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Abstract We present Jovian auroral observations from the 2014 January Hubble Space Telescope
(HST) campaign and investigate the auroral signatures of radial transport in the magnetosphere alongside
contemporaneous radio and Hisaki EUV data. HST FUV auroral observations on day 11 show, for the first
time, a significantly superrotating polar spot poleward of the main emission on the dawnside. The spot
transitions from the polar to main emission region in the presence of a locally broad, bright dawnside main
emission feature and two large equatorward emission features. Such a configuration of the main emission
region is also unreported to date. We interpret the signatures as part of a sequence of inward radial
transport processes. Hot plasma inflows from tail reconnection are thought to flow planetward and could
generate the superrotating spot. The main emission feature could be the result of flow shears from prior
hot inflows. Equatorward emissions are observed. These are evidence of hot plasma injections in the
inner magnetosphere. The images are thought to be part of a prolonged period of reconnection. Radio
emissions measured by Wind suggest that hectometric (HOM) and non-Io decametric (DAM) signatures are
associated with the sequence of auroral signatures, which implies a global magnetospheric disturbance.
The reconnection and injection interval can continue for several hours.

1. Introduction

Iogenic plasma generated in the inner magnetosphere is transported radially outward through a quasi
steady state process to the outer magnetosphere where it is lost down the magnetotail. At Earth, auro-
ral features have been shown to be a manifestation of magnetospheric transport processes. Therefore, it
is reasonable to assume that also Jupiter’s far ultraviolet (FUV) aurora provides a global view of events
occurring through the Jovian magnetosphere. Auroral features are measured in system III (𝜆III), a jovi-
centric longitude-latitude grid which corotates with the planet with a period of 9.925 h, as defined
in Dessler [1983].

In the middle magnetosphere (15–40 RJ), the angular speed of Iogenic plasma falls as it is centrifugally
driven outward. A field-aligned current system that closes through radial currents in the equator is responsi-
ble for transferring angular momentum in order to maintain partial corotation. The upward current produces
Jupiter’s auroral main emission [Hill, 2001; Cowley and Bunce, 2001]. Its primary variability corresponds to
changes in mass loading and mass outflow rate in the middle magnetospheric “corotation breakdown region”
[Nichols, 2011; Ray et al., 2012].

In the outer magnetosphere (>40 RJ), the magnetic field is stretched to the point of collapse and field recon-
nection [Vasyliunas, 1983]. Reconnection results in planetward flows of very hot, tenuous plasma and tailward
flows as Iogenic plasma is ejected from the system [Kronberg et al., 2005; Vogt et al., 2010]. Small auroral spots,
known as polar spots, have been detected poleward of the main oval on the dawnside and on the nightside.
They are associated with the planetward flow of dipolarized magnetic field lines following reconnection in
the magnetotail [Grodent et al., 2004; Radioti et al., 2008, 2010, 2011; Ge et al., 2010]. The spots are reported
to corotate, and their size is typically a few degrees in longitude and a degree in latitude in the ionosphere
[Radioti et al., 2008].
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In the inner magnetosphere (<15 RJ), the process of interchange occurs as regions of hot, tenuous plasma
are encountered by outflowing cold, dense Iogenic plasma. The tenuous and dense plasma interchange posi-
tion in order to conserve magnetic flux. Narrow interchange fingers have been detected in the vicinity of Io
[Kivelson et al., 1997; Thorne et al., 1997]. Injections of hot plasma have been detected at 9–27 RJ radial distance,
extending up to ∼1 RJ in azimuth [Mauk et al., 1999, 2002]. The auroral signatures of hot plasma injections
have also been detected as diffuse patches of aurora at the corresponding latitudes equatorward of the main
auroral oval [Mauk et al., 2002; Dumont et al., 2014]. The auroral features can be driven either by scattering of
electrons into the loss cone or by field-aligned currents associated with pressure gradients within and at the
boundaries of the hot plasma. These injections play a role in conserving magnetic flux; Dumont et al. [2014]
estimated that they can account for at least 18 % of the inward flux required to balance the Iogenic outflow.

Wave-particle interactions in the region 10–17 RJ are thought to scatter electrons into a field-aligned dis-
tribution, leading to a transition region at these distances where the electron pitch-angle distribution (PAD)
changes and to a secondary auroral oval sometimes visible at lower latitudes than the main oval [Grodent
et al., 2003; A. Tomás et al., 2004; A. T. Tomás et al., 2004; Radioti et al., 2009].

The most equatorward auroral features are the moon footprints [Bonfond, 2012]. Because of their known
radial position in the magnetosphere, they are used to validate mapping along magnetic field lines between
magnetospheric source regions and the ionospheric auroral signatures.

Finally, poleward auroral signatures have been linked to solar wind interaction at the dayside magnetopause
[Pallier and Prangé, 2001; Gladstone et al., 2002; Vogt et al., 2011].

Considering how the outer and inner magnetospheric processes are linked, studies of Saturn’s magneto-
spheric dynamics have revealed the presence of a plasmapause at the boundary of the nightside internally
driven reconnection inflow and dense inner magnetospheric plasma [Thomsen et al., 2015]. Evidence of inter-
change across the sharp boundary was detected in both hot, planetward plasma and cool, tailward plasma.
Mitchell et al. [2015] have also suggested that inward flows from reconnection could trigger interchange pro-
cesses in the inner magnetosphere. A similar boundary could be present in Jupiter’s magnetosphere at the
outer edge of the dense, cold plasma torus. However, while reconnection and therefore its inflows in the outer
magnetosphere are expected to occur preferentially on the dawnside [Vogt et al., 2010, 2014], statistical stud-
ies of the inner magnetospheric injections and their auroral signatures show no local time preference [Mauk
et al., 1999; Dumont et al., 2014].

The 2014 Hubble Space Telescope (HST) campaign has been studied previously. We take into account the
relevant work in our study. Kimura et al. [2015] have suggested that transient brightening events during the
observational interval are driven by internal processes, not externally by the solar wind. Yoneda et al. [2015]
have shown that there was no increase in sodium nebula brightness, indicating that Io was not significantly
volcanically active before the campaign. S and O emissions in the inner Io torus are observed to be steady over
the observation interval [Tsuchiya et al., 2015]. It is therefore unlikely that the transient brightening is due to
increased Iogenic outflow. This study further investigates the brightening event on day 11.

In this paper, we present auroral observations of a superrotating polar spot transition from the polar to main
emission region in the presence of a broad, bright main emission feature and two large equatorward emis-
sion features. The magnetospheric processes that cause these auroras occur at different radial distances. We
therefore investigate the signatures as part of a sequence of inward radial transport processes.

2. Overview of Observations and Data Reduction

The Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) with the SrF2 filter was used
to capture “time tag” images of Jupiter’s FUV northern aurora between days of year 1 to 16 of 2014. These
emissions mainly consist of H Lyman alpha and H2 Lyman and Werner bands. The band pass of the SrF2 filter is
1250–1900 Å, i.e., it rejects light at shorter wavelengths including the H Lyman alpha line at 1215 Å. There is on
average one HST “visit” per day, with exceptions of day 11 and day 13 having two and three visits, respectively.
Each ∼45 min long visit consists of two sequences of 700 s time tag imaging sequences interrupted by a 200 s
spectral observation. The imaging observations are split into seven images with 100 s exposures.

The images were processed through the Boston University pipeline [Nichols et al., 2009; Clarke et al., 2009],
correcting for dark current, flat field, and geometric distortion. The counts were converted to kiloRayleighs
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emitted from H2 over the wavelength range 700–1800 Å, assuming a color ratio of 2.5 [Gustin et al., 2012].
The images were projected onto a planetocentric longitude-latitude grid assuming a peak auroral emission
height of 240 km above the 1 bar pressure level of an oblate spheroid [Vasavada et al., 1999]. The resolution
of the projected image is 0.25∘ × 0.25 ∘. Further details about data reduction and projection accuracy can be
found in Nichols et al. [2009] and Grodent et al. [2003], respectively.

3. Results
3.1. Auroral Features
Figure 1 shows six 100 s exposure images taken on 11 January 2014. The images are clipped at ∼2∘ below
the planetary limb to avoid analysis where there are significant inaccuracies due to the oblique viewpoint
[Grodent et al., 2003]; the field of view is bounded by the dashed white line. The main emission boundary
(shown in Figure 1f ) is defined as a strip that is 1∘ poleward and 2∘ equatorward of the average main emission
for the 2014 HST campaign. Given the variable main emission morphology through the campaign, the strip
sometimes cuts off the extreme edges. The polar region is defined as poleward of the main emission and the
equatorward region is equatorward of the main emission, up to ∼1.5∘ poleward of the Io footprint [Hess et al.,
2011]. A video showing all the images from day 11 is included in the supporting information.

In the first sequence of the first visit (00:31–00:41 UT, Figure 1a), three features are highlighted; feature B
is a section of the main emission and C and D are both large equatorward emission features. In the second
sequence of the first visit (01:01–01:11 UT, Figures 1b–1e), feature A is a polar spot. This is circled in Figure 1b.
The images, which are shown fixed in SIII longitude with 𝜆III=180 ∘ at the bottom, indicate that the polar spot
is superrotating, i.e., moving faster than the features that are fixed in 𝜆III.

The spot center (the brightest central point of the 200 kR contour) moves ∼ 8∘ (∼8000 km) in the ionosphere
over the 10 min sequence, corresponding to ∼270% corotation speed (including both azimuthal and radial
motion, where 100% corresponds to corotation). The spot is up to 4∘ wide in longitude and 1∘ in latitude
and brightens to an average of ∼300 kR. It is separated from the campaign average main emission position
initially by 3.8∘ and moves equatorward to a separation of 2∘ latitude over the 10 min sequence. The spot
extends between 200 and 211∘ longitude over all images. The spot appears on the dawn flank, similar to
those reported in Radioti et al. [2008, 2010], which were interpreted as a signature of reconnection in the
magnetotail.

The main emission is usually broad at dusk and well defined/narrow at dawn [Gustin et al., 2006]. However,
in this visit (00:33–01:11 UT), in the region 𝜆III ∼185–200∘ the main emission appears notably expanded in
latitude (up to ∼ 2.5∘ latitude either side of the average campaign main emission position) compared to the
rest of the campaign and previous observations. This unusual feature could be due to a structure superposed
on the main emission or an expansion of the emission itself. Figure 2 shows the substructure of feature B at
00:41 UT. The substructure consists two extremely bright regions (up to>6.8 MR) which appear to subcorotate
over the sequence. The broadness of the feature is obvious when compared to the main emission on the
opposite side of the oval, between 𝜆III ∼150 and 160∘. The main emission region at B is also very bright; the
power in the total main emission region in these images is consistently over 1000 GW, compared to typical
power of ∼500 GW over the rest of the 2014 campaign.

The observed morphology is reminiscent of but distinct from the “dawn storm” events described by Gustin
et al. [2006] and Nichols et al. [2009], in which the entire dawn length of the main emission is brightened and
broadened. The brightness of the dawn storm morphologies has been reported to peak at 1.8 MR [Gustin
et al., 2006]. The peak brightness of the main emission feature B is >6.8 MR. Feature B is also distinct from the
multiple dawn arcs reported by Grodent et al. [2003].

The last image of this sequence (shown in Figure 1e) shows the superrotating spot entering the area of bright
and expanded main emission ∼ 200∘ 𝜆III. This implies that the field lines mapping to the spot are in the vicin-
ity of the dawn sector corotation breakdown region, which leads to the main emission [Cowley and Bunce,
2001; Vogt et al., 2011, 2015]. The breadth of the main emission has reduced to the steady state configuration
(although dimmer, up to ∼400 kR) by the next HST visit at 19:39 UT (shown in Figure 1f ).

There are two large equatorward emissions at 154–169∘ (emission C) and 133–152∘ (emission D). Emission
C has bright patches of up to 1600 kR and extends into the main emission oval. Emission D is more diffuse,
reaching a peak brightness of only 600 kR, and is centered at lower latitudes, extending to within 2∘ of the
Io Footprint (IFP) contour. The average brightness in emission D is 270 kR. These emissions are present at the
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Figure 1. Six panels showing polar-projected HST image of Jupiter’s northern FUV aurora on 11 January 2014 at
(a) 00:41 UT, (b) 01:06 UT, (c) 01:08 UT, (d) 01:10 UT, (e) 01:11 UT, and (f ) 19:39 UT. For each image the exposure time
was 100 s. The Central Meridian Longitude (CML) is shown. The image is displayed with a log intensity scale saturated
at 1000 kR. The dashed white line shows the edge of the field of view. The grey lines indicate a 10∘ × 10∘ jovicentric
latitude-system III longitude grid. The image is oriented such that 180∘ 𝜆III is directed toward the bottom and 𝜆III labels
are displayed in grey. In Figures 1a–1e, labels indicate the superrotating polar spot (A), circled in Figure 1b, a bright and
expanded main emission region (B) and two equatorward emissions (C and D). The yellow lines in Figure 1f, taken ∼18 h
after the first visit, show the boundaries of the main emission region, derived from the average main emission position
over the 2014 campaign. The poleward region of the main emission strip is the “polar region” and the equatorward
region up to 1.5 ∘ poleward of the Io footprint is the “equatorward” region. Equatorward emissions circled in green on
this image are possible remnants of the equatorward features C and D.

beginning of this HST sequence (00:31–00:41 UT, Figure 1a), so their generation must have occurred before
the transit of the polar spot into the main emission region.

The longevity of the equatorward emissions is also comparable to that described by Dumont et al. [2014];
the consecutive HST sequences starting at 00:31 UT and 01:01 UT both show the emissions. There are faint

Figure 2. Polar-projected HST image of feature B taken at 00:41 UT, as in Figure 1a, showing substructure. Longitude
and latitude labels are displayed.
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Figure 3. The location in the equatorial plane of the auroral features observed on 11 January 2014. The red stars show
the equatorial mapping of the center (specifically the brightest central point of the 200 kR contour) of the superrotating
polar spot as it moves over the image sequence and the colored boxes are the extrema of the auroral features. The
poleward edges of the features were mapped using the flux equivalence method at 170∘ CML [Vogt et al., 2011, 2015]
with the GAM internal field model [Grodent et al., 2008]. The VIPAL internal field model alone was used to map the
equatorward edges of the main emission and equatorward emission features [Hess et al., 2011]. The Sun is to the
right-hand side. The blue box shows the expanded main emission (B), the green shows the left-hand equatorward
feature (C), and the orange shows the right-hand equatorward feature (D). Solid black lines indicate the compressed
and expanded magnetopause after Joy et al. [2002].

structures on images taken at 19:39 UT (second visit, Figure 1f, circled green) at the same longitudes as feature
C in the previous visit. The faint structures could be a remnant of feature C, which would give a minimum
lifetime for this equatorward emission of 18.5 h.

3.2. Magnetospheric Source Regions
In order to investigate the potential magnetospheric source region of the auroral features, we map field lines
from the Northern Hemisphere to the equatorial magnetosphere using the Grodent Anomaly Model (GAM)
and the VIPAL model. The VIPAL model is an update to the VIP4 internal magnetic field model and is based on
Voyager and Pioneer magnetic field measurements, modeling of the lowest orders of the magnetic anomaly,
and corrects for the longitudinal position of the magnetic field lines mapping to Io’s orbit. Figure 3 shows the
mapped location of the center of the superrotating spot (specifically the brightest central point within the
200 kR contour), in the equatorial plane of the magnetosphere alongside the mapped source regions of
the extrema of the main emission and two equatorward emissions shown in Figure 1. The red stars show the
equatorial mapping of the center of the superrotating polar spot and the boxes the extrema of the other auro-
ral features. The magnetopause is indicated by the solid black lines and shows both the compressed and the
expanded configurations after Joy et al. [2002].

The poleward edges of the features were mapped using the flux equivalence method at 170∘ CML [Vogt et al.,
2011, 2015]. The flux equivalence method requires a choice of internal field model. The spot and poleward
edges of the main emission use the GAM internal field model because it provides the most accurate match
to the Ganymede footprint at these longitudes [Grodent et al., 2008; Vogt et al., 2015]. Out of the internal field
models available, GAM predicts the most tailward source for the spot and main emission, which is consis-
tent with the initial notable high latitude of the spot and the interpretation of polar spots as a result of tail
reconnection. For consistency, the GAM model of the internal field was used for the poleward edges of the
equatorward emission [Vogt et al., 2011, 2015]. The flux equivalence method is used for>15 RJ where currents
can cause field stretching. The VIPAL internal field model alone was used to map the equatorward edges of
the main emission and equatorward emission features [Hess et al., 2011].

As the polar spot superrotates around the planet, its mapped radial distance from the planetary center
decreases from 95 to ∼70 RJ as it moves from 0400 to 0615 LT. These radial distances are consistent with the
locations of reconnection events observed in situ with Galileo [Kronberg et al., 2005] and the statistical X line
in this sector [Vogt et al., 2010]. Figures 1b–1e show that the spot (A) moves closer to the enhanced main
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Figure 4. Power emitted from the different auroral regions over the 2014 HST campaign. The regions shown in color
from top to bottom are the main emission region (red), polar region (green) and the equatorward region (blue). The
vertical grey shaded region indicates the HST visits of interest at 01:00 UT on day 11. The boundaries of these regions
are indicated in Figure 1f. In each plot, the black points indicate the total power in order to indicate the contribution of
each region to the total power. The power has been corrected for viewing geometry variation after [Nichols et al., 2009].

emission region (B). Correspondingly, the map in the equatorial plane (Figure 3) shows that the final mapped
source region of the spot and the main emission source region are colocated. The total distance between the
first and last mapped location of the spot is ∼56 RJ . This corresponds to an average propagation speed of
6450 km/s in the magnetosphere over the 10 min sequence.

The mapped main emission region (feature B, blue outline) extends from 8 RJ to as far as ∼110 RJ from the
planet. The majority of points within this feature, however, map to within 15–45 RJ , which is consistent with
the modeled corotation breakdown region of 15–30 RJ [Vogt et al., 2015] in the dawn sector. The source region
maps to between 0500 and 0915 LT.

The brighter equatorward emission source region (feature C, green outline) is farther from the planet than
the second equatorward emission source region (feature D, orange outline). The source region of emission C
extends over∼8–58 RJ and between 1100 and 1500 LT. The source region of emission D extends over∼6–45 RJ

and between 1445 and 1730 LT.

3.3. Emitted Auroral Powers
Comparison of the power emitted by each region of the aurora over time can be used to indicate how energy
is moved through the magnetosphere. The power emitted from each region can be extracted from the images
following the procedure outlined in Gustin et al. [2012].

The observed auroral power is dependent on the CML. For some viewing geometries, a significant fraction of
the auroral emission is located behind the planetary limb because of the magnetic dipole tilt of 10∘. Following
the procedure outlined in Clarke et al. [1980] and more recently Nichols et al. [2009] and Bonfond et al. [2012],
the corrected UV power in each region of the aurora was extracted from the HST images.

Figure 4 shows the time series of the power in each region of the aurora. The day 11 event dominates the time
series. The total auroral power peaks at ∼2200 GW. Comparison of the contributions of each auroral region
and the morphologies themselves (see Figure 1) show that main emission brightness region is the primary
contributor to the power (∼1100 GW) and that the breadth of feature B causes the power to “leak” over the
defined regional boundaries into the other regions. There is additionally a significant contribution from the
large equatorward emissions (∼540 GW). These are similar to the observed power of equatorward emissions
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observed by Bonfond et al. [2012]. The contribution of the two large equatorward emissions C and D alone is
∼390 GW. The superrotating polar spot does not contribute notably to power in the polar region because of
its small size.

The next HST image (19:39 UT, Figure 1f ) was taken 18.5 h after the image sequence showing the above fea-
tures (01:01–01:11 UT, Figures 1b–1e). The total auroral power decreased from ∼2200 GW at 01:11 UT back
to ∼1300 GW at 19:39 UT on day 11. Using a simultaneous data set from the Hisaki satellite, which measures
extreme ultraviolet (EUV) power emitted from the whole northern polar region quasi-continuously, the time
interval during which the power was elevated above average values can be constrained to just 7 h [Kimura
et al., 2015]. The extremely bright main emission feature B and large equatorward emissions C and D are the
primary contributors to the power. The long-term variations in power are discussed by Badman et al. [2016].

4. Discussion: Interpretation of Auroral Signatures

Polar spots which are not superrotating have been interpreted as auroral signatures of magnetic reconnection
[Grodent et al., 2004; Radioti et al., 2008, 2010]. The superrotating polar spot (A) is also interpreted as the auroral
response of magnetic field reconnection in the magnetotail because of its similar size, direction of motion,
and location. The superrotating spot appears at higher latitude relative to the main emission compared to the
other polar spots seen in this campaign, such as on day 4 (not shown here). The typical separation of these
spots from the main emission is around 1∘ of latitude, consistent with observations of polar spots by Radioti
et al. [2008]. However, on day 11, the spot is as far as 3.8∘ poleward of the campaign average main emission
location. In general, more poleward emissions correspond to events farther from the planet, so this indicates
that reconnection is occurring further from the planet (or at least farther from the corotation breakdown/main
oval region) in the day 11 case than in other previously reported polar spot cases.

Two explanations of the unusual spot observations are presented. First, following Nichols et al. [2014], the
site of magnetic reconnection itself propagates rapidly as flux over a large spatial region reconnects. As the
field dipolarizes, Alfvén waves are launched from the reconnection site and generate an auroral signature. As
the reconnection site moves, so does its ionospheric footprint. It is noted that the mapped location of the
superrotating spot in the magnetosphere follows the location of the statistical Vasyliunas cycle X line in the
magnetotail [Vogt et al., 2010], i.e., moving closer to the planet with increasing LT. In this scenario, to match
the observations the X line would need to propagate at ∼6500 km/s.

Alternatively, hot tenuous plasma flowing very quickly planetward from a distant reconnection site can pro-
duce a signature at very high latitudes relative to the main emission and rotate around the planet at high
azimuthal velocity. By analogy to auroral streamers at Earth, as the field line moves azimuthally and plan-
etward around dawn, the foot point in the ionosphere is also expected to move [Henderson et al., 1998;
Nakamura et al., 2001; Nishimura et al., 2011]. The relatively fast contraction of the dipolarizing field line in the
magnetosphere past the surrounding field lines causes a gradient in Bz and, therefore, a field-aligned current
system [e.g., Kasahara et al., 2011]. This has been observed at Earth by the Thermal Emission Imaging System
(THEMIS) mission [Keiling et al., 2009]. Cowley et al. [2015] showed that for a simple 1-D current sheet, a newly
reconnected field line (dipolarization) will contract planetward with a speed equal to the difference between
the Alfvén speed and the tailward flow of plasma on stretched nightside field lines. Taking the observed speed
of the auroral spot, ∼6500 km/s, as the speed of planetward contraction and an estimate of the downtail
plasma flow as 350 km/s [Krupp et al., 2004; Cowley et al., 2015], the Alfvén speed (defined as VA = B√

2
√
𝜇0ni mi

,

where B is the magnetic field strength, 𝜇0 is the magnetic constant, ni is the ion number density, and mi is
the ion mass) must be >6000 km/s. For a typical value of the field strength outside the current sheet of 7 nT
(taken at 80 RJ) [Kivelson and Khurana, 2002], this requires a very low ion mass density (e.g., a proton density of
1×10−3 cc−1), indicating that in this scenario, reconnection occurred in a low density region such as the lobe.

On day 11 (00:31–01:11 UT), the main emission is locally broadened and bright at emission B. The mapping of
the path of the superrotating spot indicates reconnection inflows into this region. This implies that there are
flows into the main emission region from reconnection events in the more distant magnetotail. Prior recon-
nection events may have caused similar flows. The resulting flow shears and dipolarized field lines generate
field-aligned currents and enhanced auroral emission [Kasahara et al., 2013; Palmaerts et al., 2014], as indicated
by the structure of feature B, shown in Figure 2. These effects could be compounded by an increase in iono-
spheric conductivity in the ionosphere locally to generate the bright signature observed. Increases in electron
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precipitation can increase the ionospheric conductivity [Nichols and Cowley, 2004]. Models have shown that
this can increase the coupling currents, generating bright and broadened aurora [Nichols and Cowley, 2003].

The main emission in feature B has returned to a normal configuration by the second visit of day 11 (Figure 1f ).
Assuming that a significant proportion of the total EUV power measured by Hisaki was from the large and
exceptionally bright feature B, the lifetime of feature B may be constrained to just∼7 h. Feature B is interpreted
as the result of enhanced flow shears, so it is suggested that enhanced inflow from the tail could also have
continued for ∼7 h.

Equatorward emissions have been linked to hot plasma injections [Mauk et al., 2002; Dumont et al., 2014;
Radioti et al., 2009; Tomás et al., 2004; Bonfond et al., 2012]. Emission regions C and D are unlike the morpholo-
gies described by Dumont et al. [2014], which are smaller and brighter. They are also larger than the emissions
characterized by Mauk et al. [2002] as signatures of injections in the inner magnetosphere.

Similar features were identified in observations from 2007 with associated high powers in the equatorward
region [Nichols et al., 2009; Bonfond et al., 2012]. These injections were attributed to increased Iogenic outflow
during a volcanically active time. In particular, Bonfond et al. [2012] showed an increase in the occurrence rate
of high power equatorward emission following increased Io activity compared to a prior period. Before the
volcanically active period only 1 in 41 days showed high power emission, whereas after the activity the rate
was 8 in 32 days. The occurrence rate in the 2014 campaign (which has a similar observational cadence to the
2007 campaign) is 3 in 16 days. This is similar to that observed in the period associated with Iogenic activity.
However, in the present case, observations of the Io sodium nebula brightness [Yoneda et al., 2015] and EUV
power of the inner torus [Tsuchiya et al., 2015] show no indication that Io volcanic activity has increased in the
weeks prior to or during this observational interval. It is therefore suggested that inflow from reconnection
causes hot plasma injections to generate the large signatures observed (analogously to bursty bulk flows at
Earth), without requiring increased Iogenic outflow as in the 2007 case.

Following the discussion above, features C and D could have formed following reconnection-driven inflows
in the preceding hours. Polar spots regularly appear in groups [Grodent et al., 2004; Radioti et al., 2008, 2010]
and reconnection signatures in the tail can be clustered [Vogt et al., 2014] implying reconnection events can
happen in succession across field lines. There were no other polar spots observed during the 2 h of observa-
tions on this day; however, this may be expected given the low observational cadence. Kasahara et al. [2011]
studied the effect of reconnection on the Jovian plasma sheet and found that during an extended interval
of tail reconnection (up to 18 h) involving both closed and open field lines, a jet of electrons at the dipo-
larization front was detected traveling planetward at 7500–17000 km/s. This is similar to the velocity of the
superrotating auroral spot inferred from the magnetic mapping (6450 km/s).

The equatorward emission D lies within the longitudinal range (150∘< 𝜆III < 210∘) and expected brightness
(270 kR) identified for the secondary oval associated with the PAD boundary [Grodent et al., 2003; A. T. Tomás
et al., 2004; Radioti et al., 2009]. Enhancement of this feature can also be attributed to hot plasma injections
since the hot population would enhance the waves responsible for the electron scattering [A. Tomás et al.,
2004; Woodfield et al., 2013].

Previous observations show auroral signatures of injections can last over 34 h [Bonfond et al., 2012]. Possi-
ble remnants of equatorward features C and D have been identified in HST observations made 18.5 h later
(Figure 1f ). This implies that the effects of hot plasma injections (e.g., further planetward transport and
wave-particle interactions) can continue for 18.5 h.

In summary, the HST image auroral signatures have been interpreted as hot plasma inflows from tail reconnec-
tion (superrotating polar spot), flow shears in the dawnside middle magnetosphere (locally bright and broad
dawnside main emission), and evidence of hot plasma injections in the inner magnetosphere (equatorward
emission). It is not suggested that the magnetospheric counterpart of the superrotating spot causes the other
features observed at the same time but that the superrotating polar spot signature is part of a prolonged
reconnection interval.

Reconnection can proceed on open field lines if all the closed field lines have first been reconnected. The
superrotating spot is seen at particularly high latitudes compared to previously reported spots, which are
thought to have formed as part of the Vasyliunas cycle. Open field lines will map to more poleward emissions
than the closed field lines and Dungey cycle reconnection is expected to take place in the far tail [Badman
and Cowley, 2007]. It is suggested that the observed superrotating spot signature appears near the end of a
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Figure 5. Averaged intensity at 3.5 MHz from Wind/WAVES sorted by CML for the planetary rotation before
(blue, 15:10–01:00 UT), during (green, 01:00–11:10 UT), and after (red, 11:10–21:10 UT) the auroral sequence in
Figures 1b–1e on day 11. The solid line shows campaign average intensity, in 10∘ bins. The colored points plot the
intensity averaged over 10∘ bins for successive rotations.

prolonged reconnection interval, involving (Vasyliunas type) closed field line reconnection, possibly proceed-
ing onto open field lines.

We now examine Jupiter’s radio emissions for additional evidence of magnetospheric dynamics. Louarn et al.
[2014] showed that inflows from tail reconnection were correlated (within one planetary rotation, ∼10 h)
with intensifications of the auroral hectometric radiation (HOM, 0.5 to few MHz) and the subsequent appear-
ance of new narrowband kilometric radiation (nKOM, 40–150 kHz) sources in the outer Io plasma torus.
Intensifications of non-Io decametric radiation (DAM, MHz) have been correlated with the arrival of solar wind
shocks in some cases, although the physical process leading to the intensification has not been described
[Hess et al., 2014]. Increases in HOM emission have also been related to high solar wind dynamic pressure
[Gurnett et al., 2002].

Wind Radio and Plasma Waves (WAVES) data, recorded in Earth orbit at the L1 Lagrange point, were examined
for this interval [Bougeret et al., 1995]. There were many intense solar type III radio bursts during this campaign.
These bursts extend over the full frequency range and have a characteristic shape in frequency-time space,
wherein the frequency decreases with time. Although the data are heavily contaminated by solar bursts, it is
possible to pick out other radio emission structures using both the spectra and analysis of the intensity as a
function of Jupiter CML [e.g., Yoneda et al., 2013].

Figure 5 shows the average intensity from days 1–16 at one frequency band (3.5 MHz), where HOM is
expected, as a function of CML (black line). The occurrence probability of HOM is known to peak at CML around
30∘, 120∘, and 270∘ [Galopeau and Boudjada, 2005]. The peak at 120∘ indicates that the HOM was detected by
Wind at this frequency during the interval despite the significant solar activity.

The blue, green, and red points in Figure 5 show the intensities at 3.5 MHz from the planetary rotations around
the auroral image sequence shown in Figures 1b–1e at 01:01–01:11 UT. We show the rotations before and
after the image sequence in order to show that the HOM signature observed is nonperiodic. The blue points
show the planetary rotation before the auroral sequence; the green starts at the time of the auroral sequence
and the red at the rotation after the sequence. The intensity of emission during the end of the first rotation
(blue, 15:10–01:00 UT) and beginning of the middle rotation (green, 01:00–11:10 UT) around CML 150–220∘

exceeds the campaign average. The rotation after the image sequence (red, 11:10–21:10 UT) does not show
significant intensity around the same CML, as expected for a signature that is nonperiodic. The majority of
the points are lower intensity compared to the campaign average because there is lower type III burst activity
at this frequency around day 11 compared to the rest of the campaign. The blue point at 310∘ CML above
the campaign average has been checked against the frequency-time spectrogram and is not associated with
HOM but is associated with a solar burst on day 10. The other HOM associated frequency bands were checked
and CML 150–220∘ consistently showed increased intensity. Other points above the campaign average show
variation across other frequency bands, so these are not HOM.

The raised intensity at HOM frequencies around the time of the HST images is also evident in Figure 6a,
the frequency-time spectrogram, at 00:30–02:30 UT between 0.7 and 4 MHz. The emission frequency
increases with time, opposite to the solar type III bursts also occurring. This potential HOM burst is detected
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Figure 6. Radio spectra from Wind/WAVES RAD1 (20–1040 kHz) and RAD2(1.075–13.82 MHz) detectors on (a) day 11 and (b) day 14. The flux density of both
receivers is not cross calibrated, producing the apparent discontinuity across the detector ranges. HOM emission is expected up to a few MHz. The HOM emission
on day 11 is the between ∼00:30–02:30 UT and 150–220∘ CML, between 0.8 and 4 MHz. The HST image sequences are marked for indication: HST Sequence
1 (00:31–00:41 UT), HST Sequence 2 (01:01–01:11 UT), and the next sequence showing the relaxed main emission state, HST Sequence 3 (19:39–19:49 UT).
A clearer HOM signal for comparison on day 14 is between ∼19:30–21:00 UT and 205–265∘ CML, between 0.7 and 6 MHz. The non-Io DAM signature on day
11 is at ∼04:00 UT and ∼ 270∘ CML. A typical solar burst showing decreasing frequency with time is highlighted. The color scale is saturated at 1.5 dB to show
type III solar bursts.

simultaneously with the intense UV emission observed by HST (Figures 1b–1e). The specific UV auroral feature
that the HOM corresponds to is unknown, although HOM is expected to be related to inner magnetospheric
sources (L shell < 30) [Ladreiter et al., 1994; Zarka et al., 2001; Imai et al., 2015]. Figure 3 shows part of the main
emission and equatorward emissions relate to sources up to L ∼30.

For comparison, in Figure 6b we show another HOM burst from 19:30 to 21:00 UT between 205 and 265∘ CML
on day 14, which was also correlated with intense UV emission [Kimura et al., 2015]. Because of its higher power
this feature is easier to distinguish on the frequency-time spectrogram, but otherwise, its characteristics are
similar to those seen at 00:30–02:30 UT on day 11, supporting our interpretation of the day 11 feature as a
HOM burst associated with enhanced UV emission.

Non-Io DAM emission was also observed at 04 UT, CML 275∘ at 1–10 MHz. The vertex-late shape corresponds
to a dusk source [Hess et al., 2014]. At this time, approximately one fourth rotation after the images shown
in Figures 1b–1e, the bright main emission feature B and equatorward feature C would be in the dusk and
postdusk sectors, assuming corotation with the planet. Hess et al. [2014] suggest that DAM sometimes exhibits
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a correlation with solar wind shocks, as has been detected in the UV [Clarke et al., 2009; Nichols et al., 2009].
However, within ∼1 day accuracy, there is no evidence in the propagated SW data of a SW shock arriving at
Jupiter at this time [Tao et al., 2016]. This could therefore be an internally triggered DAM emission, as identified
by Hess et al. [2012, 2014].

The intensifications of the emissions identified as HOM and DAM support the interpretation that a global mag-
netospheric disturbance was occurring, involving tail reconnection and disturbance of the outer Io plasma
torus [Louarn et al., 2014]. The large equatorward emissions are thought to be generated by inflows prior to
the HOM detection and HST imaging sequence on day 11. This implies that there has been magnetotail recon-
nection prior to the time of the HST observations. This could be analogous to Saturn Kilometric Radiation
(SKR) and auroral UV enhancements and large scale plasma injections at Saturn [e.g., Mitchell et al., 2009; Lamy
et al., 2013].

5. Conclusion and Summary

HST observations from day 11 January 2014 (01:01–01:11 UT) show bright and unusual auroral forms, which
are interpreted as part of an inward radial transport sequence. A superrotating polar dawn spot (feature A)
was observed and interpreted as the signature of tail reconnection. The spot could be either the signature of
the propagation of the X line in the tail or the signature of dipolarized field traveling planetward. The spot was
observed to move into a broad and bright patch along the dawnside main emission (B). The brightening in this
region could be related to flow shears associated with earlier inflows. The presence of hot plasma originating
from the tail could lead to the presence of bright equatorward emissions (C and D) as the signatures of earlier
hot plasma injections [e.g., Thomsen et al., 2015]. The images are thought to capture part of a prolonged period
of reconnection.

Radio emissions measured by Wind suggest that HOM and non-Io DAM signatures are associated with the
sequence of auroral signatures (01:01–01:11 UT). These are interpreted as inner magnetospheric and inter-
nally driven disturbances. Louarn et al. [2014] previously showed HOM should occur within 10 h of tail
inflows. The enhancement/detection of the HOM supports our interpretation of the UV auroral signatures as
a sequence of radial transport.

The bright and broad dawnside main emission feature magnetically maps to the morphological boundary
between the hot tail inflows and inner magnetosphere region. The Hisaki EUV power is only elevated for about
7 h above the average power level, so assuming the main contributor to the EUV power is the main emission
feature, the lifetime of feature B may be constrained to just ∼7 h. If flow shears in the middle magnetosphere
are the cause of the emission, then the flow shears and therefore the enhanced inflow may also be constrained
to a duration of 7 h. The equatorward images may show emission for at least 18.5 h. This implies the interval
of hot plasma injections and its consequences can be at least 18.5 h duration.

Long-term monitoring could have indicated the state of the system prior to and further through day 11, allow-
ing investigation of the interface between the superrotating spot and the main emission. We therefore look
forward to polar science orbits of Juno, from which the timescale of reconnection flows to transition to the
inner magnetosphere could be determined.
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