then we show
how to optimally operate a microgrid using linear programming techniques in
the context where the consumption and the production are known. It appears
that this optimization technique can also be used to address the problem of
optimal sizing of the microgrid, for which we propose a robust approach. These
contributions are illustrated in two different settings corresponding to Belgian
and Spanish data.
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A.1 Introduction

Economies of scale of conventional power plants have progressively led to the
development of the very large and complex electrical networks that we know
today. These networks transmit and distribute the power generated by these
power plants to the consumers. Over recent years, a new trend opposing this
centralization of power facilities has been observed, resulting from the drop
in price of distributed generation, mainly solar photovoltaic (PV) panels [91].
Due to this effect, it is expected that in the future, small scale industries and
residential consumers of electricity will rely more and more on local renewable
energy production capacities for covering, at least partially, their need for
electrical power. This leads to the creation of the so-called microgrids that are
electrical systems which include loads and distributed energy resources that can
be operated in parallel with the broader utility grid or as an electrical island.
State-of-the-art issues and feasible solutions associated with the deployment of
microgrids are discussed in [92].

Due to the fluctuating nature of renewable energy sources (RES) (mainly solar
and wind energy), small businesses and residential consumers of electricity may
also be tempted to combine their local power plants with storage capacities.
In principle, this would, at least partially, allow themselves freedom from
using the network, enabling balancing their own electricity generation with
their own consumption. This would result in paying less in transmission and
distribution fees which typically make up around 50% of their electricity bill.
Many different technologies are available for energy storage as discussed in the
literature (see e.g. [93]). On the one hand, hydrogen is often considered as
a storage solution to be combined with RES [94, 95], mainly due to its high
capacity potential that makes it suitable for long-term storage [96, 97]. On the
other hand, batteries are often used to ensure sufficient peak power storage
and peak power generation [98]. In this chapter we focus on the specific case of
microgrids that are powered by PV panels combined with both hydrogen-based
storage technologies (electrolysis combined with fuel cells) and batteries (such
as, for instance, LiFePO4 batteries). These two types of storage aim at fulfilling,
at best, the demand by addressing the seasonal and daily fluctuations of solar
irradiance.

One of the main problems to be addressed in the field of microgrids is how
to perform optimal sizing. The main challenge when sizing microgrids comes
from the need to determine and simulate their operation, i.e. the dispatch
strategy, using historical data of the loads and of the RES. Broadly speaking,
the research presented in this paper relates to the research that has been
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done for solving planning and scheduling problems in the field of electrical
power systems. In this context, various methods have been investigated, for
instance model predictive control (MPC) [99] or learning-based approaches
[100, 101]. One can also mention commercial solutions such as the well-known
energy modeling software HOMER [102], dedicated to hybrid renewable energy
systems.

In this chapter, we first propose a novel and detailed formalization of the
problem of sizing and operating microgrids. Then, we show how to optimally
operate a microgrid so that it minimizes a levelized energy cost (LEC) cri-
terion in the context where the energy production and demand are known.
We show that this optimization step can be achieved efficiently using linear
programming. We then show that this optimization step can also be used to
address the problem of optimal sizing of the microgrid, for which we propose a
robust approach by considering several energy production and consumption
scenarios. We run experiments using real data corresponding to the case of
typical residential consumers of electricity located in Spain and in Belgium.
Experimental results show that there is an important benefit in combining
batteries and hydrogen-based storage, in particular when the cost for interrup-
tion (value of loss load) in the supply is high. Note that this chapter focuses
on the production planning and optimal sizing of the microgrid, and that the
real-time control aspects of the microgrid to maintain both angle stability and
voltage quality are left out of the scope of the chapter (see e.g. [103] for more
details on that subject).

Subsequently, the chapter is organized as follows. A detailed formalization of
the microgrid framework is proposed in Section A.2 and several optimization
schemes for minimizing the LEC are introduced in Section A.3. The simula-
tion results for Belgium and Spain are finally reported in Section A.4 while
Section A.5 provides the conclusion.

A.2 Formalization and problem statement

In this section we provide a generic model of a microgrid powered by PV
panels combined with batteries and hydrogen-based storage technologies. We
formalize its constitutive elements as well as its dynamics within the surrounding
environment. For the sake of clarity, we first define the space of exogenous
variables and then gradually build the state and action spaces of the system.
The components of these two latter spaces will be related to either the notion of
infrastructure or the notion of operation of the microgrid. We then characterize
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the problem of sizing and control that we want to address using an optimality
criterion, which leads to the formalization of an optimal sequential decision-
making problem. The evolution of the system is described as a discrete-time
process over a finite time-horizon of length T . We denote by T the set {1, ..., T}
of time periods and by ∆t the duration of a time step. We use subscript t
to reference exogenous variables, state and actions at time step t. Finally we
introduce the notion of LEC and discuss how it can be used as an optimality
criterion.

A.2.1 Exogenous variables

We start with a definition of the microgrid’s environment, i.e. the space of
exogenous variables that affect the microgrid but on which the latter has
no control. Assuming that there exists, respectively, J , L, and M different
photovoltaic, battery, and hydrogen storage technologies, and denoting the
environment space by E , we can define the time-varying environment vector
Et as:

Et = (ct, it, ePV1,t , ..., ePVJ,t , eB1,t, ..., eBL,t, e
H2
1,t , ..., e

H2
M,t,µt) ∈ E , ∀t ∈ T (A.1)

and with E = R+2 ×
J∏
j=1
EPVj ×

L∏
l=1
EBl ×

M∏
m=1
EH2
m × I ,

where:

• ct [W] ∈ R+ is the electricity demand within the microgrid;

• it [W/m2 or W/Wp] ∈ R+ denotes the solar irradiance incident to the
PV panels;

• ePVj,t ∈ EPVj , ∀j ∈ {1, ..., J}, models a photovoltaic technology in terms
of cost cPVj,t [e/m2], lifetime LPVj,t [s] and efficiency ηPVj,t to convert solar
irradiance to electrical power:

ePVj,t = (cPVj,t , LPVj,t , ηPVj,t ) ∈ EPVj , (A.2)

∀j ∈ {1, ..., J} and with EPVj = R+2× ]0, 1] ;

• eBl,t ∈ EBl , ∀l ∈ {1, ..., L}, represents a battery technology in terms of cost
cBl,t [e/Wh], lifetime LBl [s], cycle durability DB

l,t , power limit for charge
and discharge PBl,t [W], discharge efficiency ζBl,t , and charge retention rate
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rBl,t [s−1]:

eBl,t = (cBl,t, LBl,t, PBl,t, ηBl,t, ζBl,t, rBl,t) ∈ EBl , ∀l ∈ {1, ..., L} (A.3)

and with EBl = R+3× ]0, 1]3 ;

• eH2
m,t ∈ EH2

m , ∀m ∈ {1, ...,M}, denotes a hydrogen storage technology in
terms of cost cH2

m,t [e/Wp], lifetime LH2
m,t [s], maximum capacity RH2

m,t [W],
electrolysis efficiency ηH2

m,t (i.e. when storing energy), fuel cells efficiency
ζH2
m,t (i.e. when delivering energy), and charge retention rate rH2

m,t [s−1]:

eH2
m,t = (cH2

m,t, L
H2
m,t, R

H2
m,t, η

H2
m,t, ζ

H2
m,t, r

H2
m,t) ∈ EH2

m , ∀m ∈ {1, ...,M} (A.4)

and with EH2
m = R+3× ]0, 1]3 .

Finally, the components denoted by µt ∈ I represent the model of interaction.
By model of interaction we mean all the information that is required to manage
and evaluate the costs (or benefits) related to electricity exchanges between
the microgrid and the rest of the system. We assume that µt is composed of
two components k and β:

µt = (k, β) ∈ I, ∀ t ∈ T and with I = R+2
. (A.5)

The variable β characterizes the price per kWh at which it is possible to sell
energy to the grid (it is set to 0 in the case of an off-grid microgrid). The
variable k refers to the cost endured per kWh that is not supplied within the
microgrid. In a connected microgrid, k corresponds to the price at which
electricity can be bought from outside the microgrid. In the case of an off-grid
microgrid, the variable k characterizes the penalty associated with a failure
of the microgrid to fulfill the demand. This penalty is known as the value of
loss load and corresponds to the amount that consumers of electricity would
be willing to pay to avoid a disruption to their electricity supply.

A.2.2 State space

Let st ∈ S denote a time varying vector characterizing the microgrid’s state at
time t ∈ T :

st = (s(s)
t , s(o)

t ) ∈ S, ∀t ∈ T and with S = S(s) × S(o) , (A.6)
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where s(s)
t ∈ S(s) and s(o)

t ∈ S(o) respectively represent the state information
related to the infrastructure and to the operation of the microgrid.

A.2.2.1 Infrastructure state

The infrastructure state vector s(s)
t ∈ S(s) gathers all the information about the

physical and electrical properties of the devices that constitute the microgrid.
Its components can only change because of investment decisions or due to aging
of the devices. In particular, we define this vector as:

s(s)
t = (xPVt , xBt , x

H2
t , LPVt , LBt , L

H2
t , PBt , R

H2
t ,

ηPVt , ηBt , η
H2
t , ζBt , ζ

H2
t , rBt , r

H2
t ) ∈ S(s) , (A.7)

∀t ∈ T and with S(s) = R+8× ]0, 1]7 ,

where xPVt [m2], xBt [Wh], and xH2
t [Wp] denote, respectively, the sizing of the

PV panels, battery and hydrogen storage. The other components have the
same meaning than the exogenous variables using a similar symbol, with the
difference here that they are specific to the devices that are present at time
t ∈ T in the microgrid. Note that by using such a representation, we consider
that, for each device type, a single device can operate in the microgrid. In
other words, an investment decision for a device type substitutes any prior
investment.

A.2.2.2 Operation state

For the devices with storage capacities, i.e. battery and hydrogen storage, the
information provided by the environment vector Et and by the infrastructure
state vector s(s)

t is not sufficient to determine the set of their feasible power
injections or demands. Additional information that corresponds to the amount
of energy stored in these devices for each time period is required. For this
reason we introduce the operation state vector s(o)

t :

s(o)
t = (sBt , s

H2
t ) ∈ S(o), ∀t ∈ T and with S(o) = R+2

, (A.8)

where sBt [Wh] is the level of charge of the battery and with sBt [Wh] the level
of charge of the hydrogen storage.
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A.2.3 Action space

As for the state space, each component of the action vector at ∈ A can be
related to either sizing or control, the former affecting the infrastructure of the
microgrid while the latter affects its operation. We define the action vector
as:

at = (a(s)
t ,a(o)

t ) ∈ At, ∀t ∈ T and with A = A(s) ×A(o)
t , (A.9)

where a(s)
t ∈ A(s) relates to sizing actions and a(o)

t ∈ A
(o)
t to control actions.

A.2.3.1 Sizing actions

The sizing actions correspond to investment decisions. For each device type, it
defines the sizing of the device to install in the microgrid and its technology:

a(s)
t = (aPVt , aBt , a

H2
t , jt, lt,mt) ∈ A(s), ∀t ∈ T (A.10)

and with A(s) = R+3 × {1, ..., J} × {1, ..., L} × {1, ...,M} ,

where aPVt [m2], aBt [Wh], and aH2
t [Wp] denote, respectively, the new sizing

at time t+ 1 ∈ T of the PV panels, battery and hydrogen storage. Discrete
variables jt, lt, and mt correspond to indices that indicate the selected technol-
ogy from the environment vector for PV panels, battery, and hydrogen storage,
respectively. When a sizing variable (i.e. aPVt , aBt , or a

H2
t ) is equal to zero, it

means that there is no new installation for the corresponding device type and
that the present device, if it exists, remains in operation.

A.2.3.2 Operational planning

A microgrid featuring PV, battery and storage using H2 has two control
variables that correspond to the power exchanges between the battery, the
hydrogen storage, and the rest of the system:

a(o)
t = (pBt , p

H2
t ) ∈ A(o)

t ,∀t ∈ T , (A.11)

where pBt [W] is the power provided to the battery and where pH2
t [W] is the

power provided to the hydrogen storage device. These variables are positive
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when the power flows from the system to the devices and negative if it flows in
the other direction. Note that the set A(o)

t of control actions is time dependent.
This comes from the fact that the feasible power exchanges with these devices
depend on their capacity and level of charge. We have, ∀t ∈ T :

A(o)
t =

(
[−ζBt sBt ,

xBt − sBt
ηBt

] ∩ [−PBt , PBt ]
)

×

(
[−ζH2

t sH2
t ,

RH2
t − s

H2
t

ηH2
t

] ∩ [−xH2
t , xH2

t ]
)
, (A.12)

which expresses that the bounds on the power flows of the storing devices are,
at each time step t ∈ T , the most constraining among the ones induced by the
charge levels and the power limits.

A.2.4 Dynamics

Using the formalism proposed above, the dynamics of the microgrid follows
the following discrete-time equation:

st+1 = f(st,at),∀t ∈ T and with (st,at, st+1) ∈ S ×At × S . (A.13)

The dynamics specific to the infrastructure state s(s)
t ∈ S(s) are straightforward

and can be written, ∀t ∈ T :

(xPVt+1, L
PV
t+1, η

PV
t+1) =


(aPVt , LPVjt,t , η

PV
jt,t

) if aPVt > 0,
(0, 0, ηPVt ) if LPVt ≤ 1,
(xPVt , LPVt − 1, ηPVt ) otherwise,

(A.14)

(xBt+1, L
B
t+1, P

B
t+1,

ηBt+1, ζ
B
t+1, r

B
t+1) =


(aBt , LBlt,t, P

B
lt,t
, ηBlt,t, ζ

B
lt,t
, rBlt,t) if aBt > 0,

(0, 0, 0, ηBt , ζBt , rBt ) if LBt ≤ 1,
(xBt , LBt − 1, PBt , ηBt , ζBt , rBt ) otherwise,

(A.15)

(xH2
t+1, L

H2
t+1, R

H2
t+1,

ηH2
t+1, ζ

H2
t+1, r

H2
t+1) =


(aH2
t , LH2

mt,t, R
H2
mt,t, η

H2
mt,t, ζ

H2
mt,t, r

H2
mt,t) if aH2

t > 0,
(0, 0, 0, ηH2

t , ζH2
t , rH2

t ) if LH2
t ≤ 1,

(xH2
t , LH2

t − 1, RH2
t , ηH2

t , ζH2
t , rH2

t ) otherwise,
(A.16)

which describes that a device is either replaced because of a new investment
or because of aging. At the end of the device’s lifetime, it is discarded from
the microgrid. Note that a more advanced model could include aging rules for
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the other physical properties of the devices (i.e. efficiency, energy retention,
capacity and power limit) but this is outside the scope of the present work.

Concerning the dynamics of the operation state s(o)
t ∈ S(o), we have to ensure

that the charge level of a storage device is reset to zero when it is replaced by
a new investment. In addition, the correct efficiency factor differs depending
on the direction of the power flow:

sBt+1 =


0 if aBt > 0,
rBt s

B
t + ηBt p

B
t ∆t if pBt ≥ 0,

rBt s
B
t + pBt ∆t

ζBt
otherwise,

(A.17)

sH2
t+1 =


0 if aH2

t > 0,
rH2
t sH2

t + ηH2
t pH2

t ∆t if pH2
t ≥ 0,

rH2
t sH2

t + p
H2
t ∆t
ζ
H2
t

otherwise.
(A.18)

A.2.5 Problem statement formalization

We now rely on the introduced formalism to define three optimization problems
of increasing complexity. The first one focuses on the optimal operation of a
microgrid, while the two others respectively include the optimal and robust
sizing of the microgrid.

A.2.5.1 Optimal operation

Let GT be the set of all positive scalar functions defined over the set of T -uplets
of (state, action, environment) triplets:

GT =
{
GT : (S ×At × E)T → R+} . (A.19)

Problem 1 Given a function GT ∈ GT and a trajectory (E1, . . . , ET ) of
T environment vectors, we formalize the problem of optimal operation of



134 A. LEC Minimization for Microgrids

a microgrid in the following way:

min
at∈At,∀t∈T

st∈S,∀t∈T \{1}

GT ((s1, a1, E1), . . . , (sT , aT , ET ))

s.t. st = f(st−1,at−1), ∀t ∈ T \{1} ,
(aPVt , aBt , a

H2
t ) = (0, 0, 0), ∀t ∈ T .

This problem determines the sequence of control variables that leads to the
minimization of GT when the sizing decisions are made once for all at a prior
stage t = 0. The initial state s1 of the system contains the sizing information
of the microgrid and stands as a parameter of this problem.

A.2.5.2 Optimal sizing under optimal operation

Let G0 be the set of all positive scalar functions defined over the set of (action,
environment, T -long environment trajectory) triplets:

G0 =
{
G0 : (At × E × ET )→ R+} . (A.20)

Problem 2 Given a function G0 ∈ G0, a function GT ∈ GT , a trajectory
(E1, . . . , ET ) of T environment vectors, and an initial environment E0
that describes the available technologies at the sizing step, we formalize the
problem of optimal sizing of a microgrid under optimal operation in the
following way:

min
at∈At,st∈S,
∀t∈{0}∪T

G0(a0, E0, E1, . . . , ET ) +GT ((s1, a1, E1), . . . , (sT , aT , ET ))

s.t. st = f(st−1,at−1), ∀t ∈ T ,
s0 = 0 ,
(aPVt , aBt , a

H2
t ) = (0, 0, 0), ∀t ∈ T ,

with s0 being the null vector to model that we start from an empty microgrid.

This problem determines an initial sizing decision a0 such that, together with
the sequence of control variables over {1, . . . , T}, it leads to the minimization
of G0 +GT .
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A.2.5.3 Robust sizing under optimal operation

Let E be a set of environment trajectories:

E = {(E1
t )t=1...T , ..., (ENt )t=1...T } , (A.21)

with Eit ∈ E , ∀(t, i) ∈ T × {1, . . . , N} .

Problem 3 Given a function G0 ∈ G0, a function GT ∈ GT , an initial
environment E0, and a set E of trajectories of T environment vectors that
describes the potential scenarios of operation that the microgrid could face,
we formalize the problem of robust sizing of a microgrid under optimal
operation in the following way:

min
a0∈A0

max
i∈{1,...,N}

min
ai,t∈Ai,t,si,t∈S,

∀t∈T

G0(a0, E0, E
i
1, . . . , E

i
T )

+GT ((si,1, ai,1, Ei1), . . . , (si,T , ai,T , EiT ))
s.t. si,t = f(si,t−1,ai,t−1) , ∀t ∈ T \{1} ,

si,1 = f(s0,a0) ,
s0 = 0 ,
(aPVi,t , aBi,t, a

H2
i,t ) = (0, 0, 0), ∀t ∈ T .

This robust optimization considers a microgrid under optimal operation and
determines the sizing so that, in the worst case scenario, it minimizes the
objective function. The innermost min is for the optimal operation, the max is
for the worst environment trajectory and the outermost min is the minimization
over the investment decisions. The outermost min-max succession is classic in
robust optimizations (see e.g. [104]).

A.2.6 The specific case of the Levelized Energy Cost

In this section, we introduce the r−discounted levelized energy cost (LEC),
denoted LECr, which is an economic assessment of the cost that covers all the
expenses over the lifetime of the microgrid (i.e. initial investment, operation,
maintenance and cost of capital). We then show how to choose functions
G0 ∈ G0 and GT ∈ GT such that Problems 1, 2, and 3 result in the optimization
of this economic assessment. Focusing on the decision processes that consist
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only with an initial investment (i.e. a single sizing decision taking place at
t = 1) for the microgrid, followed by the control of its operation, we can write
the expression for LECr as

LECr =
I0 +

∑n
y=1

My

(1+r)y∑n
y=1

εy
(1+r)y

, (A.22)

where

• n denotes the lifetime of the system in years;

• I0 corresponds to the initial investment expenditures;

• My represents the operational expenses in the year y;

• εy is electricity consumption in the year y;

• r denotes the discount rate which may refer to the interest rate or to the
discounted cash flow.

Note that, in the more common context of an electrical generation facility, the
LECr can be interpreted as the price at which the electricity generated must
be sold to break even over the lifetime of the project. For this reason, it is
often used to compare the costs of different electrical generation technologies.
When applied to the microgrid case, it can also be interpreted as the retail
price at which the electricity from the grid must be bought in order to face the
same costs when supplying a sequence (ε1, . . . , εn) of yearly consumptions.

The initial investment expenditures I0 and the yearly consumptions εy are
simple to express as a function of the initial sizing decision a0 and environment
vector E0 for the former, and of the environment trajectory (E1, . . . , ET ) for the
latter. Let τy ⊂ T denotes, ∀y ∈ {1, . . . , n}, the set of time steps t belonging
to year y, we have:

I0 = aPV0 cPV0 + aB0 c
B
0 + aH2

0 cH2
0 (A.23)

εy =
∑
t∈τy

ct ∆t, ∀y ∈ {1, . . . , n} . (A.24)

From these two quantities, we can define the function G0 ∈ G0 that implements
the LEC case as:

G0(a0, E0, E1, . . . , ET ) = I0∑n
y=1

εy
(1+r)y

= aPV0 cPV0 + aB0 c
B
0 + aH2

0 cH2
0∑n

y=1

∑
t∈τy

ct∆t

(1+r)y

, (A.25)
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while the remaining term of LECr defines GT ∈ GT :

GT ((s1, a1, E1), . . . , (sT , aT , ET )) =
∑n
y=1

My

(1+r)y∑n
y=1

εy
(1+r)y

. (A.26)

The last quantities to specify are the yearly operational expenses My, which
correspond to the opposite of the sum over the year y ∈ Y of the revenues ρt
observed at each time step t ∈ τy when operating the microgrid:

My = −
∑
t∈τy

ρt . (A.27)

These revenues are more complex to determine than the investment expenditures
and depend, among other elements, on the model of interaction µt at the time
of the operation.

A.2.6.1 Operational revenues

The instantaneous operational revenues ρt at time step t ∈ T correspond to
the reward function of the system. This is a function of the electricity demand
ct, of the solar irradiance it, of the model of interaction µt = (k, β), and of the
control actions a(o)

t :
ρt : (ct, it,µt,a(o)

t )→ R .

We now introduce three quantities that are prerequisites to the definition of
the reward function:

• φt [kW] ∈ R+ is the electricity generated locally by the photovoltaic
installation, we have:

φt = ηPVt xPVt it ; (A.28)

• dt [kW] ∈ R denotes the net electricity demand, which is the difference
between the local consumption and the local production of electricity:

dt = ct − φt ; (A.29)

• δt [kW] ∈ R represents the power balance within the microgrid, taking
into account the contributions of the demand and of the storage devices:

δt = −pBt − p
H2
t − dt . (A.30)
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These quantities are illustrated in a diagram of the system in Figure A.1,
which allows for a more intuitive understanding of the power flows within the
microgrid.

PV

Load

+ δt = −pBt −p
H2
t −dt

H2 Storage

Battery

φt

ct

dt

pH2
t

pBt

Figure A.1: Schema of the microgrid featuring PV panels associated with a battery
and a hydrogen storage device.

At each time step t ∈ T , a positive power balance δt reflects a surplus of
production within the microgrid, while it is negative when the power demand
is not met. As the law of conservation of energy requires that the net power
within the microgrid must be null, compensation measures are required when
δt differs from zero. In the case of a connected microgrid, this corresponds to a
power exchange with the grid. In the case of an off-grid system, a production
curtailment or a load shedding is required. The instantaneous operational
revenues we consider correspond to the financial impact of a surplus or lack of
production. The reward function ρt is a linear function of the power balance
δt and, because the price β at which the energy surplus can be sold to the
grid usually differs from the retail price k to buy electricity from the grid, the
definition of the reward function at time step t ∈ T depends of the sign of δt:

ρt =
{
β δt∆t if δt ≥ 0 ,
k δt∆t otherwise.

(A.31)

Using Equations A.28, A.29, and A.30, the reward function can be expressed
as a function of the system variables:

ρt =
{
β (−pBt − p

H2
t − ct + ηPVt xPVt it) ∆t if −pBt −pH2

t −ct+η
PV
t xPVt it≥0 ,

k (−pBt − p
H2
t − ct + ηPVt xPVt it) ∆t otherwise.

(A.32)
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A.3 Optimisation

In this section, we detail how to implement the LEC version of Problems
1, 2, and 3, to obtain an optimal solution using mathematical programming
techniques. Even though the formalization of the problem includes non-linear
relations (e.g. Equations A.17, A.18, and A.32), we show how to obtain a linear
program by using auxiliary variables. The presented approach assumes that
the following conditions are met:

• a single candidate technology is considered for each device type (i.e.
J = L = M = 1);

• the lifetime of the devices is at least as long as the considered time-horizon
(i.e. LPV , LB , LH2 ≥ T ) and the aging of the devices can thus be ignored;

• the whole trajectory E1, . . . , ET of environment vectors is known at the
time of operation (i.e. when minimizing GT ).

A.3.1 Optimal operation over a known trajectory

We first consider the implementation as a linear program of Problem 1 with GT
defined by Equation A.26. The output of this program is the optimal sequence
of control actions a(o)

t = (pH2
t , pBt ) and the corresponding minimal value of GT

over the considered time-horizon T . Before writing the optimization model, we
introduce, ∀t ∈ T , the following auxiliary variables:

pB,+t , pB,−t , pH2,+
t , pH2,−

t , δ+
t , δ

−
t ∈ R+, such that


pBt = pB,+t − pB,−t

pH2
t = pB,+t − pB,−t

δt = δ+
t − δ−t

,

which allow the use of the adequate efficiency factor (i.e. η or ξ) and
price (i.e. k or β) depending on the direction of the power flows. The
overall linear program Mop, having as parameters the time-horizon T , the
time step ∆t, the number of years n spanned by the time-horizon, the sets
τ1, . . . , τn mapping years to time steps, the discount rate r, a trajectory
E1, . . . ,ET of the exogenous variables, and the time-invariant sizing state
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s(s) = (xPV ,xB ,xH2 ,PB ,RH2 ,ηPV ,ηB ,ηH2 ,ζB ,ζH2 ,rB ,rH2) of the devices, can be writ-
ten as:

Mop(T,∆t,n,τ1,...,τn,r,E1,...,ET ,s(s)) (A.33a)

= min
∑n
y=1

My

(1+r)y∑n
y=1

∑
t∈τy

ct∆t

(1+r)y

(A.33b)

s.t. ∀y ∈ {1, . . . , n} : (A.33c)

My =
∑
t∈τy

(
k δ−t − β δ+

t

)
∆t , (A.33d)

∀t ∈ {1, . . . , T} : (A.33e)
0 ≤ sBt ≤ xB , (A.33f)
0 ≤ sH2

t ≤ RH2 , (A.33g)
− PB ≤ pBt ≤ PB , (A.33h)
− xH2 ≤ pH2

t ≤ xH2 , (A.33i)
δt = −pBt − p

H2
t − ct + ηPV xPV it , (A.33j)

pBt = pB,+t − pB,−t , (A.33k)

pH2
t = pB,+t − pB,−t , (A.33l)
δt = δ+

t − δ−t , (A.33m)

pB,+t , pB,−t , pH2,+
t , pH2,−

t , δ+
t , δ

−
t ≥ 0 , (A.33n)

∀t ∈ {2, . . . , T} : (A.33o)

sBt = rBsBt−1 + ηBpB,+t−1 −
pB,−
t−1
ζB

, (A.33p)

sH2
t = rH2sH2

t−1 + ηBpH2,+
t−1 −

p
H2,−
t−1
ζH2 , (A.33q)

− ζBsBT ≤ pBT ≤
xB−sBT
ηB

, (A.33r)

− ζH2sH2
T ≤ p

H2
T ≤

RH2−sH2
T

ηH2 . (A.33s)

The physical limits of the storage devices are modeled by Constraints A.33f-
A.33i, while the transition laws of their state correspond to Constraints A.33p
and A.33q. Because of the absence of time step T + 1, there is no guarantee
that the charge levels that immediately follow the time-horizon are positive,
which is why Constraints A.33r and A.33s ensure that the last action a(o)

T is
compatible with the last charge level of the devices. Finally, Constraints A.33j
and A.33d respectively denote the power balance within the microgrid and the
cost it induces on a yearly scale.
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A.3.2 Optimal sizing under optimal operation

In Problem 2, the initial sizing of the microgrid becomes an output of the
optimization model and the function G0, here defined by Equation A.25,
integrates the objective function. We denote this new problem byMsize, which
is still a linear program:

Msize(T,∆t,n,τ1,...,τn,r,E0,E1,...,ET ) (A.34a)

= min
I0 +

∑n
y=1

My

(1+r)y∑n
y=1

∑
t∈τy

ct∆t

(1+r)y

(A.34b)

s.t. I0 = aPV0 cPV0 + aB0 c
B
0 + aH2

0 cH2
0 , (A.34c)

(xB , xH2 , xPV ) = (aB0 , a
H2
0 , aPV0 ) , (A.34d)

A.33c−A.33s . (A.34e)

This new model includes all the constraints fromMop, as well as the definition
of the sizing of the devices from the initial sizing decisions, i.e. Constraint A.34d,
and the expression of the initial investment as a function of these sizing decisions,
i.e. Constraint A.34c. Note that the value of physical properties of the devices
other then variables xB , xH2 , xPV is provided by the initial environment vector
E0, which also provides the cost of the available technology for every device
type.

A.3.3 Robust sizing under optimal operation

The extension of linear program Msize to
an optimization model that integrates a set
E = {(E1

t )t=1...T , ..., (ENt )t=1...T } of candidate trajectories of the envi-
ronment vectors, i.e. to the implementation of Problem 3, is straightforward
and requires two additional levels of optimization:

Mrob(T,∆t,n,τ1,...,τn,r,E0,E)
= min
aB0 ,a

H2
0 ,aPV0

max
i∈1,...,N

Msize(T,∆t,n,τ1,...,τn,r,E0,E(i)
1 ,...,E(i)

T
) . (A.35)

This mathematical program cannot be solved using only linear programming
techniques. In particular, the numerical results reported further in this chap-



142 A. LEC Minimization for Microgrids

ter relied on an exhaustive search approach to address the outer min max,
considering a discretized version of sizing variables.

A.4 Simulations

This section presents case studies of the proposed operation and sizing prob-
lems of a microgrid. We first detail the considered technologies, specify the
corresponding parameter values, and showcase the optimal operation of a
fixed-size microgrid. The optimal sizing approaches are then run using realistic
price assumptions and using historical measures of residential demand and
of solar irradiance with ∆t = 1h. By comparing the solutions for irradiance
data of both Belgium and Spain, we observe that they depend heavily on this
exogenous variable. Finally, we compare the obtained LEC values with the
current retail price of electricity and stress the precautions to be taken when
interpreting the results.

A.4.1 Technologies

In this subsection, we describe the parameters that we consider for the PV
panels, the battery and the hydrogen storage device. The physical parameters
are selected to fit, at best, the state-of-the-art manufacturing technologies,
and the costs that we specify are for self-sufficient devices, i.e. including the
required converters or inverters to enable their correct operation.

PV panels. The electricity is generated by converting sunlight into direct
current (DC) electricity using materials that exhibit the photovoltaic effect.
Driven by advances in technology as well as economies of manufacturing scale,
the cost of PV panels has steadily declined and is about to reach a price of
1e/Wp with inverters and balance of systems included [105]. The parameters
that are taken into account in the simulations can be found in Table A.1.

Parameter Value
cPV 1e/Wp

ηPV 18%
LPV 20 years

Table A.1: Characteristics used for the PV panels.
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Battery The purpose of the battery is to act as a short-term storage device; it
must therefore have good charging and discharging efficiencies as well as enough
specific power to handle all the short-term fluctuations. The charge retention
rate and the energy density are not major concerns for this device. A battery’s
characteristics may vary due to many factors, including internal chemistry,
current drain and temperature, resulting in a wide range of available perfor-
mance characteristics. Compared to lead-acid batteries, LiFePO4 batteries are
more expensive but offer a better capacity, a longer lifetime and a better power
density [106]. We consider this latter technology and Table A.2 summarizes the
parameters that we deem to be representative. LiFePO4 batteries are assumed
to have a power density that is sufficient to accommodate the instantaneous
power supply of the microgrid. It is also assumed to have a charging efficiency
(ηc) and discharging efficiency (ζB0 ) of 90% for a round trip efficiency of 81%.
Finally, we consider a cost of 500 eper usable kWh of storage capacity (cB).

Parameter Value
cB 500 e/kWh
ηB0 90%
ζB0 90%
PB > 10kW
rB 99%/month
LB 20 years

Table A.2: Data used for the LiFePO4battery.

Hydrogen storage device The long-term storage device must store a large
quantity of energy at a low cost while its specific power is less critical than
that for the battery. In this chapter we will consider a hydrogen-based storage
technology composed of three main parts: (i) an electrolyzer that transforms
water into hydrogen using electricity (ii) a tank where the hydrogen is stored
(iii) a fuel cell where the hydrogen is transformed into electricity (note that
a (combined heat and) power engine could be used instead). This hydrogen
storage device is such that the maximum input power of the fuel cell before
losses is equal to the maximum output power of the electrolyzer after losses.
The considered parameters are presented in Table A.3.

A.4.2 Optimal operation

An example of output of the optimal operation programMop in Figure A.2b
illustrates well the role of each storage device. The figure sketches the evolution
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Parameter Value
cH2 14 e/Wp

ηH2
0 65%
ζH2
0 65%
rH2 99%/month
LH2 20 years
RH2 ∞

Table A.3: Data used for the Hydrogen storage device.

of the charge levels of the battery and of the hydrogen storage device when
facing the net demand defined in Figure A.2a. In this example, the battery has
a capacity of 3kWh and the hydrogen storage device has a power limit of 1kW.
The role of each storage device is clear as we observe that the battery handles
the short fluctuations, while the hydrogen device accumulates the excesses
of production on a longer time-scale. Overall, since the production is higher
than the consumption by a significant margin, the optimization problem is not
constrained and hydrogen is left in the tank at the end of the simulation.

(a) Net demand (negative demand repre-
sents a production higher than the con-
sumption)

(b) Optimal operation of the storage de-
vices

Figure A.2: Left graphic shows the evolution of the charge levels within a microgrid
that faces the given net demand of right graphic.

A.4.3 Production and consumption profiles

In this subsection, we describe the PV production profiles and the consumption
profiles that will be used in the remaining simulations.
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A.4.3.1 PV production

Solar irradiance varies throughout the year depending on the seasons, and it
also varies throughout the day depending on the weather and the position of
the sun in the sky relative to the PV panels. Therefore, the production profile
varies strongly as a function of the geographical area, mainly as a function of
the latitude of the location. The two cases considered in this chapter are a
residential consumer of electricity in the south of Spain and in Belgium. The
main distinction between these profiles is the difference between summer and
winter PV production. In particular, production in the south of Spain varies
with a factor 1:2 between winter and summer (see Figure A.3) and changes to
a factor of about 1:5 in Belgium or in the Netherlands (see Figure A.4).

Total energy produced per
month

Example of production in
winter

Example of production in
summer

Figure A.3: Simulated production of PV panels in the South of Spain (Data from
Solargis [107] for the solar platform of Almeria in Spain).

Total energy produced per
month

Example of production in
winter

Example of production in
summer

Figure A.4: Measurements of PV panels production for a residential customer
located in Belgium.
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A.4.3.2 Consumption

A simple residential consumption profile is considered with a daily consumption
of 18kWh. The profile can be seen on Figure A.5. This profile is a good
substitute of any residential consumption profile with the same average con-
sumption per day. Additional precautions should be taken in the case of high
consumption peaks to ensure that the battery will be able to handle large power
outputs. Note that in a more realistic case, we may have higher consumption
during winter, which may substantially affect the sizing and operation solutions.

Figure A.5: Representative residential consumption profile.

A.4.4 Optimal sizing and robust sizing

For the optimal sizing under optimal operation of the microgrid, as defined by
Problem 2, we use a unique scenario built from the data described in Section
A.4.3 for the consumption and production profiles. Since the available data
are shorter than the time-horizon, we repeat them so as to obtain a twenty-
year-long time-horizon. In the following we make the hypothesis that β = 0
e/kWh.

For the robust optimization of the sizing, we refer to the Problem 3. This
approach requires the selection of a set of different environment trajectories
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and, for computational purposes, to discretize the sizing states. The three
different scenarios considered are the following:

• The production is 10% lower and the consumption is 10% higher than
the representative residential production/consumption profile.

• The production and the consumption are conform to the representative
residential production/consumption profile (scenario used in the non-
robust optimisation)

• The production is 10% higher and the consumption is 10% lower than
the representative residential production/consumption profile.

To build the discretized sizing states we start by solving Problem 2 on the mean
scenario. For our simulations we then select all possible variations compared to
the sizing of each variable xB , xH2 and xPV by +0%, +10% and +20%. This
leaves us with 27 possible sizings that are used to build the discretized sizing
space. Equation A.35 is solved by performing an exhaustive search over this
set of potential sizings so as to obtain the robust LEC.

A.4.4.1 The Spanish case

We first considered a residential consumer of electricity located in Spain. For
different values of costs k endured per kWh not supplied within the microgrid,
we performed the optimal sizing and the robust-type optimization schemes
described above. We reported the obtained LEC in Figure A.6. We observed
the following : (i) for a retail price of 0.2e/kWh, the residential consumer of
electricity benefits from a LEC of slightly more than 0.10e/kWh; (ii) in the
fully off-grid case, the microgrid is still more profitable than buying electricity
at all times from the utility grid for all configurations as long as k is lower than
approximately 3e/kWh (i.e. with a value of loss load smaller than 3 e/kWh,
it is always preferable to go fully off-grid than buying all the electricity from
the grid); (iii) due to the relatively low inter-seasonal fluctuations (compared
to Belgium for instance (see later)) investing in a hydrogen storage system is
not actually profitable for low values of k.

A.4.4.2 The Belgian case

We then considered a residential consumer of electricity located in Belgium
and we reported the obtained LEC for different values of k. As can be seen
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Figure A.6: LEC (r = 2%) in Spain over 20 years for different investment strategy
as a function of the cost endured per kWh not supplied within the microgrid.

from Figure A.7, a residential consumer of electricity in Belgium has incentives
to invest in his own microgrid system (at least PV panels) since the obtained
LEC while operating in parallel with the main utility grid at a retail price
of 0.2e/kWh gives the residential consumer of electricity a lower electricity
price than buying it from the grid at all times. With the current state of
the technology however, it is not yet profitable for a residential consumer of
electricity in Belgium to go fully off-grid since they would then suffer from a
higher overall cost. Contrary to the results observed for Spain, in Belgium there
is an important potential gain in combining both short-term and long-term
energy storage devices. This is due to the critical inter-seasonal fluctuations of
PV electrical production in Belgium.

We also investigate how the LEC evolves as a function of the price decrease
of the elements in the microgrid. Figure A.8 shows the reported LEC as a
function of a uniform price decrease of the elements of the microgrid while
assuming a value of loss load of 0.2e/kWh and a robust sizing. It is shown
that when the prices of constitutive elements of the microgrid are less than
half of those given in A.1, A.2, and A.3, the business case for a fully off-grid
microgrid in Belgium may actually become cost-effective.
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Figure A.7: LEC (r=2%) in Belgium over 20 years for different investment strategy
as a function of the cost endured per kWh not supplied within the microgrid.

Figure A.8: LEC (r=2%) in Belgium over 20 years for a value of loss load of
2e/kWh as a function of a uniform price decrease for all the constitutive elements of
the microgrid.

A.5 Conclusion

This chapter has proposed a novel formulation of electrical microgrids featuring
PV, long-term (hydrogen) and short-term (batteries) storage devices. Using
linear programming we managed to set up an algorithm for optimally sizing
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and operating microgrids under some (potentially robust) hypotheses on the
surrounding environment. The approach has been illustrated in the context of
Belgium and Spain, for which we evaluate the values of the LEC and compare
it with the cost of electricity from traditional electricity networks.

Future works will include relaxing the assumption that the future is determinis-
tically known when computing the optimal operation. In particular, we plan to
investigate how to incorporate stochastic weather forecasts in the optimization
of the microgrid operation.
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