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SUMMARY

This paper aims at accounting for the uncertainties due to material structure and surface topology of micro-

beams in a stochastic multiscale model. For micro-resonators made of anisotropic polycrystalline materials,

micro-scale uncertainties are due to the grain size, grain orientation, and to the surface profile. First, micro-

scale realizations of stochastic volume elements (SVEs) are obtained based on experimental measurements.

To account for the surface roughness, the SVEs are defined as a volume element having the same thickness

as the MEMS, with a view to the use of a plate model at the structural scale. The uncertainties are then

propagated up to an intermediate scale, the meso-scale, through a second-order homogenization procedure.

From the meso-scale plate resultant material property realizations, a spatially correlated random field of the

in plane, out of plane, and cross resultant material tensors can be characterized. Owing to this characterized

random field, realizations of MEMS-scale problems can be defined on a plate finite element model. Samples

of the macro-scale quantity of interest can then be computed by relying on a Monte-Carlo simulation

procedure. As a case study, the resonance frequency of MEMS micro-beams is investigated for different

uncertainty cases, such as grain preferred orientations and surface roughness effects.
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1. INTRODUCTION

Sources of uncertainties are most of the time neglected in numerical models. However they can

affect the structural behavior, in which case it is important to consider them. This is why nowadays a

lot of efforts is put into improving uncertainty quantification procedures. Dealing with uncertainties

can be done in different ways, but this work focuses on the propagation of micro-scale material

and geometrical uncertainties up to the structural response. Micro-scale material uncertainties result

from spatially varying material properties. The structural behavior is thus non-deterministic as the

material properties are statistically distributed over the structure. This structure can be modeled

using the finite element method, in which case a full description of the material heterogeneities

and of their variations is required. Using Monte-Carlo simulations on such a fine discretization to

estimate the uncertainties in the structural behavior, i.e. performing direct Monte Carlo simulations,

can however involve overwhelming computation costs as the finite element mesh should capture the

micro-scale uncertainties. The purpose of this paper is to extend the stochastic multiscale method

developed in [1], which involves uncertainty propagation across the scales for MEMS made of

polycrystalline materials, to account for the grain size distribution, preferred grain orientations, and

surface profile uncertainties of thin MEMS devices.

The Stochastic Finite Elements method, referred to as SFEM and described in [2, 3, 4], as a non

exhaustive list, is a relevant tool to study uncertainty quantification at a reasonable cost. In the case

of MEMS, this was illustrated by considering thermoelastic stochastic finite elements in [5]. SFEM

to study the stochastic behavior of shells whose thickness and material properties are random was

also used in [6]. However in those approaches, the random field used to describe the spatially varying
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 3

material properties and thickness was not obtained directly from micro-structure resolutions. Thus

the recourse to SFEM approaches alone does not overcome the problem of modeling the material

heterogeneities. Indeed, to be able to propagate the uncertainties from the micro-structure itself

using SFEM, as the involved uncertainties are characterized by a small correlation length, the finite

element size should be drastically reduced [7]. According to [8], accurate results are obtained when

the finite element size is smaller than at least one half of the correlation length, which would lead

to unreachable computational resources to capture the micro-scale heterogeneities uncertainties.

However, this limitation can be overcome thanks to multi-scale approaches as the introduction of an

intermediate scale implies a larger correlation length, and thus reduces the computation cost of the

SFEM procedure [1].

Multi-scale approaches are an efficient, convenient, and elegant way to deal with complex

heterogeneous materials. In such an analysis, three scales are defined, see Fig. 1(a). The micro-scale

is the characteristic size of the micro-structure. A volume element made of the material of interest

defines an intermediate scale: the meso-scale. With the help of an homogenization technique, meso-

scale material properties can be estimated by the resolution of the boundary value problem (BVP)

defined over the meso-scale volume element. Those homogenized properties can be used at the

structural scale, the macro-scale. Different homogenization approaches were developed, such as the

semi analytical mean-field homogenization (see [9, 10, 11]) or the purely numerical FE2 method

(see [12, 13, 14, 15, 16, 17, 18]) as non-exhaustive lists.

One of the main assumption behind computational homogenization is the scale separation which

can be expressed as:

lmeso << lmacro, and (1)

lmicro << lmeso . (2)

When dealing with reduced size structures, the characteristic size of the micro-scale heterogeneities

can be too close to the macro-scale to respect both of these equations. The first one, Eq. (1),

guarantees the accuracy of the procedure: accurate results are obtained when the homogenization is

applied on meso-scale volume elements whose size is much smaller than the characteristic length
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(b) 2nd-order homogenization

Figure 1. Homogenization-based multi-scale method: (a) 1st-order homogenization for classical macro-scale

continuum; (b) 2nd-order homogenization for macro-scale Kirchhoff-Love plates

on which the macro-scale loading varies in space [19]. This equation should thus be satisfied but the

second scale separation, Eq. (2), will thus not be respected. This implies that volume elements are

not representative and they are referred to as Statistical Volume Elements (SVEs) [20]. Indeed, on

the one hand, the meso-scale boundary value problem over a SVE is Boundary Condition (BC)

dependent, and on the other hand, different homogenized properties are obtained for different

realizations of the SVEs, even under a unique case of BCs. Although it is possible to address the

lack of representativity by statistical considerations of the homogenized properties for different

SVE sizes/realizations [21, 22] in order to extract mean homogenized properties or to define a

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

Prepared using nmeauth.cls DOI: 10.1002/nme



A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 5

minimum RVE size, such a method does not allow to up-scale the uncertainties. This has motivated

the development of stochastic multi-scale methods.

Stochastic multi-scale analyses have been developed based on order reduction of asymptotic

homogenization [23] to account for micro-scale material uncertainties in the form of random

variables –and random fields in particular cases. However, accounting for general fine-scale

random fields would require the nested resolution of meso-scale problems during the structural-

scale analysis, leading to a prohibitive cost. Local effects can also be treated using Monte-Carlo

simulations: the brittle failure of MEMS made of a poly-silicon material was studied by considering

several realization of a critical zone [24] on which the relevant loading was applied. An alternative

to these approaches is to introduce in the stochastic multi-scale method a meso-scale random field,

obtained from a stochastic homogenization, which is in turn used as material input by the stochastic

finite element method at the structural scale. In order to ensure objectivity, the size of the (structural

scale) stochastic finite elements should be small enough with respect to the (spatial) correlation

length of the meso-scale random field [8], the latter depending on the size of the SVEs.

In order to define a meso-scale random field, statistics and homogenization were coupled to

investigate the probability convergence criterion of RVE for masonry [25], to obtain the property

variations due to the grain structure of poly-silicon film [26], to extract the stochastic properties

of the parameters of a meso-scale porous steel alloy material model [27], to evaluate open foams

meso-scale properties [28], to extract probabilistic meso-scale cohesive laws for poly-silicon [29],

to extract effective properties of random two-phase composites [30], to study the scale-dependency

of homogenization for matrix-inclusion composites [31, 32], or again to consider the problem

of composite materials under finite strains [33]. In this last reference, a particular attention was

drawn on the correlation between the different sources of uncertainty. In most of the previously

cited works, the stochastic homogenization on the SVEs was mainly achieved by a combination of

computational homogenization with Monte Carlo simulations. In the recent work [34], the stochastic

homogenization was achieved by using a modified version of the SFEM (here applied on the
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6 V. LUCAS ET AL.

meso-scale boundary value problem), leading to a more efficient resolution. The problem of high-

dimensionality was investigated in [35], in which the resolution of composite material elementary

cells was used to explicitly define a meso-scale potential with the aim of studying the uncertainties

in the fibers geometry/distribution in the case of finite elasticity of composite materials.

The meso-scale uncertainties can then be up-scaled to study the probabilistic macro-scale

behavior. Based on their stochastic properties identification of the meso-scale porous steel alloy

material model [27], Yin et al. [36] have generated a random field based on Karhunen-Loève

expansion to study the macro-scale behavior. A similar approach was applied to study the dynamic

behavior of open-foamed structures [28].

Recently, in order to predict relevant and consistent probabilistic macro-scale behaviors, the

authors have developed in [1] a stochastic 3-scale method in the frame of MEMS vibrating beams,

with a particular emphasis put on the link between the meso-scale volume element size and the

macro-scale mesh size. In this approach, (i) at the micro-scale several SVEs with random grain

orientations were considered; (ii) at the meso-scale, finite-element simulations on different SVEs,

defined from a larger material sample by using the moving-window technique, led to the distribution

of the homogenized polycrystalline material Young’s modulus and of its spatial correlation; (iii) a

random field of the meso-scale elastic Young’s modulus was generated based on the information

obtained from the SVE simulations; and (iv) the generated meso-scale random fields were used

with the stochastic 1D beam finite element method to predict the statistical distribution of MEMS

resonator eigen-frequencies. In particular, by comparison with direct Monte-Carlo simulations, it

was shown that the generation of a spatially correlated random field allows predicting macro-scale

statistical distributions independent on the SVE and macro-scale mesh sizes, as long as the distance

between the macro-scale integration points remains lower than the correlation length of the meso-

scale random field. This stochastic 3-scale procedure was recently extended in the frame of thermo-

mechanics in [37] to study the thermo-elastic damping effect in a probabilistic way.

The purpose of this work is to develop a stochastic 3-scale method for thin polycrystalline

structures able to account for the uncertainties resulting from the material heterogeneities, such
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 7

as the grain size distributions and the preferred grain orientations, but also from the surface

profile of the thin MEMS structures for which the surface roughness can be of comparable

size as the MEMS thickness. Toward this end, we consider in this paper (i) a definition of the

micro-structure uncertainties based on measurements on real MEMS structures, (ii) a second-order

stochastic homogenization method to define statistical homogenized properties from the micro-

scale information, (iii) the definition of a stochastic model able to generate meso-scale random field

realizations, and (iv) plate stochastic finite elements to capture the probabilistic structural behavior.

The first step considers actual measurements on poly-silicon samples, processed at different

manufacturing temperatures by Low Pressure Vapor Chemical Deposition (LPCVD), to define the

uncertainties of the micro-structure. The thin structure being made of an anisotropic polycrystalline

material, i.e. poly-silicon, the randomness in the grain size distribution and in their orientation –with

or without preferred orientations– induce uncertainties. The grain size distribution is studied based

on Scanning Electron Microscope (SEM) images while the distribution of orientations is obtained

using X-Ray Diffraction (XRD) measurements. Another source of scatter is the surface profile of the

thin structure as its roughness is of comparable size to the structure thickness. The surface topology

is obtained from Atomic Force Microscopy (AFM) measurements. Both the roughness and the grain

structure are correlated as it is noted in [38].

To achieve the second step of the method, i.e. to propagate the uncertainties due to the material

structure and surface profile, a second-order homogenization procedure is considered to study the

meso-scale behavior of the different (Rough) Statistical Volume Elements ((R)SVEs). With a view

toward macro-scale plate simulations, second-order homogenization allows capturing the roughness

effect on the bending behavior of the meso-scale volume element as it provides a bridge, not only

between the in-plane stress and the in-plane strain, but also between the higher-order stress –i.e.

bending moment– and the higher-order strain –i.e. curvature– as illustrated in Fig. 1(b). Second-

order homogenization was described for small strains in [39, 18], and for finite strains in [40]. The

method was adapted for shells in [41] or again in [42], where it was applied to study the buckling

of heterogeneous shells. Owing to the second-order computational homogenization process, the
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8 V. LUCAS ET AL.

stochastic meso-scale information, i.e. the shell-like resultant membrane, bending, and coupled

material tensors, see Fig. 1(b), are then gathered following a simple Monte-Carlo scheme applied

on (R)SVEs realizations. To obtain the spatial correlation between neighboring (R)SVEs, a moving-

window technique [43] is used, thus estimating a discrete correlation function of the (R)SVEs

properties. The cross-correlation between the different meso-scale properties is thus also evaluated.

Indeed, as stated in [6], the influence of the cross-correlation between the Young’s modulus and the

Poisson ratio on the response variability is negligible in case of a static problem but this assumption

is not valid when a dynamic problem is involved.

Once the stochastic behavior of the meso-scale (R)SVEs is evaluated using a sufficient number

of realizations, a random field can be defined, which is the third step of the method. The two

main approaches usually considered to build a random field are the Karhunen-Loève expansion,

which was used in the recent work [44] for example, and the spectral representation method

which was developed in [45, 46]. The latter procedure allows computing the discrete spectral

density from the discrete correlation function evaluated by the stochastic homogenization using

Fast Fourier Transforms and is therefore chosen in this work. The spectral representation generates

Gaussian fields, but non-Gaussian fields can be retrieved through an appropriate mapping technique

[47, 48, 49]. As the non-linear mapping from Gaussian to non-Gaussian changes the spectral density,

an iterative procedure is required in order to obtain both the desired spectral density and non-

Gaussian probability distribution. Moreover, in order to ensure the existence of the expectation

of the norm of the inverse of the material tensors, a lower bound is introduced during the generation

process [50].

Owing to the possibility of generating random fields, the fourth step can be performed, i.e. the

uncertainties at the meso-scale can be propagated up to the macro-scale, in an efficient way. To

take into account most of the available information at the meso-scale, such as the resultant bending

material tensor, Kirchhoff-Love plate elements are considered in this work. In particular, the plate

elements are formulated using a displacement-only discretization by recourse to a Discontinuous

Galerkin method [51, 52]. Finally a Monte-Carlo procedure is applied: from samples of the
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 9

meso-scale random field, samples of the MEMS properties are obtained and a statistical study

is performed. On the one hand, the macro-structure is discretized using computationally efficient

plate elements. On the other hand, taking advantage of the correlation length of the meso-scale

random field, which is larger than the micro-structure, the macro-scale finite elements have a size

which covers several heterogeneities. As a result, the macro-scale simulations involve a much lower

cost compared to the direct simulations, in which the heterogeneities are explicitly discretized.

Therefore the stochastic multi-scale method can be used to study the effect of the different sources

of uncertainties such as grain sizes distribution, preferred grain orientations, or again surface

profile, which depend on the temperature used during the Low Pressure Chemical Vapor Deposition

(LPCVD) process, for different MEMS resonator geometries.

The organization of the paper is as follows. First, the stochastic finite element approach

is introduced in Section 2 in the scope of plate elements. Then, the stochastic second-order

homogenization and the extraction of the shell-like resultant membrane, bending, and coupled

material tensors, see Fig. 1(b), are described in Section 3. Afterwards, Section 4 defines the

meso-scale random field acting as a bridge between the micro to meso homogenization and the

meso to macro stochastic analyzes. The method being fully introduced, Section 5 illustrates its

application on a poly-silicon resonator and is subdivided into 6 subsections: Section 5.1 describes

the experimental measurements; Section 5.2 deals with the generation of the (R)SVEs based on

experimental measurements (SEM, XRD, AFM); Section 5.3 illustrates the extracted meso-scale

statistical results; Section 5.4 compares those extracted meso-scale results to the generated meso-

scale random fields; Section 5.5 studies the effect of the different uncertainties on the MEMS eigen-

frequencies; and Section 5.6 reports the computational costs of the stochastic multi-scale method.

Finally conclusions are drawn in Section 6.

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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10 V. LUCAS ET AL.

2. MACRO-SCALE PLATE SFEM

The estimation of the probability density function of the resonance frequency of a thin MEMS

subjected to uncertainties is the objective of this work. The deterministic problem of an un-damped

mechanical structure discretized with the finite element method can be written as

MMMüuu+KKKuuu = fff , (3)

where MMM and KKK are respectively the mass and stiffness matrices, fff is the assembled external force

vector, and uuu is the assembled vector of the degrees of freedom.

The non-deterministic problem is defined on 2 different domains. The first one is the spatial

domain DDD, which is a function of the spatial coordinate xxx. The second domain of interest

is the stochastic space ΩΩΩ where θθθ ∈ ΩΩΩ denotes the elements in the sample space involving

random quantities. To solve a non-deterministic problem defined over these 2 domains, the SFEM

approach is used. As recalled in [4], a SFEM analysis can be defined by the following steps: (i)

the discretization of the stochastic fields representing the properties with uncertainties; (ii) the

formulation of the stochastic matrices; and (iii) the response variability calculation.

2.1. The random fields discretization
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Figure 2. Representation of the plate discretization in a Cosserat plane A and along the thickness direction

EEEz

For the first step, i.e the discretization of the stochastic field representing the uncertainties,

the properties exhibiting uncertainties must be identified. One source of uncertainty is material
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 11

related such as the grain sizes and grain orientations for polycrystalline materials. Another source

comes from the geometry, such as the surface roughness. To account for both sources, we use a

resultant stress-strain relation formulated for thin structures in a stochastic way. Toward this end,

in this work we consider the plate representation illustrated in Fig. 2. The domain DDD of the plate

is discretized in a Cosserat plane A , assumed to be lying in the plane associated with the frame

(0; EEEx; EEEy) for simplicity, and along the thickness direction along EEEz. The deformation mapping

φφφ maps the neutral surface, represented by the Cosserat plane A , to the deformed neutral-surface

S , and the thickness direction to the deformed unit direction ttt, see Fig. 2. The displacement of

the neutral surface is denoted by uuu, and the change of the unit out-of-plane direction ttt by ∆∆∆ttt. In

small deformations, considering Reissner-Mindlin plates, one can extract from those displacement

fields, the kinematic membrane field εεε∗, the bending field κκκ∗, and the out-of-plane shearing field γγγ∗,

following respectively

εεε
∗
αβ

=
1
2
(
uuuα,β +uuuβ,α

)
, (4)

κκκ
∗
αβ

=
1
2
(
∆∆∆tttα,β +∆∆∆tttβ,α

)
, and (5)

γγγ
∗
α
= uuuz,α +∆∆∆tttα , (6)

where α = x, y and β = x, y correspond to the in-plane directions, and where the notation a,i denotes

the derivatives of a with respect to direction i.

These kinematic fields are related to the resultant membrane stresses nnn∗,†

nnn∗α = ñnn∗αβEEEβ + q̃qq∗αEEEz , (7)

to the resultant bending stresses m̃mm∗,

m̃mm∗α = m̃mm∗αβEEEβ , (8)

and to the shear resultant stresses nnn∗z

nnn∗z = q̃qq∗αEEEα . (9)

†All along this section we use the classical notations for plates and shells described in a non-orthonormal referential with

superscripts for stress related fields, although in this paper the basis remains orthonormal. Similarly, we use the˜notation

to refer to the uncoupled in-plane/out-of-plane components, although for plates they are naturally uncoupled.
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12 V. LUCAS ET AL.

The different components of those vectors result from the integration of the stress tensor over the

thickness h, with

ñnn∗αβ =
∫

h
σσσ

αβdz , (10)

m̃mm∗αβ =
∫

h
σσσ

αβzdz , and (11)

q̃qq∗α =
∫

h
σσσ

αzdz . (12)

In elasticity, the linear relationships between the resultant kinematic fields and the resultant

stresses can be expressed as

ñnn∗ = C∗1 : εεε
∗+C∗2 : κκκ

∗+C∗5 · γγγ∗, (13)

m̃mm∗ = C∗3 : εεε
∗+C∗4 : κκκ

∗+C∗6 · γγγ∗, (14)

q̃qq∗ = C∗7 : εεε
∗+C∗8 : κκκ

∗+C∗9 · γγγ∗, (15)

with, in all generalities the fourth-order tensors C∗1, C∗2, C∗3, and C∗4 in R4, the third-order tensors

C∗5, C∗6, C∗7, and C∗8 in R3, and the second-order tensor C∗9 in R2.

In this paper we will consider the Kirchhoff-Love plate theory, which implies that ∆∆∆tttα = −uuuz,α,

κκκ∗
αβ

= −uuuz,αβ, and q̃qq∗α = 0. In other words, the section of the plate remains perpendicular to the

membrane after deformation. As a result, the set of Eqs. (13-15) simplifies into

ñnn∗ = C∗1 : εεε
∗+C∗2 : κκκ

∗ , (16)

m̃mm∗ = C∗3 : εεε
∗+C∗4 : κκκ

∗ . (17)

Those last expressions can be rewritten under the matrix form

ψψψ
?
σ
=UUU (xxx,θθθ)χχχ

?
ε
, (18)

where χχχ?
ε

corresponds to the resultant kinematic fields ordered in a vector notation and ψψψ?
σ

corresponds to the resultant stresses ordered in a vector notation. The corresponding resultant

material operator UUU (xxx,θθθ) defines the shell-like material behavior at a spatial position xxx for a sample

θθθ. In this paper, the resultant material operator is computed through a multi-scale procedure: a

volume element is associated to each position xxx for a sample θθθ thus forming a boundary value
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 13

problem (BVP). As small scale volume elements are considered, they are not representative and

therefore referred to as SVE or Statistical Volume Elements. The resolution of the stochastic

BVP determines UUU (xxx,θθθ). A random field is thus defined so that UUU(xxx, θθθ) : A ×ΩΩΩ → MMM+s
N (R)

where MMM+s
N (R) refers to the set of all symmetric positive-definite real matrices of size N×N. The

demonstration that UUU ∈MMM+s
N (R) is reported in Appendix A.

Besides the material uncertainties, the influence of the roughness is also studied. Rough SVEs are

referred to as RSVEs. When both cases, rough or flat, are possible, the volume elements are referred

to as (R)SVEs. The roughness has effects on the mechanical behavior of the volume element, thus

affecting UUU (xxx,θθθ). It also affects the distribution of mass over the macro-scale structure and thus

another random field must be defined. Therefore the mass per membrane unit area random field

ρ̄(xxx, θθθ) : A×ΩΩΩ→ R+ is now introduced as it is commonly done for plate elements. Note that plate

elements also involve the cross section inertia Ip. However the contribution to the mass matrix of

this last term being much smaller than the contribution from ρ̄ (the ratio between the two being

of the order of h/lmacro), we actually approximate the uncertainty effect in Ip by approximating the

term as Ip =
ρ̄3

12ρ2 .

In order to evaluate the random fields, the point discretization method is considered in this work.

At each integration point xxxi of the plate finite elements, the random fields are evaluated thus leading

to the mass per membrane unit area ρ̄(xxxi,θθθ) and the resultant material operator UUU(xxxi,θθθ). Note that

the point discretization method is easy to implement but it tends to over-represent the uncertainties

in each element [53]. The mesh elements must thus be small enough compared to the correlation

length of the random field so that the properties can be considered constant over the mesh element

part related to an integration point. As we are dealing with linear plate elements, the computational

time of the SFEM remains affordable, which justifies this discretization method choice. However,

other discretization methods, such as the local average method, exist [53] and could be considered

for more complex structural simulations.
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14 V. LUCAS ET AL.

2.2. The formulation of the stochastic matrices

The second step is the formulation of the stochastic matrices which define the problem: the mass

and the stiffness matrix. They must be defined from the governing equations which are, for a thin

body DDD, the equilibrium of forces and moments, respectively

ρüuu = bbb+∇∇∇ ·σσσ in DDD , and (19)

φφφ∧ρüuu = φφφ∧bbb+φφφ∧∇∇∇ ·σσσ in DDD , (20)

where bbb represents the external forces and φφφ is the position mapping. The input values of this

mapping are the Cosserat plane A coordinates of the thin body and the coordinate along the

normalized thickness. The output of the mapping is the actual current configuration. The main idea

behind plate elements is to avoid the discretization along the thickness direction by considering the

thin body assumption. Therefore the governing equations for plates are obtained after integration

of Eqs. (19) and (20) over the thickness, which results in the strong form of the Reissner-Mindlin

plates, respectively

ρ̄üuu = nnn∗α

,α + n̄nn in A , and (21)

Ipẗtt = ¯̃mmm− (nnn∗z−λEEEz)+ m̃mm∗α,α in A , (22)

where Ip is the mass inertia per unit width, ttt is the direction of the membrane plane, λ is an undefined

pressure applied along the thickness direction, and n̄nn and ¯̃mmm are respectively the resultant external

surface traction per unit length and the resultant external torque per unit length.

As previously stated, the Kirchhoff-Love plate theory is considered. Furthermore, small

deformations/rotations and plane-stress state are assumed. The Cosserat plane A of the plate can

be divided into finite elements Ae, such that A =
⋃

e Ae. Under these assumptions, the weak

form corresponding to the set of Eqs. (21-22) is obtained by multiplying the equations (21-22)

by respectively δuuu and −δuuuz,αEEEα, by integrating on the sum of the elements Ae, by adding the two

virtual energies and isolating the virtual contributions in the Cosserat plane (δuuuα) and along the

out-of-plane direction (δuuuz), by integrating by parts on each element Ae, and by applying the Gauss
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 15

theorem [54]. Omitting the external forces contributions for conciseness, this results into

∑
e

∫
Ae

ρ̄üuuαδuuuαdAe + ∑
e

∫
Ae

ñnn∗αβ
δuuuβ,αdAe = ∑

e

∫
∂Ae

ñnn∗αβ
δuuuβννναd∂Ae , (23)

∑
e

∫
Ae

ρ̄üuuzδuuuzdAe +∑
e

∫
Ae

Ipüuuz,αδuuuz,αdAe +∑
e

∫
Ae

(
−m̃mm∗αβ

δuuuz,αβ

)
dAe =

∑
e

∫
∂Ae

(
−m̃mm∗αβ

δuuuz,β

)
ννναd∂Ae , (24)

where ννν is the outward unit normal to the elements contour ∂Ae (in the Cosserat plane). In these

expressions, we have kept the boundary contribution of each element. Indeed, those terms vanish in

Eq. (23) by continuity of the kinematically admissible displacement δuuuβ, but as the gradient δuuuz,α of

the kinematically admissible displacement is not continuous across element interfaces, these terms

have to be kept in the weak form (24). After ensuring stability and symmetrization related to the

discontinuity of uuuz,α, this results in a Continuous/Discontinuous Galerkin formulation of the bending

equations similar to the ones developed in [51, 52]‡:

∑
e

∫
Ae

ρ̄üuuαδuuuαdAe + ∑
e

∫
Ae

ñnn∗αβ
δuuuβ,αdAe = 0 , (25)

∑
e

∫
Ae

ρ̄üuuzδuuuzdAe +∑
e

∫
Ae

Ipüuuz,αδuuuz,αdAe +∑
e

∫
Ae

(
−m̃mm∗αβ

δuuuz,αβ

)
dAe+

∑
s

∫
(∂IA)s

〈
m̃mm∗αβ

〉q
−δuuuz,βνννα

y
d∂Ae+

∑
s

∫
(∂IA)s

〈
C∗αβγδ

3 δεεε
∗
γδ
+C∗αβγδ

4 δκκκ
∗
γδ

〉q
−uuuz,βνννα

y
d∂Ae+

∑
s

∫
(∂IA)s

q
−δuuuz,βνννα

y
〈

βs

hs
C∗αβγδ

4

〉
q
−uuuz,γνννδ

y
d∂Ae = 0 , (26)

where (∂IA)s is an interface between two plate elements, 〈 〉 is the average operator defined from the

two values of the neighboring elements, J K is the jump operator defined from the two values of the

neighboring elements§, βs is the stabilization parameter that has to be larger than a value depending

‡Continuous as uuuz is such and discontinuous as uuuz,α is such.
§Considering two adjacent elements “+” and “-”, the average operator of a field • is defined as 〈•〉 = 1

2 (•
++•−), and

the jump operator of a field • as J•νννK = (•+−•−)ννν−, where the superscript “±” refers to the field evaluated on element

“±”.
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16 V. LUCAS ET AL.

on the polynomial approximation only, and where hs is the mesh size. In such a framework, the

problem is formulated in terms of the sole displacement field uuu of the Cosserat plane. We refer to

[51, 52, 54] for more details.

Finally, the finite element discretization is obtained using the polynomial interpolation

uuu = Nauuua , (27)

where Na is the shape function at node a and uuua are the nodal displacements of the Cosserat surface

A . The assembled mass and stiffness matrices can thus be computed resulting in the system of

equations

MMMab (θθθ)üuub +KKKab (θθθ)uuub = 0 . (28)

2.3. Response variability calculation

The third step of SFEM involves the response variability calculation. Toward this end, a Monte-

Carlo simulation is used. This method is simple and efficient: samples of the quantity of interest

are computed by solving different finite element realizations. Based on these resolutions, moments

and probability density functions of the macro-scale response can be estimated. The drawback of

Monte-Carlo simulations lies in the computational cost. If the meso-scale random field is known,

the stochastic behavior of the quantity of interest can be estimated at a much lower cost with

the perturbation technique for example, as described in [2], but this is not as accurate as MC

approaches. However, the multi-scale approach leads to an important computational cost reduction

so that Monte-Carlo simulations remain affordable.

3. SECOND ORDER HOMOGENIZATION IN THE FRAME OF PLATE ELEMENTS

In this section, the meso-scale material properties UUU (xxx,θθθ), see Eq. (18), which corresponds to the 4

resultant material tensors C∗1−C∗4 written under the matrix form, are extracted from the meso-scale

volume element BVP resolution. The meso-scale RSVE ω is almost a parallelepiped, with 5 flat

surfaces and 1 rough surface when roughness is considered, see Fig. 1(b). Each surface is referred
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 17

to as either SF , SBA, SL, SR, ST , or SBO respectively for the forward, backward, left, right, top and

bottom surfaces, the top surface being the one which might be rough. The average plane of the rough

surface defines the thickness h̄ of the RSVE.

In the first part of this section, generalities about second-order computational homogenization

are recalled. In particular, the second-order homogenization process for thin structures is described.

Afterwards, consistent boundary conditions on rough volume elements are defined. Finally, from the

homogenization process, the matrix UUU is extracted in order to contain all the information required

for the macro-scale plate elements resolution under the Kirchhoff-Love assumption, i.e. the resultant

material tensors C∗1−C∗4.

3.1. Second-order homogenization

In the context of a first-order computational homogenization, the only kinematic constraint is first

order [19]. Assuming small deformations, the symmetric macro-scale Cauchy strain tensor εεεM thus

drives the problem while uuuM is the displacement at the macro-scale. In the following, the subscript

“M” refers to a macro-scale quantity. Under the infinitesimal strain assumption, the Cauchy strain

is linked to the displacement by:

εεεM =
1
2

(
∇∇∇⊗uuuM +(∇∇∇⊗uuuM)

T
)
. (29)

Besides, the unsymmetrical strain υυυM , which possibly includes the rotation of the volume element,

is defined by

υυυM = uuuM⊗∇∇∇ . (30)

In the case of second-order homogenization, described in [40] for large deformations and in [18] for

small strains, the gradient of the deformation gradient is also introduced. It is denoted ηηηM and reads

ηηηM = uuuM⊗∇∇∇⊗∇∇∇ . (31)

In a deformation driven macro-scale procedure, the different stress components are computed

from the macro-scale deformation state characterized by υυυM and ηηηM , see Fig. 1(b). The idea behind

multi-scale computation is to link stress and strain through the resolution of a meso-scale boundary
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18 V. LUCAS ET AL.

value problem. This meso-scale BVP is described by a micro-scale displacements uuum, the subscript

“m” corresponding to a micro-scale quantity. From a second order Taylor expansion applied on the

macro-scale displacement, one can define the micro-scale displacement as

uuum = υυυM · xxx+
1
2

ηηηM : (xxx⊗ xxx)+uuu′m , (32)

where uuu′m is the micro-scale fluctuation field. The micro-scale Cauchy strain tensor is defined as the

gradient of the micro-scale displacement, with

υυυm = uuum⊗∇∇∇ = υυυM +ηηηM · xxx+uuu′m⊗∇∇∇ . (33)

Ensuring the strain scale-transition during the down-scaling process follows from

υυυM =
1
V

∫
ω

υυυmdω . (34)

This scale transition is satisfied if the following two conditions, based on the definition of the micro-

scale strain in Eq. (33), are respected:

∫
ω

xxxdω = 0 , and (35)∫
ω

uuu′m⊗∇∇∇dω = 0 . (36)

Equation (35) is always satisfied if the volume element is centered at its centroı̈d. This implies that

if Eq. (34) has to be satisfied, the boundary conditions should be defined accordingly to Eq. (36),

which using the divergence theorem can be rewritten in terms of the surface integral as

∫
∂ω

nnn⊗uuu′md∂ω = 0 , (37)

where nnn is the unit vector normal to the surface ∂ω of the volume element.

Besides down-scaling the strain tensor, the higher-order strain tensor ensures a correct constraint

of the high-order deformation modes. To define this down-scaling, Eq. (33) is first multiplied by the

position

υυυm⊗ xxx = (uuum⊗∇∇∇)⊗ xxx = υυυM⊗ xxx+ηηηM · (xxx⊗ xxx)+(uuu′m⊗∇∇∇)⊗ xxx . (38)
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A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 19

Integrating this last equation on the volume, using Eq. (35), defining the inertia JJJ = 1
V

∫
ω

xxx⊗ xxxdω,

and integrating by parts the displacement and fluctuation related terms lead to

1
V

∫
∂ω

uuum⊗nnn⊗ xxxd∂ω− 1
V

∫
ω

uuumdω⊗ III =

ηηηM · JJJ−
1
V

∫
ω

uuu′mdω⊗ III +
1
V

∫
∂ω

uuu′m⊗nnn⊗ xxxd∂ω , (39)

where III is the identity tensor. Substituting Eq. (32) in the second term of the left hand side of Eq.

(39) and using Eq. (35) result into

1
V

∫
∂ω

uuum⊗nnn⊗ xxxd∂ω− 1
2

ηηηM : JJJ⊗ III = ηηηM · JJJ+
1
V

∫
∂ω

uuu′m⊗nnn⊗ xxxd∂ω . (40)

From this equation, in order for the high-order strain down-scaling to be independent on the

fluctuation field, the following condition should be satisfied

∫
∂ω

uuu′m⊗nnn⊗ xxxd∂ω = 0 . (41)

Both micro-scale and macro-scale problems are now defined as well as the kinematic scale

transition. However, a multi-scale approach only provides a relevant solution when the transition

between the micro- and the macro-scales is energetically consistent. This consistency is achieved

by appropriate choices of the boundary conditions. Energetically consistent boundary conditions are

obtained if the Hill-Mandel condition, which states the conservation of energy variation between the

micro-scale and the macro-scale problems, is satisfied. From the micro-scale energy per unit area S

of the Cosserat plane, one can obtain¶:

1
S

∫
ω

σσσm : δυυυmdω =
1
S

∫
ω

σσσm : (δυυυM +δηηηM · xxx+δuuu′m⊗∇∇∇)dω

= nnnM : δεεεM + m̃mmM
...δηηηM +

1
S

∫
ω

σσσm : (δuuu′m⊗∇∇∇)dω , (42)

with the force and moment per unit width

nnnM =
1
S

∫
ω

σσσmdω , and (43)

m̃mmM =
1
S

∫
ω

σσσm⊗ xxx+(σσσm⊗ xxx)rc

2
dω , (44)

¶As σσσ is symmetric, σσσ : δυυυ = σσσ : δεεε = σσσi jδεεεi j .
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20 V. LUCAS ET AL.

where the superscript “rc” means right transposed, i.e. (AAArc)i jk = AAAik j, and the triple contraction

product is defined as AAA
...BBB = AAAi jkBBBi jk.

Equation (42) implies that the Hill-Mandel condition is fulfilled if

1
S

∫
ω

σσσm : (δuuu′m⊗∇∇∇)dω = 0 , (45)

or again, using the divergence theorem, if

1
S

∫
∂ω

tttm ·δuuu′md∂ω = 0 , (46)

where tttm = nnn ·σσσm and nnn is the unit outward vector normal to the surface ∂ω (the surface of the

meso-scale volume element ω, which is not equal to S the surface of the Cosserat plane).

3.2. Boundary conditions

Equation (46) defines the boundary conditions of the meso-scale BVP required to satisfy the Hill-

Mandel condition. Equations (37) and (41) ensure the correct down-scaling of the strain tensors.

Due to the rough top surface, the boundary condition on the (R)SVE must be applied carefully.

As proposed in [41], thin structures can be considered for which the plane-stress state is assumed.

The top and bottom surfaces are then stress-free with

tttm (xxx) = 000 ∀xxx ∈ ST ∪SBO, (47)

which satisfies (46) on the ST ∪SBO part of ∂ω. The conditions (37) and (41) are not constrained on

those faces, and as a result some macro-strain and higher-order macro-strain modes cannot be down-

scaled on the SVE. However, this is in agreement with the plate kinematics as it will be discussed

in Section 3.3.

The fluctuation field is constrained on the other four flat surfaces Si. Equation (37) is automatically

satisfied with Kinematic Uniform Boundary Conditions (KUBCs) –uuu′m = 0, Periodic Boundary

Conditions (PBCs) –as uuu′m are the same and the normal vectors are opposite on opposite faces,

while Eq. (41) is automatically satisfied for KUBCs and also for PBCs if Zero Average Fluctuation

Boundary Condition (ZAFBC)
∫

Si
uuu′md∂ω = 0 is enforced simultaneously on two (e.g. SF and SL) of

the four flat surfaces Si [56].
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In this paper we choose to apply Mixed Uniform Boundary Conditions (MUBCs). Although

periodic boundary conditions could also be considered, as the geometry is not periodic MUBCs are

a simpler alternative. Moreover it has been shown in [1] that the effect of the grain uncertainties

is more important than the effect of the boundary conditions. In order to apply MUBCs, on the

one hand, Kinematic Uniform Boundary Conditions (KUBCs) are considered in the plate in-plane

directions:

uuu′mx
(xxx) = uuu′my

(xxx) = 0 ∀xxx ∈ SF ∪SBA, and ∀xxx ∈ SL∪SR, (48)

where the x-direction is the direction normal to the surfaces SF and SBA, and the y-direction is the

direction normal to the surfaces SL and SR. On the other hand, Static Uniform Boundary Conditions

(SUBCs) are considered in the plate out-of-plane direction, with

tttz
m = nnnmk σσσ

kz
M ∀xxx ∈ SF ∪SBA, and ∀xxx ∈ SL∪SR. (49)

Combining Eqs. (48) and (49), as SF and SBA are opposite flat surfaces, the Hill-Mandel condition

(46) can be verified for the forward and backward surfaces part of ∂ω as

∫
SF∪SBA

ttt i
muuu′mi

d∂ω =
∫

SF∪SBA

tttz
muuu′mz

d∂ω = σσσ
kz
M

∫
SF∪SBA

nnnmk uuu
′
mz

d∂ω. (50)

This last term vanishes providing the Zero Average Fluctuation Boundary Condition (ZAFBC) has

also been enforced on the two surfaces for the z-component:

∫
SF

uuu′mz
d∂ω =

∫
SBA

uuu′mz
d∂ω = 0 . (51)

The same applies for the last two surfaces SL and SR, satisfying the Hill-Mandel condition.

For these last four side surfaces, because of Eqs. (48) and (51), Eq. (37) is also satisfied.

However, although the condition (41) is automatically satisfied for the x- and y-components of the

displacement field due to the use of KUBCs Eq. (48), we do not constraint it along the z-component

of the displacement field to reduce the number of constraints in the system. Indeed, not enforcing

this condition corresponds to the impossibility to constrain high-order deformation modes which

are not down-scaled from the Kirchhoff-Love plate kinematics as it will be discussed in Section 3.3,

and has thus no effect on the homogenization result.
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3.3. Computational homogenization and extraction of the resultant material tensor UUU

In the context of the meso-scale BVP resolution, the tangent matrix of the second-order multi-

scale process can be extracted by condensing the micro-scale stiffness matrix using the boundary

condition constraints, as detailed in [55, 56]. In case of linear elasticity, this tangent matrix

corresponds to the homogenized material operators, yielding

nnnM = C1 : υυυM +C2
...ηηηM , (52)

m̃mmM = C3 : υυυM +C4
...ηηηM , (53)

where C1, C2, C3, and C4 are respectively a fourth order tensor, two fifth order tensors, and one

sixth order tensor.

However, in the context of plates at the macro-scale, the relevant material tensors are the resultant

material tensors C∗1, C∗2, C∗3, and C∗4 defined in Eqs. (16-17), or in the matrix form, the resultant

tensor UUU defined in Eq. (18). We thus need to extract the resultant tensors from the homogenized

tensors C1, C2, C3, and C4. To this end, the kinematic constraints and the homogenized properties

resulting from the meso-scale BVP resolution, see Fig. 1(b), can be written in terms of their

components.

The homogenized symmetric first-order stress tensor has 6 independent components and is

expressed as:

nnnM = ñnn∗αβEEEα⊗EEEβ + q̃qq∗α (EEEα⊗EEEz +EEEz⊗EEEα)+ ñnnzzEEEz⊗EEEz , (54)

where ñnnzz = 0 is naturally enforced during the meso-scale BVP resolution as the top and bottom

surfaces are stress-free surfaces, see Section 3.2. The homogenized second-order stress tensor

has 18 independent components. Considering the symmetric 2× 2 matrix m̃mm∗αβ, the component

m̃mmskewxy =−m̃mmskewyx related to the lack of major symmetry in m̃mmM , the 2×2 symmetric matrix ppp1αβ,

the 2-component vectors ppp2α and ppp3α, and the component m̃mmzz, the homogenized second-order stress
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tensor reads

m̃mmM =
(

m̃mm∗αβ + m̃mmskewαβ

)(
EEEα⊗EEEβ⊗EEEz +EEEα⊗EEEz⊗EEEβ

)
+ ppp1αβ (

EEEz⊗EEEα⊗EEEβ

)
+ ppp2α

(EEEz⊗EEEz⊗EEEα +EEEz⊗EEEα⊗EEEz)+ ppp3α
(EEEα⊗EEEz⊗EEEz)+

m̃mmzzEEEz⊗EEEz⊗EEEz + ˆ̃mmmM, (55)

where ˆ̃mmmM represents the contribution of the 6 remaining independent components along EEEα ⊗

EEEβ⊗EEEγ. Owing to the plane-stress state, m̃mmzz = 0 is naturally enforced during the meso-scale BVP

resolution. Similarly ppp1xy
= ppp1yx

= 0, and ppp2α
= 0 are also verified because of the plane-stress state.

The symmetric first-order kinematic constraint εεεM possesses 6 independent components and can

be written as

εεεM = εεε
∗
αβ

EEEα⊗EEEβ + γγγ
∗
α
(EEEα⊗EEEz +EEEz⊗EEEα)+ εεε

∗
zzEEEz⊗EEEz, (56)

where εεε∗
αβ

is a 2×2 symmetric matrix defining the membrane deformation. In this expression, the

out-of-plane strain εεε∗zz is an unknown not necessarily defined in the macro-scale plate problem, and

is not down-scaled during the multi-scale process as its value results from the plane-stress state. The

second-order kinematic constraint is written as:

ηηηM =
(

κκκ
∗
αβ

+κκκ
skew
αβ

)(
EEEα⊗EEEβ⊗EEEz +EEEα⊗EEEz⊗EEEβ

)
+bbb1

αβ

(
EEEz⊗EEEα⊗EEEβ

)
+ bbb2

α (EEEz⊗EEEz⊗EEEα +EEEz⊗EEEα⊗EEEz)+bbb3
α (EEEα⊗EEEz⊗EEEz)+

bbbzzEEEz⊗EEEz⊗EEEz + η̂ηηM, (57)

where κκκ∗
αβ

is a 2×2 symmetric matrix containing the bending curvatures so that κκκ∗
αβ

=
ηηηM αβz+ηηηM βαz

2 ,

κκκskew
xy =−κκκskew

yx is the skewness, bbb1
αβ is a 2×2 symmetric matrix, bbb2

α and bbb3
α are 2-component vectors,

bbbzz is a scalar, and where η̂ηηM represents the contribution of the 6 remaining independent components

along EEEα⊗EEEβ⊗EEEγ. In the frame of plate elements, the higher-order strain components bbb1
xy = bbb1

yx,

bbb2
α, and bbbzz are four components that are not down-scaled from the macro-scale as their values result

from the plane-stress state.
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Five equations linking the homogenized stresses (ñnnzz = 0, ppp1xy
= ppp1yx

= 0, ppp2α
= 0, and m̃mmzz = 0‖)

to the kinematic constraints can thus be directly removed from the system (52-53) as five kinematic

constraints (εεε∗zz, bbb1
xy = bbb1

yx, bbb2
α, and bbbzz) result from the boundary conditions constraining the plane-

stress state.

Moreover, as the plate elements at the macro-scale follow the Kirchhoff-Love assumption and

as this hypothesis is not applied on the RSVE itself during the computational homogenization, the

contribution of some stresses is explicitly enforced to zero to recover the behavior associated to

this assumption. Therefore the remaining system of 19 equations linking 19 homogenized stress

components to 19 kinematic constraints components can be reduced. The out-of-plane shear q̃qq∗ α

is enforced to be zero. Similarly, the influence of the out-of-plane shear on the higher-order stress,

obtained through ppp1αα (no sum on α meant), ppp3α, and through the skew-symmetric matrix m̃mmskew xy,

are enforced to zero. As the elements of ˆ̃mmmM cannot be up-scaled to the plate problem, they are

also enforced to zero. We thus gather those stress contributions to be enforced to zero in the 13-

component vector (no sum on α meant)

ψψψ0 =
[
qqq∗α, m̃mmskewxy, ppp1αα

, ppp3α
, ˆ̃mmmM

αβγ
]
. (58)

The corresponding strain components, which are not down-scaled from the macro-scale plate model,

are gathered in the 13-component vector (no sum on α meant)

χχχu =
[
γγγ
∗
α
,κκκskew

xy ,bbb1
αα,bbb

3
α, η̂ηηM αβγ

]
. (59)

Once the plane-stress state and the Kirchhoff-Love assumption being considered, the remaining

stresses are the resultant (symmetric) membrane stress ñnn∗ and the resultant (symmetric) bending

stress m̃mm∗. These symmetric matrices can be written in terms of the 6-component vector

ψψψ
?
σ
=
[
ñnn∗ αβ, m̃mm∗ αβ

]
. (60)

‖For ease of implementation, the RSVE centroı̈d is defined as the center of the parallelepiped defined using the average

plane of the rough-surface and is thus not exactly the RSVE centroı̈d, so these terms are several orders of magnitude

lower than the other ones but not strictly zero as Eq. (35) is not exactly satisfied.
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Similarly, the relevant 6 independent strains are the elements of the (symmetric) membrane strains

εεε∗ and the (symmetric) curvatures κκκ∗, which can be written in terms of the 6-component vector

χχχ
?
ε
=
[
εεε
∗
αβ
,κκκ∗

αβ

]
. (61)

Therefore, the linear system (52-53) is reorganized into the system

ψψψ?
σ

ψψψ0

=

Cεε Cεu

Cuε Cuu


χχχ?

ε

χχχu

 , (62)

where the Cik elements are matrices obtained from the different tangents Ci. As ψψψ0 = 000 is enforced,

this system reduces to

ψψψ
?
σ
=
(
Cεε +CεuC−1

uu Cuε

)
χχχ
?
ε
. (63)

Finally, the resultant material tensor UUU , the 6× 6 matrix already introduced in Section 2.1 and

defined by Eq. (18), is retrieved as the linear operator between ψψψ?
σ

and χχχ?
ε
:

UUU (xxx,θθθ) =
(
Cεε +CεuC−1

uu Cuε

)
. (64)

3.4. Verification

In order to verify the homogenization process we consider a homogeneous parallelepiped volume

element of size 0.5×0.4×0.1 µm3 with uniform material properties of Young’s modulus E = 160

GPa and Poisson coefficient ν = 0.28. The Kirchhoff-Love plate theory predicts the following

material tensors

C∗1
αβγδ =

Eh
1−ν2

[
νδ

αβ
δ

γδ +
1−ν

2

(
δ

αγ
δ

βδ +δ
αδ

δ
βγ

)]
, and (65)

C∗4
αβγδ =

Eh3

12(1−ν2)

[
νδ

αβ
δ

γδ +
1−ν

2

(
δ

αγ
δ

βδ +δ
αδ

δ
βγ

)]
. (66)

The results obtained with the homogenization process (64) are compared to the analytical

predictions (65-66) in Table I. An excellent agreement (error below 0.005%) is observed between

the two methods.
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Table I. Verification of the homogenization process on a homogeneous meso-scale volume element

Analytical, Eqs. (65-66) Homogenization, Eq. (64)

C∗1
(1111) =UUU (11) [GPa ·µm] 17.361111 17.361111

C∗1
(1122) =UUU (12) [GPa ·µm] 4.861111 4.861111

C∗1
(1212) =UUU (33) [GPa ·µm] 6.25 6.25

C∗4
(1111) =UUU (44) [GPa ·µm3] 0.0144676 0.0144683

C∗4
(1122) =UUU (45) [GPa ·µm3] 0.00405092 0.00404984

C∗4
(1212) =UUU (66) [GPa ·µm3] 0.00520833 0.00520833

4. STOCHASTIC MODEL FOR THE MESO-SCALE MATERIAL AND GEOMETRICAL

PROPERTIES

As discussed in Section 2.1, two correlated random fields are required as input for the macro-

scale plate SFEM: the resultant material properties matrix UUU(xxx, θθθ) : A ×ΩΩΩ → MMM+s
N (R) and the

mass per membrane surface unit area ρ̄(xxx, θθθ) : A ×ΩΩΩ → R+. Although building a stochastic

model to generate these correlated fields is not compulsory, this simplifies the macro-scale

computation. Indeed, without a stochastic model, a (R)SVE must be generated and solved with the

computational homogenization process at each integration point of the macro-scale SFEM, which

is computationally expensive. Solving the macro-scale SFEM having recourse to a stochastic model

is a two-step process. The first one involves the computation of enough (R)SVEs to capture its

stochastic behavior, including the spatial correlation, and the construction of a stochastic model

using those realizations. The second step is the macro-scale SFEM resolutions: for each realization

of the macro-scale problem, the stochastic model is called to generate the meso-scale properties of

interest (the random fields) at each integration point, and the macro-scale finite element model can

then be solved directly. This section deals with the definition of an appropriate stochastic model.
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4.1. The lower bound definition

As emphasized in [57], a relevant stochastic model of a positive-definite matrix is obtained when

the existence of the expectation of the norm of the inverse of the matrix of interest can be proven:

E

[(
sup
xxx∈A

∥∥∥(UUU(xxx,θθθ))−1
∥∥∥)2

]
= c2 <+∞ , (67)

where “sup” is the supremum and c is a finite positive constant. As shown in [50] or [1, Appendix

A], the introduction of a lower bound guarantees the respect of this property. Therefore, to ensure

an appropriate generation of UUU , a lower bound is defined and enforced.

In this paper, the lower bound is based on the available samples of UUU , as was already done in [58]

for the generation of elasticity tensors, and is thus defined by

UUUL = λLIII6 , (68)

where λL is λL = ελmin, with ε a tolerance parameter arbitrarily fixed to 0.95 and λmin the smallest

eigenvalue of all the computed samples of UUU , and where IIIN is the identity matrix of size N×N.

Similarly, the mass matrix should be strictly positive as it has to be inverted in a eigen frequency

analysis. Therefore we define

ρ̄L = ερ̄min , (69)

where ρ̄min is the smallest mass per unit area of all the computed samples.

4.2. The Gaussian random field generator

A similar approach as the one developed in [1] is considered in this paper in order to generate

bounded symmetric material tensors UUU . However, in the current context, this is not the only property

that must be generated: the mass density per membrane unit area ρ̄, which should remain strictly

positive, is also required and is correlated to UUU .

First, a semi-positive definite symmetric increment ∆UUU is defined such that

UUU =UUUL +∆UUU , (70)
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is always a symmetric positive definite matrix, bounded by UUUL. To generate such a semi-positive-

definite matrix, one can use the Cholesky decomposition as described in [57], which reads

∆UUU = LLLLLLT . (71)

In this equation, the matrix LLL is a lower triangular matrix and the superscript “T ” refers to the

transposed matrix. The matrix LLL is made of 21 independent entries, which form a random vector

field.

The lower bound of the mass densities per membrane unit area ρ̄ is enforced by defining

ρ̄ = ρ̄L +∆ρ̄ , (72)

where ∆ρ̄ has to be enforced to be positive.

In this work a vector field aaa of 22 elements is considered: the 21 elements of LLL as well as the

logarithmic mapping aaa(22) = log(∆ρ̄), which enforces the positive nature of ∆ρ̄. Let āaa = E [aaa],

σaaa =

√
E
[
(aaa−E [aaa])2

]
and aaa′ be respectively the mean or expectation, the standard deviation, and

the normalized fluctuation of the elements of aaa so that the random vector field reads

aaa(r) = āaa(r)+aaa′(r)σaaa(r) , (73)

where aaa(r) denotes the rth entry in aaa. The zero-mean fluctuations aaa′(r) are normalized with their

standard deviation in order to be able to generate values for the different entries of aaa which are

different by several orders of magnitude.

This random field aaa′(xxx,θθθ) can be generated using the spectral representation method [46] by

following the different steps detailed in [1, Appendix C]:

(i) The symmetric material tensors UUU and mass densities per membrane unit area ρ̄ of SVE

realizations are obtained using the framework described in Section 3.3. The different SVEs

are extracted from several larger micro-structure models and, in each of such a micro-structure

model, the centers of the different SVEs are separated by a vector τττ, following a moving-

window technique [43], as illustrated in 2D in Fig. 3 and as it will be illustrated for the

particular case of RSVEs in Section 5.2.3.
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Ex 
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SVE (x, y) SVE (x+l, y) 

SVE (x, y+l) SVE (x+l, y+l) 

Figure 3. 2D illustration of the moving-window technique on a distance l to extract SVEs whose centers are

separated by the vector τττ

(ii) The random vector field entries aaa′(r), r = 1, ..., 22, are computed for each SVE realization

using successively Eqs. (70-73).

(iii) The discrete spatial auto- and cross-correlations are computed using their definition, with for

the couple of entries r, s = 1, ..., 22

RRR(rs)
aaa′ (τττ) = E

[
aaa′(r)(000) aaa′(s)(τττ)

]
. (74)

This spatial correlation RRRaaa′(τττ) is only computed for a limited spatial distance. Larger fields

can be generated by considering a zero-padding as soon as the spatial correlation reaches zero.

(iv) From the evaluation of RRR(rs)
aaa′ (τττ), its corresponding spectral density SSS(rs)

aaa′ (kkk), where kkk is defined

in the frequency domain, is computed using the Fourier transforms.

(v) From the spectral density SSSaaa′(kkk), a Gaussian random field can be generated according to:

aaa′(r) (xxx,θθθ) =
√

2444Re

[
22

∑
s=1

NNN−III

∑
mmm=000

HHH(rs)
aaa′ (kkkmmm)ηηηs,kkkmmm

e2πi(xxx·kkkmmm+θθθs,kkkmmm )

]
(75)

where SSSaaa′ = HHHaaa′HHH?
aaa′ , with HHH?

aaa′ the conjugate transpose of HHHaaa′ , 444 is a parameter depending

on the increment of kkk in the frequency domain, mmm is a multi-dimensional index covering the

frequency space, ηηηs,kkkmmm
=
√
− logψψψs,kkkmmm

, and θθθs,kkkmmm , ψψψs,kkkmmm
are uniformly distributed independent

random variables defined for each variable s and each frequency kkkmmm. Details can be found in

[1].
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(vi) Although Eq. (75) can be directly used to generate a random field evaluated at any position

xxx of interest, for large fields this can involve a computational burden, which can be avoided

with the help of the Fast Fourier Transforms. Equation (75) is first solved with FFTs on a

predefined spatial grid. The field values aaa′(r) (xxx,θθθ) at any spatial position xxx are then retrieved

by recourse to an interpolation procedure.

4.3. Non-Gaussian extension

Equation (75) produces, once converged, zero-mean normalized Gaussian aaa′(r) values whose

correlation functions follow Eq. (74). When the targeted distribution of aaa′(r) are far from being

Gaussian, it may be relevant to consider a non-Gaussian mapping to improve the generated marginal

probability distribution while loosing some accuracy in the spectral density and thus in the spatial

correlation and cross-correlation.

The Non-Gaussian generation process that is followed in this work is described in [47, 48, 49]. It

involves the following steps:

(i) First, from the targeted spectral density SSSTarget, Gaussian samples are obtained using the

process described in Section 4.2. These Gaussian samples are then mapped to the sought

non-Gaussian distribution thanks to their cumulative distribution function.

(ii) From these samples, the generated spectral density SSSGenerated is computed. If the latter is

different from the targeted spectral density, an iterative procedure is used to have a closer

match between the two spectral densities. A new density, SSSiteration, is updated and used at

each iteration to produce Gaussian variables that are mapped once again to the non-Gaussian

distribution of interest. The corresponding spectral density SSSGenerated can then be updated.

(iii) This process will be repeated until SSSTarget ≈ SSSGenerated at a given tolerance.

Details on this iterative process, with convergence improvements as compared to the literature, can

be found in [37].

The properties of interest are then obtained by following the reverse path of Eqs. (70-73). The

bounded symmetric material tensors UUU are retrieved at each position xxx from the generated random
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field according to

UUU (xxx,θθθ) =UUUL +LLL(āaa+aaa′ (xxx,θθθ)σaaa)LLL(āaa+aaa′ (xxx,θθθ)σaaa)
T
, (76)

and the mass density per membrane unit area ρ̄, is retrieved at each position xxx according to

ρ̄(xxx,θθθ) = ρ̄L + e(āaa(22)+aaa′(22)(xxx,θθθ)σ
aaa(22)) . (77)

5. APPLICATION TO MEMS POLY-SILICON THIN STRUCTURES

The procedure described in the previous sections is now applied on MEMS thin structures. First

of all, the manufacture process of the poly-silicon thin structures and the performed experimental

measurements are briefly explained in Section 5.1. The (R)SVEs are generated based on these

experimental measurements in Section 5.2. Then, the stochastic behavior of the meso-scale (R)SVEs

homogenized properties is investigated in Section 5.3. In Section 5.4, a stochastic model is

constructed and the generated random fields are compared to the computed micro-scale stochastic

behavior. The probabilistic behavior of the MEMS thin structures is then predicted in Section 5.5

by using the plate SFEM, with as input the generated random fields. Finally the computation costs

related to the different steps are detailed in Section 5.6.

5.1. Poly-silicon processing

5.1.1. Low Pressure Vapor Chemical Deposition process The thin structures are made of poly-

silicon, one of the most common material present in MEMS using Low Pressure Chemical Vapor

Deposition (LPCVD) technique. From the < 100 > orientation silicon wafer of p-type, a silicon

dioxide layer was grew by thermal technique at 1000 ◦C. Columnar polycrystalline silicon was

thus deposited on this silicon dioxide layer. The micro structure, such as grain orientation and size,

varies with the deposition temperature and time. Samples obtained for the successive temperatures

of 580 ◦C, 610 ◦C, 630 ◦C, and 650 ◦C, were manufactured at pressure of 0.267 mbar and with a

Silane flow of respectively 15, 15, 20, and 25 sccm. The thickness of the samples is about 2 µm,
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1 m 

(a) 580 ◦C

 

1 m 

(b) 610 ◦C

 

1 m 

(c) 630 ◦C

 

1 m 

(d) 650 ◦C

Figure 4. Cross-section SEM images for different temperatures of the fabrication process

respectively 1.82 µm, 1.98 µm, 2.31 µm, and 2.09 µm for the four temperatures, as illustrated in the

cross-section views in Fig. 4.

5.1.2. Measurements The measurements are the starting point for the definition of the (R)SVEs.

Three types of measurements are available for the poly-silicon layers obtained at the different

deposition temperatures.

(i) Scanning Electron Microscope (SEM) images for the grain size analyses;

(ii) X-Ray Diffraction (XRD) measurements for the grain orientation distribution analyses;
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(iii) Atomic-force microscopy (AFM) measurements for the top surface roughness (the bottom

surface roughness being of several orders lower).

First, top views of the films obtained from SEM images are shown for the different deposition

temperatures in Fig. 5, i.e. for temperatures of 580 ◦C, 610 ◦C, 630 ◦C, and 650 ◦C. Processing the

images allows obtaining the grain size distributions for the different temperature cases. The average

grain diameters, for the different temperatures of the fabrication process, are reported in Table II,

where it can be seen that the grain size strongly depends on the temperature of the fabrication

process.

1 𝝁m

(a) 580 ◦C

1 𝝁m

(b) 610 ◦C

𝟏 𝝁m

(c) 630 ◦C

𝟏 𝝁m

(d) 650 ◦C

Figure 5. SEM images (top view) for the different temperatures of the fabrication process

The XRD results are reported in Fig. 6 for the different deposition temperatures. From the XRD

measurements, the crystallinity is always higher than 97.48%. Therefore no amorphous phase is
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Table II. Average grain diameter for the different temperatures of the fabrication process

Deposition temperature [◦C] 580 610 630 650

Average grain diameter [µm] 0.21 0.447 0.7195 0.83

considered in this work. The XRD-measurements also provide information about the relative weight

fraction for the different orientations.

With high quality data, we can determine how much of each phase is present. The ratio of peak

intensity I varies linearly as a function of weight fractions for any two phases in a mixture. Here the

two phases refer to poly-silicon grains with two different orientations (α and β) towards the surface

of the measured sample. Assuming that their weight fractions are Xα and Xβ, respectively, we have

Iα

Iβ

=
I0
α(I/Icor)βXα

I0
β
(I/Icor)αXβ

, (78)

where

I
Icor

=
Intensity of sample’ s 100% peak

Intensity of Corundum’ s 100% peak
, (79)

and where I0
∗ is the reference relative intensity. For silicon we have

I
Icor

= 4.7 and I(111) = 100% , (80)

and the reference relative intensities (I0
∗ = I∗/I(111) according to powder XRD measurements) are

reported in Table III. Applying these formula on the XRD measurements reported in Fig. 6 yields

Table III. Reference relative intensity with respect to the direction < 111 > for silicon [59]

Orientation < 111 > < 220 > < 311 > < 400 > < 331 > < 422 >

I0
∗ [%] 100 55 30 6 11 12

the results in terms of weight fractions, with a crystallinity of 100% considered, as reported in Table

IV.

The influence of the XRD-based orientation on the Young’s modulus distribution for a single

crystal is investigated in Fig. 7, in which two different cases are considered: in Fig. 7(a), the
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Figure 6. XRD measurements for different temperatures of the fabrication process. The intensity of each

peak, associated to one orientation, is given in counts per seconds. The relative intensity of the peaks

provides, through a linear relationship, the relative weight fraction for the different orientations.

grain orientation is uniformly distributed and in Fig. 7(b) the grain orientation is based on the

XRD-measurements for poly-silicon deposited at 610 ◦C as reported in Table IV. Compared to

the preferred orientation case, the uniform distribution gives a more uniform modulus distribution,

although there is an increase in density around 170GPa and a small decrease around 180 GPa. When

the preferred orientation defined from the XRD measurements is taken into account, the histogram

is drastically different. Although the whole spectrum is spanned (from 130 GPa to 188 GPa), very

few samples are obtained in some regions and most of the samples are obtained either in a close
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Table IV. Percentage of the different grain orientations based on XRD measurements for the different

temperatures of the fabrication process

Deposition temperature [◦C] 580 610 630 650

< 111 > 12.57 19.96 12.88 11.72

< 220 > 7.19 13.67 7.96 7.59

< 311 > 42.83 28.83 39.08 38.47

< 400 > 4.28 5.54 3.13 3.93

< 331 > 17.97 18.14 21.32 20.45

< 422 > 15.15 13.86 15.63 17.84

130 140 150 160 170 180
Young’s modulus [GPa]

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
ro
b
a
b
il
it
y
d
e
n
si
ty

(a) Uniform distribution

130 140 150 160 170 180
Young’s modulus [GPa]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro
b
a
b
il
it
y
d
e
n
si
ty

(b) Preferred orientation

Figure 7. Young’s modulus for a silicon crystal whose orientation is (a) uniformly distributed, (b)

preferentially distributed following Table IV at 610 ◦C

vicinity of ≈ 150 GPa or above ≈ 162 GPa. In terms of statistical moments, the means of the

Young’s modulus are respectively 159 GPa and 161.09 GPa for the uniform distribution and the

preferred orientation cases. The standard deviations are respectively 15.76 GPa and 12.98 GPa for

the uniform distribution and the preferred orientation cases. Although the two PDFs are drastically

different, the first and second moments of their statistical behavior are similar.

The AFM measurements reported in Fig. 8(a) correspond to the sample processed with the

deposition temperature of 610 ◦C. Five sets of AFM measurements are available; each with

1024× 1024 sampling points of the surface height and with a spatial step along both x and y
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(b) Generated surface

Figure 8. Sample of rough surfaces obtained with (a) AFM measurements on the poly-silicon deposited at

610 ◦C, and (b) the surface generator

directions of 4.883 µm. The height distribution shows a standard deviation of 60.3 nm for the

deposition temperature of 610 ◦C, see Table V.

Table V. Standard deviation of the asperities height from AFM images and for the different temperatures of

the fabrication process

Deposition temperature [◦C] 580 610 630 650

Standard deviation of the asperities height [nm] 35.6 60.3 90.7 88.3

5.2. Generation of rough stochastic volume elements based on experimental measurements

Two sources of uncertainties are considered on the meso-scale volume elements: on the one hand

the material uncertainties such as the grain size and orientation distributions, and on the other hand

the geometrical uncertainties resulting from the surface roughness.

The effect of the material uncertainties assuming a uniform orientation distribution was already

studied in [1]. Results with a preferred orientation of grains based on XRD measurements are now

considered: based on the measurements, some orientations are defined to be more likely than others.

The effect of the preferred orientation on the results at both the meso-scale and macro-scale is

discussed in the following sections. As it was shown in the previous subsection, the temperature

considered during the deposition process has an effect on the micro-scale structure uncertainties.
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In order to illustrate how the developed 3-scale stochastic method can be used to propagated the

uncertainties, we consider, as an example, the case of poly-silicon deposited at 610 ◦C. Moreover,

although the experimental measurements were obtained for a poly-silicon thickness of 2 µm, in

order to study the effect of the roughness for different MEMS thicknesses, we will consider that the

measures remain valid for other thicknesses∗∗

The second source of uncertainty, the roughness, is also considered in this section. As the grain

distribution and the asperities are correlated, as shown in [38], both AFM and SEM measurements

are used to generate samples of the RSVE structures. Indeed, as the asperities are normally formed

on the top grains, the valleys of the surface topology thus being located at grain boundaries, both

grain generation and roughness generation should be closely linked. This can be achieved in two

ways: (i) either the grains are generated first and the surface is defined with respect to the grains,

or (ii) the surface is generated first and the grains are defined with respect to the surface. With

the former procedure, the grain centers define the position of the asperities but a lot of degrees of

freedom still needs to be fixed (valley depth, peak high, ...) while respecting the surface properties

(mean plane, RMS value, ...). The latter procedure is much easier to implement as follows. Once a

correlation structure for the surface is defined (based on AFM measurements, grain size...), samples

of the surface can be generated. The tips of the asperities for each surface can be detected and

their positions used as seeds of a Voronoı̈ tessellation to define the grains. The different steps of the

meso-scale volume element generation, for both rough and flat SVEs, are discussed in the following

sections.

5.2.1. Asperities detection The first step of the RSVE generation is to define an asperities detection

process from the AFM images. In other words, from a surface sample obtained from AFM

∗∗Measurements actually performed on 1 µm-thick poly-silicon films confirm that the main driving parameter is the

deposition temperature. The main difference lies in the roughness. For example at a deposition temperature of 610 ◦C,

the standard deviation of the height distribution decreases from 60.3 nm to 54.3 nm when the poly-silicon film thickness

decreases from 2 to 1 µm, while for a deposition temperature of 580 ◦C, the standard deviation of the height distribution

is around 35 nm.
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measurements, the position of the local maxima must be found. The procedure defined in this work

is a very simple one which requires smooth surfaces to provide relevant results. Each sample point of

the surface of interest is analyzed. A point is considered to be the tip of one asperity if the following

two conditions are respected simultaneously:

(i) It is the maximum value over its neighbors located in a square of diagonal length L1
lim

(ii) There is no other asperity nearby located in a square of diagonal length L2
lim

To illustrate the process, we consider the AFM measurements reported in Fig. 8(a), which

correspond to the deposition temperature of 610 ◦C. The values of L1
lim and L2

lim are chosen to be

0.6 µm, as for the given smooth surfaces analyzed, these values provide relevant asperities. Applying

the simple asperity detection method on these AFM measurements gives us an estimate of the grain

size as each asperity is assimilated to one grain and as the area of each grain is π
( d

2

)2
, d being the

grain size. A computed grain size of ≈ 0.57 µm is obtained. There is a scatter between this value

and the grain size ≈ 0.447 µm computed with the help of the SEM images, see Table II. The grain

size resulting from the SEM images of 0.447 µm is thus enforced when generating the RSVEs in

the following sections.

5.2.2. Covariance structure of the rough surfaces To generate the rough stochastic volume

elements, the first thing that is created is their top rough surface. This is achieved using the

spectral methods [45] with which a scalar value h′, the variation between the mean thickness and

the local thickness, is generated over a 2D space. This process requires a 2D spatial covariance

function R̄h′(τττ) of h′, where τττ is the in-plane spatial vector between two points of interest. From

the correlation function Rh′(τττ) =
R̄h′ (τττ)

σ2
h′

and the standard deviation σh′ , h′ is generated as a stationary

Gaussian random field using the theory reported in Section 4.2, but for a single variable h′.

As smooth surfaces must be considered for the asperity detection process, a Gaussian covariance

function is assumed with

R̄h′(τ) = σ
2
h′ exp

− τ2π

l2
h′ , (81)
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where τ is the norm of the vector τττ. This Gaussian covariance structure has two degrees of

freedom: the standard deviation σh′ and the correlation length lh′ . The former value corresponds

to the measured standard deviation obtained from the surface topology AFM measurements, and is

evaluated as σh′ = 60.3 nm.

The correlation length remains to be defined as it drives the distance between the asperities of the

random field, thus enforcing the grain size. The grain size is a parameter of prime importance, not

only concerning the roughness but also concerning the material property. The bigger the grain size,

the higher the uncertainties at the meso-scale, as it was shown in [1] ††. The correlation length lh′ is

computed so that the generated RSVEs possess an average grain size similar to the estimation of the

SEM images, i.e. an average grain size of 0.447 µm for a deposition temperature of 610◦C. This is

achieved by defining an optimization procedure. From a first guess of the correlation length, surfaces

can be generated and the corresponding grain size can be estimated. The correlation length is

updated until the appropriate grain size is obtained. After computation, a value of lh′√
π
= 0.03125 µm

was obtained.

The resulting Gaussian covariance is depicted in Fig. 9(a), and is compared to the data computed

from the AFM measurements in Fig. 9(b). As one can see in the picture, the experimental results

do not converge for long distance as there were not enough sampling points. This justifies the

use of a Gaussian correlation instead of the direct use of the AFM measurements. Let us note

that keeping a spacing δx of 4.883nm, which is the spacing of the AFM measurements, is

computationally expensive when volume elements of sizes around 1.0 µm must be generated. The

Gaussian correlation assumption allows us to choose the spatial spacing and therefore a larger

spacing of 10−2 µm is used.

Once the covariance structure is known, samples of the rough surfaces can be generated, and a

sample of the surface is illustrated in Fig. 8(b).

††In [1], meso-scale uncertainties for different SVE sizes with a constant grain size was actually studied. Similar

reasoning can however be obtained with a constant SVE size and different grain sizes

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)

Prepared using nmeauth.cls DOI: 10.1002/nme



A STOCHASTIC SECOND-ORDER COMPUTATIONAL MULTI-SCALE APPROACH 41

τ
x [µm

]

0.0

0.5

1.0
τy [µm]0.0

0.5
1.0

C
o
v
a
r
ia
n
c
e
o
f
h
′
[µ
m

2
]

0.001

0.002

0.003

(a) Gaussian covariance

τ
x [µm

]

0.0

0.5

1.0
τy [µm

]
0.0

0.5
1.0 C

o
v
a
r
ia
n
c
e
o
f
h
′
[µ
m

2
]

0.000

0.001

0.002

0.003

(b) Covariance from AFM measurements

Figure 9. The covariance R̄h′(τ) of the surface height: (a) Gaussian covariance; and (b) from AFM

measurements

5.2.3. From the asperities to the RSVE meshes Owing to the correlation between the rough surface

and the grain structure, the Voronoı̈ tessellation is generated based on the asperities information,

with the seeds of the tessellation corresponding to the asperities of the surface. The Voronoı̈

tessellation and its seeds, which correspond to the surface sample of Fig. 8(b), are depicted in

Fig. 10(a). A columnar finite element mesh can then be extruded with the help of gmsh [60], and

the position of each vertex of the mesh is then modified so that the top surface matches the rough

surface illustrated in Fig. 8(b), leading to the finite element mesh reported in Fig. 10(b). At this

point the polycrystalline material with its correlated roughness is then defined. As required for

the computation of the homogenized material operators of the (R)SVEs, the desired output must

be computed at different x and y locations of the micro-structure reported in Fig. 10(b), so that the

spatial correlation can be captured using the moving-window technique detailed in [1] and illustrated

in Fig. 3. A set of RSVEs is then extracted from the micro-structure using the moving-window

technique following the schematics reported in Figs. 10(c)-10(d).

5.3. Stochastic homogenized meso-scale properties

Using the (R)SVEs generated in the previous Section 5.2, stochastic homogenized properties can

be computed thanks to the homogenization process described in Section 3. Thus the probabilistic
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Figure 10. Generation of the RSVEs using the moving window-technique: (a) one sample of large Voronoı̈

tessellation-based micro-structure, (b) the extruded finite element mesh of the large Voronoı̈ tessellation, (c)

one moving-window of the tessellation, and (d) the corresponding RSVE finite element mesh

material behavior at the meso-scale can be extracted from the (R)SVEs information, and because

of the use of the moving-window technique the spatial correlation is captured as well. In terms

of (R)SVE shape, only square-shaped (R)SVEs are generated. The (R)SVE length ranges between

0.5 µm to 1.5 µm and the thickness between 0.5 µm to 2 µm. Although the poly-silicon film statistical

properties (grain size, roughness) can change with the deposition thickness, in order to separate

and compare the different effects (material, surface roughness, and the MEMS thickness), we will

assume identical statistical properties for the different MEMS thicknesses∗∗.
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The effects of different sources of uncertainties are investigated in this section. The name of the

different uncertainty cases respects the following notation:

(i) The first letter, ’F’ or ’R’, refers to flat –i.e. without profile uncertainties– or rough SVEs;

1. Then the type of material is given, ’Si’ refering to the anisotropic silicon and ’Iso’ to a pseudo

isotropic material;

(ii) Finally, two cases of grain orientation are considered: either uniform orientation distribution

(subscript ’uni’) or prefered XRD-based orientation (subscript ’pref’).

The different cases are thus denoted by

(i) Case F−Siuni: Flat SVEs made of silicon with a uniform grain orientation distribution;

(ii) Case F−Sipref: Flat SVEs made of silicon whose grain orientation distribution is based on

the XRD measurements;

(iii) Case R− Iso: RSVEs made of a pseudo isotropic material (160GPa);

(iv) Case R−Siuni: RSVEs made of silicon with a uniform grain orientation distribution;

(v) Case R−Sipref: RSVEs made of silicon whose grain orientation distribution is based on the

XRD measurements.

5.3.1. Effect of the preferred grain orientation The influence of the orientation is studied in Fig.

11, where the distribution of the homogenized meso-scale Young’s modulus Ex, the Young’s

modulus along the x direction, is reported for 0.5×0.5×0.5 µm3 flat SVEs‡‡. 122 and 116 Voronoı̈

tessellations were constructed respectively for the uniform grain orientation distribution and for the

preferred grain orientation distribution, and 100 SVEs were extracted in each Voronoı̈ tessellation

following the moving-window technique. The average number of grains per SVE is ≈ 5.4. In

terms of statistical moments, the means of the Young’s modulus are respectively 161.87GPa and

162.09GPa for the uniform orientation distribution and for the preferred orientation distribution,

while their standard deviations are respectively 9.45GPa and 8.01GPa. Compared to the single

‡‡As we are considering the homogenized Young’s modulus of flat SVEs, a first-order homogenization with Orthogonal

Uniform Mixed Boundary Conditions, as detailed in [1], was considered in this Section 5.3.1
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crystal case, see Fig. 7, the mean remains similar but the variance decreases after homogenization

as expected. As it was already observed for the single crystal cases, the variance of Ex decreases

when the preferred orientation distribution is considered, although the PDFs are much more similar,

and closer to a Gaussian distribution, than for the single crystal case.
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Figure 11. Distribution of the meso-scale Young ’s modulus along the x-direction with and without preferred

grain orientation for 0.5×0.5×0.5 µm3 SVEs

5.3.2. Effect of the surface topology The effects of the roughness on the meso-scale mass per

membrane unit area ρ̄ and on the meso-scale material tensor UUU are now investigated. As in this

paper the quantity of interest at the macro-scale is the beam resonance frequency, the element UUU (44)

of the meso-scale material tensor is the main focus as it links the bending stress and to the curvature.

At first, the probability density function of the mass per unit area ρ̄ is illustrated in Fig. 12 where

65500 RSVEs samples of size 0.5×0.5×0.5 µm3 were considered.
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Figure 12. Distribution of the meso-scale mass per unit area ρ̄ for 0.5×0.5×0.5 µm3 RSVEs
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Figure 13. Distributions of the meso-scale UUU (44) for different uncertainty cases with 0.5× 0.5× 0.5 µm3

(R)SVEs

The distribution of UUU (44) is illustrated in Fig. 13 for a (R)SVE of size 0.5× 0.5× 0.5 µm3. In

the case of RSVEs, the thickness size is actually the mean thickness h̄ of the Voronoı̈ tessellation.

The different SVE cases are compared and it can be seen that the roughness is the main source of

uncertainty. Indeed, while when considering the rough SVEs the PDFs are similar for the uniform

grain orientation distribution and for the preferred grain orientation distribution, they are drastically

different to the one obtained with flat SVEs. The statistical moments for the different cases are

reported in Table VI. Finally, one can note that the distributions are not Gaussian thus showing the

need for non-Gaussian stochastic models.
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Figure 14. Distributions of the meso-scale fields (a) UUU (11) and (b) UUU (33) obtained for the particular R−Sipref

case with RSVEs of dimension 0.5×0.5×0.5 µm3
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Besides the bending properties, for completness the distribution of UUU (11), which links the in-

plane tension stress ñnnxx and strain υυυxx can be seen in Fig. 14(a) for the particular R− Sipref case.

Moreover the distribution of UUU (33), characterizing the response of the (R)SVEs to in-plane shearing,

is illustrated in Fig. 14(b).
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Figure 15. Distributions of the meso-scale UUU (44) for different uncertainty cases with 0.5× 0.5× 2 µm3

(R)SVEs

However the importance of the roughness on the uncertainties tends to decrease when we consider

thicker SVEs. Indeed, it can be seen in Figs. 15(a) and 15(b), in which the RSVEs mean thickness is

h̄ = 2 µm, that the material uncertainty resulting from the effect of the grain orientation distribution

becomes comparable to the roughness effect.

5.3.3. Effect of the RSVE length The effect of the RSVE length on the meso-scale field UUU (44)

is illustrated in Fig. 16. Square-shaped RSVEs of successive lengths 0.5, 1.0, and 1.5 µm are

considered.

The computed PDFs of UUU (44) are shown in Fig. 16(a) for a 0.5 µm-thick RSVE, and the computed

mean E[UUU (44)] and standard deviation σUUU (44) are reported in Table VII. As expected, uncertainties

decrease with the RSVE sizes. This can also be seen in Fig. 16(b) where the coefficient of variation

of UUU (44), COVUUU (44) =
σ

UUU(44)

E[UUU (44)]
×100%, is shown for different RSVE sizes and thicknesses.

5.3.4. Spatial correlation Owing to the moving-window technique used when extracting the

RSVEs from the large Voronoı̈ tesselations [1], the in-plane spatial (auto)-correlation RUUU (44)(τττ) of
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Table VI. Statistical moments of UUU (44) for the different meso-scale uncertainties cases. NVoronoı̈ corresponds

to the number of Voronoı̈ tessellations generated. Nwindow corresponds to the number of windows considered

for each Voronoı̈ tessellation to generate the 0.5×0.5×0.5 µm3 (R)SVEs.

Cases E[UUU (44)] [GPa ·µm3] σUUU (44) [GPa ·µm3] NVoronoı̈ Nwindow

F−Siuni 1.77 0.092 149 100

F−Sipref 1.78 0.068 162 100

R− Iso 1.74 0.306 136 100

R−Siuni 1.71 0.312 201 100

R−Sipref 1.70 0.306 258 100
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Figure 16. Distributions of the meso-scale UUU (44) for different RSVE sizes and for the particular R−Sipref

case: (a) PDFs for RSVEs of lengths 0.5, 1.0, and 1.5 µm and of thickness 0.5 µm; and (b) coefficient of

variations for different RSVEs lengths and thicknesses

UUU (44) is directly available following

R•(τττ) =
E [(•(000)−E [•]) (•(τττ)−E [•])]

σ2
•

, (82)

where τττ is the in-plane vector separating two RSVE centers of a Voronoı̈ tesselation, see Fig. 3,

• is the field of interest, and σ• is the standard deviation. The 2D in-plane spatial correlation

is illustrated in Fig. 17(a) for a RSVE length of 0.5 µm, a RSVE mean thickness h̄ = 0.5 µm,

and for the particular R−Sipref case. Ten windows per direction (and per Voronoı̈ tesselation) are
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Table VII. Statistical moments of UUU (44) for the different RSVE lengths, for a RSVE thickness of 0.5 µm,

and for the particular R−Sipref case. NVoronoı̈ corresponds to the number of Voronoı̈ tessellations generated.

Nwindow corresponds to the number of windows considered for each Voronoı̈ tessellation.

lRSVE [µm] E[UUU (44)] [GPa ·µm3] σUUU (44) [GPa ·µm3] NVoronoı̈ Nwindow

0.5 1.70 0.312 258 100

1.0 1.67 0.165 202 36

1.5 1.65 0.114 191 25

considered, with a spacing along both x and y directions of 0.125 µm. The spatial correlation along

the x-direction is illustrated in Fig. 17(b) for different RSVE lengths. These figures show that the

correlation becomes close to zero for RSVE distances getting close to the RSVE length, as the

windows are not overlapping each other anymore and thus share a reduced amount of grains.

The computed correlation lengths lUUU (44) , with

l• =
∫

∞

−∞
R•(τττ)dτττ

R•(000)
, (83)

are reported in Table VIII.
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0.5 1.0 1.5 2.0
τx [µm]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
o
r
r
e
la
ti
o
n

lRSVE = 0.5µm

lRSVE = 1µm

lRSVE = 1.5µm

(b) 1D-spatial correlation for different RSVE sizes

Figure 17. The spatial correlation of UUU (44) for the particular R− Sipref case: (a) 2D-spatial correlation for

RSVEs of size 0.5× 0.5× 0.5 µm3; and (b) spatial correlation along the x-direction for different RSVE

lengths and for a RSVE thickness of 0.5 µm
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Table VIII. Correlation length lUUU (44) of UUU (44) for different RSVE lengths for the particular R−Sipref case and

for a RSVE thickness of 0.5 µm

lRSVE [µm] Correlation length lUUU (44) [µm]

0.5 0.59

1.0 1.09

1.5 1.55

Finally, the cross-correlation between two fields • and ? is also available using the moving-

window technique, with

R?
•(τττ) =

E [(•(000)−E [•]) (?(τττ)−E [?])]

σ•σ?
. (84)

The cross-correlations between different elements of the tangent UUU and ρ̄ are shown in Fig. 18 for

a separation τττ = 000. In particular it can be seen that the meso-scale mass per unit area is strongly

correlated to the entry of the meso-scale material tensor corresponding to the bending behavior as

Rρ̄

UUU (44) is higher than 0.8.
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Figure 18. Cross-correlation between different elements of UUU and ρ̄ for RSVEs of size 0.5×0.5×0.5 µm3

and for the particular R−Sipref case

5.4. The random field generator

The random field generator described in Section 4 is now applied to generate correlated fields for UUU

and ρ̄ based on the meso-scale properties previously computed in Section 5.3.
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At first, the zero-mean and unit variance variables aaa′, which are actually considered by the

stochastic model, are looked upon. The third and fourth order statistical moments, respectively

γ1• =
E[(•−E[•])3]

σ3
•

and β2• =
E[(•−E[•])4]

σ4
•

, of the those variables obtained from the (R)SVE resolutions

are also studied and are found to be not always close to Gaussianity. For example, for RSVE

dimensions of 0.5× 0.5× 0.5 µm3 and for the particular R - Siuni case, out of the 22 variables,

the furthest skewness from Gaussianity is −1.172, corresponding to the entry aaa′(8) (a Gaussian

variable being symmetric, its skewness is 0), and the furthest Kurtosis from Gaussianity is 5.104,

also corresponding to the entry aaa(8) (a Gaussian variable possessing a Kurtosis of 3). The distribution

of aaa′(8), obtained from the RSVE homogenization process, obtained using the Gaussian spectral

generator, and obtained using the non-Gaussian mapping, can be seen in Fig. 19. The Gaussian

spectral generator does not converge towards the micro-samples distribution, due to the higher

moments of the distribution. This motivates the recourse to the non-Gaussian generator, as described

in Section 4, whose results depicted in Fig. 19 are closer in terms of probability distribution to the

micro-samples distribution than the Gaussian distribution. Indeed the skewness of the non-Gaussian

generated mapping aaa′(8) is γ1aaa′(8) = −1.197 and its Kurtosis is β2aaa′(8) = 5.205, in good agreement

with the original inputs of the random field generator.
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Figure 19. Computed and generated values of aaa′(8) for RSVE dimensions of 0.5×0.5×0.5 µm3 and for the

particular R - Siuni case (Continuous curve: distribution obtained from the RSVE homogenization process;

Dashed curve: normalized Gaussian distribution; Squares: non-Gaussian mapping)

The accuracy of the non-Gaussian generator is now assessed by comparing the generated values of

interest UUU and ρ̄ to the ones resulting from the RSVEs homogenization process. RSVE dimensions
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Table IX. Mean values of the PDFs obtained from the micro-samples and from the generated random fields

(non-Gaussian) for RSVE dimensions of 0.5×0.5×0.5 µm3 and for the particular R - Sipref case

Micro-Samples NG-Generator

E
[
UUU (11)

]
[GPa ·µm] 81.41 81.38

E
[
UUU (12)

]
[GPa ·µm] 16.85 16.84

E
[
UUU (33)

]
[GPa ·µm] 31.02 30.97

E
[
UUU (44)

]
[GPa ·µm3] 1.70 1.69

E
[
UUU (53)

]
[GPa ·µm2] −0.025 −0.026

E [ρ̄] [g/µm2] 1.163510−12 1.162410−12

Table X. Standard deviation values of the PDFs obtained from the micro-samples and from the generated

random fields (non-Gaussian) for RSVE dimensions of 0.5×0.5×0.5 µm3 and for the particular R - Sipref

case

Micro-Samples NG-Generator

σUUU (11) [GPa ·µm] 6.18 5.92

σUUU (12) [GPa ·µm] 2.86 2.68

σUUU (33) [GPa ·µm] 2.83 2.66

σUUU (44) [GPa ·µm3] 0.31 0.29

σUUU (53) [GPa ·µm2] 0.12 0.12

σρ̄ [g/µm2] 7.1610−14 6.8110−14

of 0.5×0.5×0.5 µm3 and the particular R - Sipref case are considered. The probability distribution

functions obtained directly from the RSVEs homogenization are compared to the non-Gaussian

generated fields in Fig. 20 for different entries of UUU and ρ̄. The generated field distributions are

in good agreement with the distributions directly obtained from the micro-samples, although the

spectral density of entries UUU obtained from the non-Gaussian generator slightly differs from the

original ones, as UUU results from several entries of aaa′ which is the originally treated value. However
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Table XI. Skewness values of the PDFs obtained from the micro-samples and from the generated random

fields (non-Gaussian) for RSVE dimensions of 0.5×0.5×0.5 µm3 and for the particular R - Sipref case

Micro-Samples NG-Generator

γ1UUU (11) 0.042 0.046

γ1UUU (12) −0.27 −0.24

γ1UUU (33) 0.05 0.11

γ1UUU (44) 0.73 0.62

γ1UUU (53) 0.015 −0.002

γ1ρ̄
0.032 0.046

Table XII. Kurtosis values of the PDFs obtained from the micro-samples and from the generated random

fields (non-Gaussian) with (R)SVE dimensions of 0.5×0.5×0.5 µm3 for RSVE dimensions of 0.5×0.5×

0.5 µm3 and for the particular R - Sipref case

Micro-Samples NG-Generator

β2UUU (11) 2.97 2.97

β2UUU (12) 3.08 3.07

β2UUU (33) 2.83 2.91

β2UUU (44) 3.80 3.55

β2UUU (53) 3.86 3.73

β2ρ̄
2.97 2.92

the accuracy of the non-Gaussian generator is confirmed by comparing the mean, standard deviation,

skewness, and kurtosis, of the distributions obtained from the micro-samples and the non-Gaussian

(NG) generator, which are respectively reported in Tables IX, X, XI, and XII.

The last properties whose accuracy has to be assessed are the spatial correlation and cross-

correlation for UUU and ρ̄. The 2D in-plane (auto)-correlation of UUU (44) resulting from the random field

generated by the stochastic model is compared to the spatial distribution obtained after performing
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Figure 20. Comparison of different computed and generated meso-scale PDFs obtained for RSVE

dimensions of 0.5×0.5×0.5 µm3 and for the particular R - Sipref case
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Figure 21. Comparison of the 2D spatial (auto-)correlations of UUU (44) obtained from the RSVE

homogenization and from the generator (non-Gaussian mapping) for RSVE dimensions of 0.5× 0.5×

0.5 µm3 and for the particular R - Sipref case
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Figure 22. Comparison of the 1D spatial (auto-)correlations of (a) UUU (44) and (b) UUU (11) obtained from

the RSVE homogenization and from the generator (non-Gaussian mapping) for RSVE dimensions of

0.5×0.5×0.5 µm3 and for the particular R - Sipref case
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Figure 23. Comparison of the cross-correlations between different elements of UUU and ρ̄ obtained from

the RSVE homogenization and from the generator (non-Gaussian mapping) for RSVE dimensions of

0.5×0.5×0.5 µm3 and for the particular R - Sipref case

the homogeneization process on the RSVEs in Fig. 21. Similarly, the 1D spatial correlation along

the RSVE length for UUU (44) and UUU (11), obtained from the micro-samples and from the random field

generator, are respectively illustrated in Figs. 22(a) and 22(b). It appears that the spatial auto-

correlation is reproduced with accuracy by the generator. Finally, the cross-correlations resulting

from the homogenization process and from the generated random field for different entries of UUU

and ρ̄ are compared in Fig. 23. Although some differences can be seen in the cross-correlation, the

accuracy remains satisfying to generate results at the macro-scale.
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Figure 24. A sample of the generated field UUU (44) for RSVE dimensions of 0.5× 0.5× 0.5 µm3 and for the

particular R−Siprev case

As a way of illustration, one realization of the random field entry UUU (44) can be seen in Fig. 24.

5.5. Macro-scale SFEM

Using the random fields generated in Section 5.4, macro-scale stochastic plate finite elements as

defined in Section 2 are used on the basis of a Monte-Carlo procedure. At each spatial position xxx,

the spectral generator defined in Section 4 and illustrated in Section 5.4 is used to obtain realizations

of the resultant meso-scale material tensor U (xxx,θθθ) and of the meso-scale mass per membrane unit

area ρ̄(xxx,θθθ). The spectral generator is based on the micro-samples obtained using the second-

order computational homogenization process described in Section 3 and performed on the (R)SVEs

generated from the measurements as discussed in Section 5.2.

5.5.1. The problem definition The spatial positions xxx of interest are defined based on the macro-

scale mesh of the plate. Such a mesh, made of quadrangle plate elements, is depicted in Fig. 25 along

with the corresponding integration points. Because of the use of the Continuous/Discontinuous

Galerkin method, interface elements, with their integration points, are also required to integrate

the interface contributions. The ghost elements, located outside the plate, are required to model the

clamping of the plate, by enforcing weakly a zero out-of-plane displacement derivative. Bi-quadratic

shape functions are considered for plate elements and quadratic shape functions are considered at

the interfaces to enforce weakly the continuity of the out-of-plane displacement derivative.
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Figure 25. One macro-scale mesh with the corresponding integration points for a plate of dimension

8×3 µm2
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Figure 26. The boundary effect and its avoidance

A generated random field is thus evaluated at the different positions of the Gauss Integration

Points (IP) in order to define the SFEM problem. However care must be taken of two aspects:
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(i) When generating the random field, one approximation results from the bi-linear interpolation

used to retrieve the values at a desired xxx position (positions of the integration points defined

by the macro-scale SFEM) from the values generated at a priori xxx′ position obtained using

the FFT approach (regular spacing).

(ii) A boundary effect exists when an integration point is located at the vicinity of the boundary of

the plate: the heterogeneities number can then be overestimated as the centered (R)SVE has

part of his domain outside of the macro-scale mesh as illustrated in Fig. 26. To circumvent

this issue, the associated (R)SVE center is moved inward the plate to capture the right amount

of heterogeneities as described in Fig. 26. Other discretization methods of the random fields

such as the local average one could also be applied.
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Figure 27. COV for different mesh sizes and RSVE lengths of the first mode frequency for a 16×2×0.5 µm3

rectangular plate considering RSVE dimensions of 0.5×0.5×0.5 µm3 and the R - Sipref case

As it was numerically verified by direct numerical simulations with a discretization of the micro-

structure of MEMS resonator in [1], the stochastic multi-scale approach provides relevant results if

the maximum distance lmax
IP between the Integration Gauss Points (IP) of the macro-scale mesh is

smaller than the correlation length lUUU ρ̄ (83) of the meso-scale random fields, which in turn depends

on the (R)SVE size. The ratio αi is thus defined, along the direction i, as:

αi =
lUUU ρ̄i

lmax
IP i

. (85)

If the ratio αi is smaller than 1, the uncertainty effects are overestimated as not enough

heterogeneities are considered per integration point. Relevant results can only be obtained if αi > 1
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for each direction i. As the problem is herein mainly governed by UUU (44), we define αi > 1 using the

correlation length lUUU (44) .

The convergence of the method with respect to αx is shown in Fig. 27, for a 16× 2× 0.5 µm3

rectangular plate, and for the R−Sipref case. The three different RSVE sizes studied at the meso-

scale in Section 5.3 are considered: 0.5, 1.0, and 1.5 µm. Furthermore, different macro-scale mesh

discretizations are considered. As the main direction of interest for this case of application is the

plate length, the number of mesh elements along the x-direction is not constant, but the the mesh

size along the y-direction does not change accordingly. The corresponding αy parameters for each

SVE size, 0.5, 1.0, and 1.5 µm, are respectively 2.3, 4.25, and 6.04, except for the two finest meshes

of the 0.5 µm SVEs for which we have added a last finite element along the y-direction. As it can

be seen on Fig. 27, the results converge toward a COV of about 1.5% for αx > 1. The difference

of convergence point between the curves results, on the one hand from the constant and different

values of αy, which cannot evolve with αx because of mesh discretization constraints, and on the

other hand from the boundary effect correction.
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Figure 28. Convergence of the first mode frequency distribution for a 8× 3× 0.5 µm3 rectangular plate

considering RSVE dimensions of 0.5×0.5×0.5 µm3 and the R−Sipref case

Once the macro-scale plate finite element problem has been defined, in order to conduct the

probabilistic study, the number of realizations that has to solved should be defined. As the Monte

Carlo simulation method is considered, for each macro-scale plate finite element realization, one

random field is generated. Because of the existence of the random field generator and because of
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the reduced cost of the plate finite element model, the Monte Carlo simulation method is actually

an efficient tool. To define the number of realizations, the convergence of the distribution of the

first bending mode frequency f1 is studied in Fig. 28 for a 8× 3× 0.5 µm3 rectangular plate. The

uncertainty case involved is the R−Sipref case, and the RSVE dimensions are 0.5×0.5×0.5 µm3.

The results have converged for 2000 samples, which is the number of realizations that will be

considered in this section.
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Figure 29. The distribution of the resonance frequency of (a and b) 8×3×0.5 µm3 plates, and of (c and d)

8×3×2 µm3 plates for the different uncertainty cases

5.5.2. The macro-scale effect of the different sources of uncertainties The method is now used to

study the effect of the different uncertainty cases, described in Section 5.3, on the plate behavior.

In particular the first resonance frequency of 8× 3 µm2 rectangular plates subjected to different

cases of uncertainty is studied for two different thicknesses of 0.5 µm and 2 µm. The RSVE length
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is 0.5 µm. For the 2 µm-thick plates, the Kirchhoff-Love assumption induces a bias in the average

eigen frequency. However we consider this case as it allows comparing the effect of the roughness

on the uncertainties for different thicknesses under the same modeling assumption.

The estimated probability density functions are depicted in Fig. 29 for the average plate

thicknesses of h̄ = 0.5 µm and h̄ = 2 µm. The corresponding mean and standard deviation are given

in Table XIII. In agreement with the results provided in Section 5.3, Table XIII and Fig. 29 show

that the main source of uncertainty changes with the thickness of the plate. For a 0.5 µm-thick plate,

the main source of uncertainty is due to the roughness, while for 2 µm-thick plate, the two sources

of uncertainty (material and roughness) become of comparable effects.

Table XIII. Statistical moments of the first resonance frequency of 8× 3 µm2 rectangular plates for the

different meso-scale uncertainties cases

Cases
h̄ = 0.5 µm h̄ = 2µm

E[ f1] [MHz] σσσ f1 [MHz] E[ f1] [MHz] σσσ f1 [MHz]

F−Siuni 10.67 0.060 42.15 0.215

F−Sipref 10.70 0.045 42.26 0.162

R− Iso 10.46 0.181 42.06 0.187

R−Siuni 10.43 0.199 41.91 0.278

R−Sipref 10.41 0.194 41.94 0.236

5.5.3. The effect of the plate dimensions The effect of the plate dimension is studied for the

R− Sipref uncertainty case and for 0.5 µm-long RSVEs in Fig. 30. Results obtained for different

plate thicknesses are shown in Fig. 30(a). As expected, uncertainties decrease with the increase

of the thickness of the plate as the roughness effect becomes less important. Changing the width

has a large impact on the uncertainty as shown in Fig. 30(b): the larger the plate, the lower the

uncertainties as the heterogeneities have less effects. Finally, results obtained for different lengths

of the plate are shown in Fig. 30(c), where it can be seen that the uncertainty of the resonance
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Figure 30. The effect of the plate dimensions on the first resonance frequency distribution for the R−Sipref

case (a) for a 16 µm-long, 3 µm-wide plate and for different thicknesses, (b) for a 16 µm-long, 0.5 µm-thick

plate and for different widths, and (c) for a 3 µm-wide, 0.5 µm-thick plate and for different lengths

frequency decreases with the length of the plate. However, considering a more realistic anchor of

the MEMS than a perfect clamp, as done in [37], could change this conclusion.

Finally, the first two statistical moments obtained for different plate dimensions are gathered in

Table XIV.

5.6. Computational efficiency

With the developed stochastic multi-scale model, the computation cost is divided in several stages:

(i) The generation of the meshes of the RSVEs (including the generation of the rough surface),

defined by given in-plane dimensions, one thickness, and one deposition temperature, and

extracted using the moving-window technique, see Section 5.2, requires a computation time
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Table XIV. Statistical moments of the plate first resonance frequency for the different plate dimensions for

the R−Sipref case

Membrane geometry
E[ f1] [MHz]

h̄ = 0.5 µm h̄ = 1 µm h̄ = 2 µm

8×3 µm2 10.41 20.98 41.94

8×6 µm2 10.46 21.06 42.11

16×3 µm2 2.58 5.22 10.50

16×6 µm2 2.59 5.24 10.54

Membrane geometry
σ f1 [MHz]

h̄ = 0.5 µm h̄ = 1 µm h̄ = 2 µm

8×3 µm2 0.194 0.205 0.236

8×6 µm2 0.134 0.139 0.166

16×3 µm2 0.0338 0.0357 0.0438

16×6 µm2 0.0239 0.0252 0.0297

of a few minutes for 100 0.5×0.5×0.5 µm3-RSVEs extracted from one tessellation, using a

Python environment on a 2.1 GHz CPU;

(ii) The second-order computational homogenization of a 0.5× 0.5× 0.5 µm3-RSVE requires

about 30 s, using a C++ environment on a 2.1 GHz CPU, so the computational time requires

to perform 100 (windows per tessellation) homogenization resolutions, see Section 5.3, is

about 1 hour. Note that about two hundreds tessellations are required to define the meso-scale

random fields, but the computation related to the 200 tessellations, steps (i) and (ii), can be

performed on several processors in a straightforward way as the tessellations are independent

from each other.

(iii) The definition of the non-Gaussian stochastic model from the 200 (tessellations) times 100

(RSVEs per tessellation) homogenized properties, see Section 5.4, requires about 10 minutes
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per iteration, using a Python environment on a 2.1 GHz CPU. For the 0.5× 0.5× 0.5 µm3-

RSVEs, about 10 iterations are required, leading to a couple of hours of computation time.

(iv) The resolution of the macro-scale SFEM, see Section 5.5, requires a few seconds to generate

one meso-scale random field using the non-Gaussian stochastic model and about 15 seconds

to solve a 8× 3 µm2 rectangular plate, using a Python environment on a 2.1 GHz CPU.

Although a few hundreds to a few thousands plate samples are required to compute a macro-

scale property distribution, this step can also by parallelized in a efficient way on several

processors as the plate samples are independent from each other. For comparison purpose, the

direct resolution of a 3D finite element model with an explicit discretization of the grains and

of the surface roughness requires several hours (for one sample), in a C++ environment on a

2.1 GHz CPU. Moreover it bears emphasis that for a given thickness and a given deposition

temperature, the steps (i)-(iii) do not have to be recomputed for different plate geometries as

the stochastic model can be reused directly. The computational time is thus reduced to the

resolution of the different plate finite element discretization samples, step (iv).

6. CONCLUSIONS

Defining the probability density function of macro-scale properties of interest when considering

micro-scale uncertainties is a challenging task as direct simulations of the fully modeled problem

in the frame of a Monte-Carlo analysis remain a computational burden. The recourse to a stochastic

multi-scale approach drastically reduces the computational time of such an analysis, and makes it

possible.

Toward this end we have developed a stochastic multi-scale approach in the context of

polycrystalline thin MEMS.

Rough stochastic volume elements (RSVEs) are first built from XRD, SEM, and AFM

experimental measurement on poly-silicon structures.

The uncertainties due to roughness, along with the uncertainties from grains distribution and

orientation, are then first propagated up to the meso-scale by using a second-order computational
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homogenization process performed on the RSVEs. Owing to the gradient-enhanced second-order

computational homogenization, the bending behavior of the generated volume elements can be

extracted at the meso-scale. The RSVEs are defined from XRD, SEM, and AFM experimental

measurement on poly-silicon structures.

The extracted stochastic behavior of the meso-scale properties is then modeled by building a

random field generator. This stochastic model is built using the spectral method combined to a non-

Gaussian mapping, while the positive definite nature of the material properties is ensured by the

introduction of an adequate lower bound.

Meso-scale random fields are then generated as material inputs for plate stochastic finite elements

which allows studying in a probabilistic way the effects of the different sources of uncertainty and

of the MEMS dimensions on the vibration behavior.

A. POSITIVE-DEFINITENESS AND SYMMETRY OF UUU

A.1. Symmetry

The matrix UUU can be written as:

UUU (i j) =
∂ψψψ

?(i)
σplate

∂χχχ
?( j)
ε

. (86)

The stress vector ψψψ?
σplate

can be obtained from the plate energy:

ψψψ
?(i)
σ =

∂W

∂χχχ
?(i)
ε

. (87)

Using Eq. (87) into (86) gives:

UUU (i j) =
∂W

∂χχχ
?(i)
ε ∂χχχ

?( j)
ε

, (88)

thus ensuring the symmetry of UUU .

A.2. Positive-definiteness

The positive-definiteness of UUU can be proven based on the plate energy once again. The plate energy,

which is strictly positive, is defined as:

W =
1
2

ψψψ
?T
σplate

χχχ
?
ε
=

1
2

χχχ
?T
ε

UUUχχχ
?
ε
, (89)
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thus ensuring the positive-definiteness of UUU .
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