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Pioneer anomaly: What can we learn from LISA?

Denis Defrère∗ Andreas Rathke†

Abstract

The Doppler tracking data from two deep-space spacecraft, Pioneer 10 and 11, show an anomalous
blueshift, which has been dubbed the “Pioneer anomaly”. The effect is most commonly interpreted as
a real deceleration of the spacecraft — an interpretation that faces serious challenges from planetary
ephemerides. The Pioneer anomaly could as well indicate an unknown effect on the radio signal itself.
Several authors have made suggestions how such a blueshift could be related to cosmology. We consider
this interpretation of the Pioneer anomaly and study the impact of an anomalous blueshift on the Laser
Interferometer Space Antenna (LISA), a planned joint ESA-NASA mission aiming at the detection of
gravitational waves. The relative frequency shift (proportional to the light travel time) for the LISA
arm length is estimated to 10−16, which is much bigger than the expected amplitude of gravitational
waves. The anomalous blueshift enters the LISA signal in two ways, as a small term folded with the
gravitational wave signal, and as larger term at low frequencies. A detail analysis shows that both
contributions remain undetectable and do not impair the gravitational-wave detection. This suggests
that the Pioneer anomaly will have to be tested in the outer Solar system regardless if the effect is
caused by an anomalous blueshift or by a real force.

1 Introduction

The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission to be launched after
2012 that will detect gravitational waves (GWs) in a frequency range between 10−4 and 1Hz and study
their sources [1]. LISA will consist of three spacecraft forming a roughly equilateral triangle of 5× 109 m
baseline placed on an orbit similar to that of the Earth. The spacecraft will exchange phase-coherent laser
signals with each other in order to conduct picometer interferometry to measure passing GWs through
the modulation in the light travel time between the spacecraft that the waves cause.

In this study we consider the impact of an anomalous blueshift, which is homogeneous in the light
travel time and isotropic, on LISA. The motivation to consider such an effect comes from the Doppler
tracking data of the Pioneer 10 and 11 deep space probes. Both spacecraft show a deviation between
their orbit reconstruction and their Doppler tracking signal [2, 3]. The discrepancy, that has become
known as the Pioneer anomaly, can correspond either to a small constant deceleration of the spacecraft of
roughly 9× 10−10 m/s2 or to an anomalous blueshift of the radio signal at a rate of 6 × 10−9 Hz/s. Since
no unambiguous conventional mechanism, like small on-board forces, to explain the anomaly has been
identified there is a growing number of studies, which consider an explanation in terms of a novel physical
effect (see [3, 4, 5] for an overview of the theoretical models). It has been realised that it is difficult to
explain the Pioneer anomaly by a real force which satisfies all constraints from planetary ephemerides
[3, 5, 6]. Hence an explanation in terms of an anomalous blueshift seems particularly attractive.

In view of the increasing interest in an experimental verification of the Pioneer anomaly [7] it is a
logical step to consider if such a verification might be possible with a space mission that is already planned.
Unfortunately, the current and upcoming exploration missions are hardly suited for a verification of the
Pioneer anomaly [5, 8]. LISA is the first upcoming high-precision fundamental-physics mission that might
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be sensitive to the anomaly. Already in an early discussion, L. Scheffer expressed the expectation, that
the Pioneer anomaly, if not due to a spacecraft-specific conventional reason, should be detectable in data
from LISA [9]. In a proposal to ESA’s ‘Cosmic Vision 2015-2025 Call for Themes’ the question was raised
again if LISA could be a suitable testbed for a verification of the Pioneer anomaly – in particular if the
effect were due to an anomalous blueshift [10]. Even more important might be the opposite question: If
the Pioneer anomaly is indeed a novel physical effect could it impair the performance of LISA? In this
case it would be of crucial importance to ensure that the LISA science goals can be achieved despite
of the presence of the anomaly. The present study addresses both of these questions and comes to the
conclusion that LISA is neither sufficiently sensitive to the Pioneer anomaly to detect it nor impeded in
its mission goals by the potential presence of the anomaly.

The layout of our considerations is as follows. Section 2 gives an overview of the Pioneer anomaly
and its possible relevance for LISA. In Section 2.1 we review the observational evidence for the Pioneer
anomaly, and briefly review the models, that have been put forward to explain the anomaly. In Section 2.2
we discuss which models of the Pioneer anomaly are relevant for observations with LISA and derive a
first order of magnitude estimate for the maximal effect to expect on the interferometric signal of LISA.
We also find the generic response function of LISA in the presence of an anomalous blueshift. Section 3
discusses the effect of the blueshift in the frequency domain. The frequency domain method has been
discarded for the actual evaluation of LISA interferometric data because time-delay interferometry (TDI)
achieves a far superior cancellation of the laser phase noise (cf. [11]). However the frequency domain
method has the advantage that it gives direct physical insight into the impact of an anomalous blueshift
on the interferometer. Section 3.1 briefly reviews the structure of the interferometric signal of LISA and
its Fourier transform. It is followed by the analysis of the impact of the blueshift, which is split into two
parts. First Section 3.2 discusses the effect of the anomalous blueshift in the sensitivity band of LISA.
Then the detectability of the blueshift at very low frequencies outside of the sensitivity band of LISA
is considered in Section 3.3. In both cases no measurable impact of the anomaly is found. Section 4
reconsiders the effect of the anomaly in the framework of TDI, the current baseline method for LISA.
Section 4.1 discusses the signature of the anomaly on first generation TDI observables for the idealised
case of fixed arm length. It is found that the symmetry of TDI observables leads to an exact cancellation of
the effect of the anomalous blueshift in the case of fixed interferometer arms. Section 4.2 generalises these
considerations to the realistic case of moving spacecraft. Also in this setting the effect of the anomalous
blueshift would remain below the detection threshold of LISA. Section 5 summarises our results and
discusses their implications for options to verify and characterise the Pioneer anomaly.

2 The Pioneer anomaly and LISA

2.1 The characteristics of the Pioneer anomaly

The Pioneer 10 and 11 spacecraft, launched on 2 March 1972 and 5 April 1973, respectively, were the
first to explore the outer Solar system (see [12] for an overview of the Pioneer 10 and 11 missions.).
Since its Jupiter gravity assist on 4 December 1973 Pioneer 10 is on a hyperbolic coast. Pioneer 11 used
a Saturn swingby on 1 September 1979 to reach a hyperbola, in approximately opposite direction to
Pioneer 10. Already before the swingby a discrepancy between the Doppler signal from Pioneer 10 and
its orbit integration was observed, which was originally ascribed to fuel leaks and a mismodelling in the
Solar radiation pressure model (cf. [13]). This interpretation became more and more untenable after the
swingbys due to the decrease of the Solar radiation pressure, inversely proportional to the square of the
heliocentric distance, and the quiet state of the spacecraft, with very little thruster activity. Moreover an
anomaly of the same magnitude became apparent in the Pioneer 11 data [14].

The anomaly on both probes has been subject to three independent analyses with different orbit
determination programs [3, 15]. The result of the investigations is that an anomalous Doppler blueshift
is present in the data from both spacecraft of approximately 6× 10−9 Hz/s corresponding to an apparent
deceleration of the spacecraft of approximately 9×10−10 m/s2. From the Doppler data, it is not possible to
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distinguish between an anomalous frequency shift of the radio signal or a real deceleration of the spacecraft
(see below). The principle investigators of the anomaly have conducted a thorough investigation of possible
biases and concluded that no conventional effect is likely to have caused the anomaly [3]. Meanwhile,
there exists an ample body of literature discussing various aspects of possible systematic effects, without
definitive conclusion [9, 16, 17, 18, 19, 20]. For various reasons all other deep-space probes have lower
navigational accuracy [3, 5, 8]. Hence to date the effect could not be verified with another spacecraft.

The inability to explain the anomalous acceleration of the Pioneer spacecraft with conventional physics
has contributed to the growing discussion about its origin. The possibility that it could come from a new
physical effect is now being seriously considered. In particular the coincidence in magnitude of the Pioneer
anomaly and the Hubble acceleration has stirred the suggestion that the Pioneer anomaly could be related
to the cosmological expansion.

One of the obstacles for attempting an explanation of the Pioneer anomaly in terms of new physics
is that a modification of gravity, large enough to explain the Pioneer anomaly, is likely to run into
contradiction with the planetary ephemerides. This is readily illustrated by adding a term corresponding
to the Pioneer anomaly to the Newtonian potential of the Sun,

V (r) = −µ⊙

r
− a∗r , (1)

(µ⊙ is the reduced mass of the Sun, r is the heliocentric distance, a∗ ≈ 9 × 10−10 m/s2 is the anomalous
acceleration) and considering the orbit of Neptune. At 30 AU the Pioneer anomaly is visible in the Doppler
data of both Pioneer 10 and 11. The influence of an additional radial acceleration of 9 × 10−10m/s2 on
Neptune is conveniently parameterised by a change of the effective reduced Solar mass µ⊙, felt by the
planet (cf. [21]). The value resulting for the anomaly, ∆µ⊙ = a∗r2

[
≈ 1.4 × 10−4 µ⊙, is nearly two orders

of magnitude beyond the current observational constraint of ∆µ⊙ = (−1.9±1.8)×10−6 µ⊙ [22]. Similarly
the Pioneer 11 data contradict the Uranus ephemerides by more than one order of magnitude. Thus, the
Pioneer anomaly can hardly be ascribed to a gravitational force since this would indicate a considerable
violation of the weak equivalence principle. In particular, planetary constraints rule out an explanation
in terms of a long-range Yukawa force [3, 23]. Hence, more subtle explanations are to be attempted.

One line of reasoning is to consider an effect on the radio signal rather than a force on the spacecraft.
Already the principle investigators have considered several phenomenological models of accelerating time
[3]. The main purpose of these models was to investigate the possibility of a systematic drift of atomic
clocks. Most of the phenomenological models failed the cross-check with tracking data from other space-
craft. Only a time acceleration restricted to the signal propagation itself yielded a good fit to all spacecraft
data although this model is still statistically disfavoured to a real deceleration of the spacecraft. The time
acceleration of this model is indistinguishable from a run-time/travel-distance dependent blueshift of the
radio signal.

To first order in v/c the anomalous Doppler drift is related to the anomalous acceleration as

1

ν

dν

dt
= −a∗

c
, (2)

where ν is the emitter frequency of the signal, v is the spacecraft velocity and c is the velocity of light
(cf. [3]). Note that a∗ is negative since it indicates a deceleration. At first sight this coincidence in
phenomenology between an anomalous deceleration and an anomalous blueshift is surprising. It gets
explained if one considers that the anomaly was only thoroughly investigated for the part of the Pioneer
trajectories through the outer Solar system: Here the back-reaction of the spacecraft’s orbit to a small
perturbing force can be neglected and an anomalous acceleration can be treated linearly to high accuracy
[5].1

1This simple observation illustrates the need for the analysis of the full Doppler data of Pioneer 10 and 11 because from
data further inward in the Solar system a discrimination between a real force and a blueshift might be possible through the
presence or absence of a change of the orbital parameters due to the anomaly.
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Several theoretical models have been put forward that implement an anomalous blueshift by very
distinct mechanisms [24]-[30]. The works [24, 25] consider the anomaly as a kinematical effect of the
cosmological expansion. The anomaly arises from the fact that the coordinate system, in which local
measurements are carried out, is not a synchronous one. The studies [26, 27] consider an adiabatic effect
of the cosmic expansion on the phase of light viewed as the phase of a quantum state. Whereas [26]
considers a closed path Berry phase, [27] drops the closed path requirement and considers an open path
Berry phase. In [28]-[30] the anomaly arises from a time dependence of the local metric which leads to
an effective time acceleration.

All of the above models to explain the blueshift of the Radio signals transponded by the Pioneers
have to be considered as incomplete. This is most obvious for the model of [24, 25], where only a
Robertson-Walker metric is considered and the influence of the gravitational field of the Sun is completely
neglected. This seems too much of a simplification considering the predominant opinion that the local
Schwarzschild geometry of the Solar system remains practically unaffected by the cosmological expansion
(see the contribution of C. Lämmerzahl in this volume). The problem is ameliorated a bit for the quantum
effect considered in [26, 27] because in this case one could argue that the adiabatic evolution of quantum
states is governed by a different metric than the non-adiabatic dynamics of large bodies. Also the definition
of the open-path Berry phase in [27] does not seem to be compatible with the general discussion of the
open-path Berry phase in [31]. In the models of [28]-[30] the embedding problem does not seem to spoil
the model because both the cosmic and the local metric are treated as perturbations of a locally flat
metric and can (at least formally) be superimposed linearly. However the model of [28, 29] suffers from
the introduction of two ad-hoc coupling parameters between the electromagnetic and the gravitational
field [32]. Furthermore, the models [28]-[30] lack a relativistic derivation of the background potential from
the cosmological parameters. Despite of the deficiencies of the current models the idea that the Pioneer
anomaly is caused by a blueshift of light is attractive because it automatically satisfies all constraints
from planetary ephemerides.

2.2 Relevance for LISA

Among the proposed explanations of the Pioneer anomaly, most would have no significance for LISA. For
example, this is the case for all models based on systematics generated onboard the Pioneer spacecraft.
Generally, if the anomaly corresponds to a real acceleration on the Pioneers, the anomaly should have
no influence on LISA. This can be concluded from the fact, that the LISA orbit is practically identical
to the Earth’s orbit. For the Earth itself an anomalous acceleration of the magnitude of the Pioneers
would lead to an orbital perturbation which is beyond current observational limits (cf. [21]). Hence only
a considerable violation of the weak equivalence principle (e. g. between bodies of different mass) could
result in an anomalous acceleration on LISA but not on the Earth. On the other hand an anomalous
blueshift of light could be highly relevant for LISA, since the mission is supposed to detect GWs through
small frequency shifts. The blueshift for light travelling along an arm of LISA is found by integrating
Eq. (2) in time,

∆ν∗

ν0
= −a∗

c
T , (3)

where T is the light travel time and ν0 is the laser frequency. For the LISA values, ν0 ≈ 3 × 1014 Hz
and T ≈ 17 s, one finds ∆ν∗ ≃ 1.5 × 10−2 Hz. Although the absolute blueshift is very small compared
with the nominal frequency it might nevertheless be within the reach of LISA. Indeed, the corresponding
relative change of the frequency is ∆ν∗/ν ≃ 10−16 and the expected value for the weakest GWs, that
will be detectable by LISA, is about 10−23 [1]. The frequency shift due to the anomaly is therefore seven
orders of magnitude bigger than the lowest signal to be detectable by LISA. The ability to measure the
contribution of the anomalous blueshift will however depend on the sensitivity of LISA at the frequencies
where the anomaly is present.

For a comprehensive analysis of the impact of the anomalous blueshift on LISA one has to take into
consideration the change of the light travel time by passing GWs. In linear order in the GW strain h
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the rate of change of the light travel time caused by a plane wave is proportional to the projection of
the difference of the GW strains at the point of reception and the point of emission onto the light travel
direction [33, 34],

d

dt
∆T =

1

2
(1 + β)

(
h(t) − h[t + (1 − β)T ]

)
. (4)

Here T is the unperturbed one-way light travel time, ∆T is the change of light travel time and β is the
cosine of the angle between the light travel direction and the normal of the wave front of the GW. The
time t is the time measured by a clock at the point of reception.

Writing Eq. (3) for the modified light travel time T + ∆T and using Eq. (4) to express ∆T by the
linear term of a Taylor expansion, one obtains the frequency shift for the combined effect of the anomalous
blueshift and GWs up to linear order in a∗ and h for a one-way signal,

ν1 − ν0

ν0
= −a∗

c
T +

1

2
(1 + β)

[
1 − a∗

c
T

] (
h(t) − h[t + (1 − β)T ]

)
, (5)

where ν1 is the frequency at reception. Eq. (5) is generic for any model of a homogeneous isotropic
blueshift or time-acceleration. In particular it holds for the models considered in [3]-Ranada:2004mf.

Depending on the model there might arise one subtlety, which has not been addressed up to now.
In the same way as the electromagnetic waves are blueshifted an analogous blueshift might arise for the
GWs. For example, this is the case in the models of [28]-[30], where the anomalous blueshift originates
from a time-dependent term in the g00 component of the metric caused by a homogeneous cosmological
background potential. This additional term leads to a modified dispersion relation for all types of waves.
The anomalous blueshift of GWs could be investigated by a parameter estimation of the dispersion relation
via matched filtering of GW signals detected by LISA. The method would be analogous to the search for
a graviton mass in GW signals (cf. [35, 36, 37]). In the present study we restrict ourselves to the possible
manifestations of the Pioneer anomaly in electromagnetic waves because the occurrence of a blueshift of
GWs is model dependent and hence would hardly allow a generic statement about the LISA’s capability
to verify the Pioneer anomaly.

Rather than the one-way response function of Eq. (5), the two-way response function of a signal
transponded back to its emitter is the relevant observable for LISA. It is found analogous to Eq. (5) as

ν2 − ν0

ν0
= −a∗

c
T +

1

2
(1 + β)

[
1 − a∗

2c
T

]
h(t)

− β

[
1 − a∗

2c
T

]
h
(
t + (1 − β)T/2

)
− 1

2
(1 − β)

[
1 − a∗

2c
T

]
h(t + T ) , (6)

where T now denotes the unperturbed two-way light time and ν2 is the frequency at reception [33, 34].
The anomalous blueshift contributes to the frequency shift by two types of terms. On the one hand it
arises proportional to the unperturbed light travel time. If the light travel time is time dependent T (t),
as will be the case for LISA, the influence of the anomalous blueshift arises at the different frequencies
contained in T (t) and at null frequency anyway. On the other hand the anomalous frequency shift appears
as a crossterm with the GW strain. This effect is hence suppressed by the smallness of the GW strain
but still several orders of magnitude larger than terms quadratic in the GW strain. Both manifestations
of the anomalous blueshift will be investigated in the following.

3 Frequency domain analysis

In the previous section, we have discussed how the Pioneer anomaly could find its explanation in a
blueshift of light and we found the generic Doppler response function to a plane GW in the presence of an
anomalous blueshift. This Doppler response function describes the influence of the anomalous blueshift on
GW detection by an interferometer arm of LISA. In the following we analyse this signal both inside and
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outside the sensitivity band of the LISA. This is done first through an analysis in the frequency domain
[38] and afterwards in the framework of TDI [11, 39].

The noise cancelation algorithm in the frequency domain [38, 40] is now considered as obsolete for
the LISA data analysis and has been superseded by TDI, which achieves a far superior cancellation of
laser phase noise in the signal than the frequency domain algorithm. For our purposes the analysis in
the frequency domain has the considerable advantage that it allows an intuitive understanding of the
influence of the anomalous blueshift. In this method the magnitude of various contributions to the signal
can be easily compared and have a direct interpretation in term of phase shifts of an idealised signal.

This convenient interpretation is partially lost in TDI, in which combinations of signals are formed
following an algebraic method in order to cancel the dominant noise source of the interferometer. A
more physical picture can in some part be regained by interpreting the TDI combinations as synthesised
interferometers. Nevertheless an investigation of the impact of an anomalous blueshift purely in terms of
TDI might miss important effects of the blueshift, which might be cancelled by the specific symmetries of
the TDI observables. On the other hand the possibilty exists that TDI combinations become particularly
sensitive to the blueshift on behalf of their symmetries. Hence it is important to investigate if TDI remains
unimpaired by an anomalous blueshift and if TDI is capable of detecting a potential anomaly.

Our analysis of the anomalous blueshift in the frequency domain is based on the method of [38]. We
amend the original discussion by the consideration of additional noise sources, such as acceleration noise,
which were not addressed in [38] and we update the values of laser and shot noise to match the current
expectations for LISA (cf. [1, 11]).

3.1 The two-way Doppler signals

For simplicity, we assumed in our analysis that each laser has the same fundamental frequency ν, whereas
in a realistic LISA configuration the frequency of the lasers may differ to each other by several hundreds
of MHz. As a further simplification we start our discussion by assuming constant and exactly known (but
unequal) lengths of the interferometer arms. This assumption will be dropped later.

û2

û3

arm
 3 (L

)3ar
m

 1
 (L

)1

3’3 1

û1

arm 2 (L )2

3

1

1’

2
22’

Figure 1: Geometry of the LISA formation.

The basic interferometer configuration is displayed in the Fig. 1. The distances between pairs of
spacecraft are L1, L2 and L3, with Li corresponding to the interferometer arm opposite to spacecraft
i. The optical benches of each spacecraft are labelled by a number, which corresponds to that of the
host spacecraft. An apostrophe allows to distinguish the two optical benches of the same spacecraft. In
addition, a unit vector ûi is asigned to each arm, with i being the label of the opposite spacecraft. The
orientation of the three unit vectors are such that û1L1 + û2L2 + û3L3 = 0.
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The phase of the signal received from a distant spacecraft of the LISA constellation is the sum of the
following contributions:

1. The phase 2πνli(t) due to the runtime of the signal, where li(t) is the one-way light-time for the
signal along the ith interferometer arm. It changes due to the slow relative velocities between the
spacecraft and on shorter timescales due to GWs.

2. The laser phase noise, pi(t), is the phase noise of the ith laser, so that the phase of the ith laser is
Pi = 2πνt + pi(t).

3. The shot noise. Its effect is immediate at the time of reception, so that the response of the Doppler
measurement at the ith laser is simply given by ni(t).

4. The acceleration noise. The phase variation ∆ϕ of a signal depends on the path length x through

∆ϕ =
2πν

c
∆x . (7)

Therefore, the residual acceleration ~ai(t) of the optical bench of the ith spacecraft appears in
the second derivative of the phase of the signal. Obviously, the residual accelerations at the two
spacecraft, both at transmission and reception, have to be taken into account according to the
following expression

∆ϕi =
2πν

c

∫ ∫
[ûj · ~ai(t) − ûj · ~ak′(t − lj)] dt2 , (8)

where i and k′ are the end lasers of arm j and ∆ϕi is the phase variation at the photodiode i.
Note that this equation considers only the acceleration along the optical axis and does not take into
account a possible turning of the optical bench.

5. The anomalous blueshift. Using Eq. (3) and defining α∗ ≡ −a∗/c its contribution to the phase of
the signal is given by

∆ϕ∗
i (t) = 2πα∗

∫
∆li(t)dt . (9)

By taking into account all of the above contributions, the phase of the signal sent by the k′th laser
and received at the ith reads

ϕi(t) = 2πν (t − lj(t)) + pk′(t − lj) + ni(t)

+ 2
πν

c

∫ ∫
[ûj · ~ai(t) − ûj · ~ak′(t − lj)]dt2 + 2πα∗

∫
lj(t)dt . (10)

At the reception, the incoming signal is beaten with the signal Pi of the local laser to give the beat signal

sin(ϕi(t)) + sin(Pi(t)) = 2 sin

[
ϕi + Pi

2

]
cos

[
ϕi − Pi

2

]
. (11)

The high-frequency sine term is too fast to be read and is not used in the data analysis. Therefore, on
the j th arm, the phase of the beat signal read in the spacecraft photodiode is given by

si(t) = ϕi(t) − Pi(t)

= − 2πνlj(t) + pk′(t − lj) − pi(t) + 2πα∗

∫
lj(t)dt + nk′(t)

+ 2
πν

c

∫ ∫
[ûj · ~ai(t) − ûj · ~ak′(t − lj)]dt2 , (12)

where we have dropped the factor 1/2 from the argument of the cosine in Eq. (11). Furthermore the two
lasers on each spacecraft are tied to each other in phase by the exchange of a two-way reference signal
between them.
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The two-way Doppler signal is then formed by the combination of the phase measurements from two
photodiodes on the same arm (cf. [38]),

zi(t) = si(t) + sk′(t − lj)

= pi(t − 2lj) − pi(t) − 4πνlj(t) + 4πα∗

∫
lj(t)dt + nk′(t) + ni(t − lj)

+2
πν

c

∫ ∫
[ûj · ~ai(t) − 2ûj · ~ak′(t − lj) + ûj · ~ai(t − 2lj)]dt2 . (13)

In order to obtain zi(t), sk′(t) is sent to the ith laser to be beaten with si(t). Here, the beat signal is
filtered in order to preserve the GW contribution, i. e. by reading the cosine term in the expression of a
beat (analogous to Eq. (11)).

3.2 Inside the sensitivity band

In Eq. (13), the light travel time as a function of reception time lj(t) includes both the orbital motion of
the spacecraft and the GWs. We write explicitly the contribution of the GWs by now considering lj(t)
in as the nominal arm length in the undisturbed spacetime and adding the disturbance by the GW as a
separate term. Using the Doppler response function, Eq. (5), the effect of a GW, transverse to the LISA
plane, i. e. β ≡ 0, and with appropriate polarisation, on the two-way Doppler signal is given by

∆ν

ν
=

1

2
ǫ(1 + α∗lj)[h(t) − h(t − 2lj)] , (14)

where ∆ν is the difference between the frequency of the signal sent and received at the central spacecraft
and h is the GW strain amplitude. The ǫ can take any value between -1 and 1, depending on the orientation
of the arm with respect to the polarisation of the GW. Particularly, for an angle of 60◦ between the arms
of LISA, one can have ǫ = 1 for one arm and ǫ = −1/2 for the other (cf. [1] p. 102 for the general
expressions). The GW adds a contribution to the signal, Eq. (13),

∆ϕgw = ǫ πν

∫
(1 + α∗)[h(t) − h(t − 2lj)]dt . (15)

In order to estimate the importance of each term in Eq. (13) and (14), it is useful to compute the power
spectral density of zi(t). To begin, we restrict our study to the sensitivity band of LISA, i. e. from 10−4 Hz
to 1Hz. In a first estimate we can drop the two terms, −4πνlj(t) + 4πα∗

∫
lj(t)dt because the orbital

motion has little impact at the frequencies of the sensitivity band. To compute the power spectral density,
we consider the Fourier transform of zi(t),

zi(f) = pi(f)[e4πiflj − 1] + ni(f)[1 + e2πiflj ]

+ νai(f)
[e4πiflj + 2e2πiflj + 1]

2πcf2
+ ǫνh(f)

[e4πiflj − 1]

2if
+ ǫνα∗lj h(f)

[e4πiflj − 1]

2if
, (16)

where we have assumed that the shot noise and acceleration spectra for both optical benches are the same,
ni(f) = nk′(f) and ai(f) = ak′(f). Furthermore we have assumed the maximum value for the direction
cosine between ~ai,k′ and ûj . The Fourier transform, Eq. (16), supposes that the observing time is infinite.
In practice, LISA is expected to operate in data-taking intervals of T ∼ 10000 rms and thus, Eq. (16)
only gives an estimate of the true spectrum. We will return to the effect of finite observation time below.

From Eq. (16) it can be read off immediately that the effect of the anomalous blueshift would be
undetectable. The blueshift enters the spectrum folded with the GW strain h. Hence its effect will be
15 orders of magnitude below the GW signal. This corresponds to a spectral power at least 10 orders
of magnitude below the secondary noises, shot noise and acceleration noise (cf. [1, 11] for the estimated
noise spectra for LISA). Currently no procedure exists to cancel the shot noise in the LISA signal. Hence
the anomalous blueshift would be overwhelmed by the secondary noises and remain unnoticed.
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This conclusion has however to be reconsidered taking into account that the data-taking periods
of LISA are limited in length. This leads to the leakage of spectral power to other frequencies. In
particular, the low-frequency terms neglected in the two-way signal zi(t), Eq. (13), have now to be
addressed. For typical integration times, T ∼ 10000 s (cf. [11]), the arm length rate of change is nearly
constant. Its magnitude depends on the position of the spacecraft along its orbit [41]. The relative velocity,
~v can reach up to 13m/s.2 In the approximation of constant relative velocity the Fourier transform of
lj(t) = lj,0 + (vj/c)t is given by

F̃.T .[lj(t)] =

∫ T

0

(
lj,0 +

vj

c
t
)

e2πiftdt

=
vj

c
eiπTf πTf cos(πTf) − sin(πTf)

2π2if2
+

[
lj,0 +

vj

2c
T

]
eiπTf sin(πTf)

πf
, (17)

where clj,0 ≈ 5× 109 m is the initial light time between the spacecraft. In Eq. (17) the constant term due
to the arm length, lj,0, is dominant. This term will remain present even after the application of the laser
noise cancellation algorithm in the frequency domain (cf. [38]). Using Eq. (17) the Fourier transform of
the two-way Doppler signal becomes

zi(f) = pi(f)
[
e4πiflj − 1

]
+ ni(f)

[
1 + e2πiflj

]
+

νai(f)
[
e4πiflj + 2e2πiflj + 1

]
+ 4πνlj(f) − 2α∗

if
lj(f) . (18)

In this expression, we have dropped the contribution of GWs because above it was found irrelevant for the
discussion of the blueshift (See [38] for a discussion of the GW signal in terms of the frequency domain
algorithm). The contributions to the amplitude power spectrum corresponding to Eq. (18) are shown in
Fig. 2. The signal of the anomalous blueshift is higher than the secondary noise sources but below the
laser phase noise. The nominal term from lj, i. e. the orbital motion is much higher than the laser noise.
Hence this term would have to be removed by a preprocessing method before the laser noise cancellation
algorithm could be applied (see below). The signal of the anomalous blueshift is below the laser phase
noise but above the secondary noise sources.

Figure 2: Amplitude power spectra contributing to
the two-way Doppler signal in the sensitivity band.

Figure 3: Amplitude power spectra contributing to
the two-way Doppler signal outside the sensitivity
band.

2See however [42] for recent suggestion of a modified orbit, which could reduce the relative velocity between the spacecraft
by a factor of six.
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The further processing of the signal is distinct for the search for GWs and for the search for an
anomalous blueshift. In the search for GWs the spectral leakage is unwanted. Hence a suitable approach
is pre-multiplying the time-domain data sets by a window function before taking Fourier transform [11].
With this preprocessing, the laser noise cancellation can be performed and GWs could be detected. On
the other hand, in the search for an anomalous blueshift the spectral leakage has to be preserved. However
before the cancellation of the laser noise could be attempted, one has to generate a signal in which the
laser noise is the dominant disturbance. Hence the nominal orbital term needs to be removed from the
signal. The natural approach to this task would be to pre-process the data with information on the orbits
acquired from a different source, e. g. ground tracking of the spacecraft.

The crucial question is how accurately we would need to determine the arm length of LISA to suf-
ficiently remove the nominal orbital motion term. According to Fig. 2, a cancellation of about 1015

orders of magnitude would have to be performed. We suppose that the arm length lj is known up to
a factor k, i. e. the real arm length lj differs from the assumed arm length lj,measured by the length klj ,
lj,measured = (1 + k)lj . Then the Fourier transform of the one-way Doppler signal becomes

zi(f) = pi(f)
[
e4πiflj − 1

]
+ ni(f)

[
1 + e2πiflj

]

+ ai(f)
[
e4πiflj + 2e2πiflj + 1

]
+ 4(1 + k)πνlj(f) − (1 + k)

2α∗

if
lj(f) . (19)

Therefore, after the removal of the nominal orbital motion term from the knowledge of lj,measured, the
term 4kπνlj(f) remains which has to be sufficiently low to detect the anomaly. However at 10−4 Hz, this
requirement corresponds to a knowledge of the arm length of about 10−15 × lj = 5× 10−6 m, which is far
beyond the experimental capabilities of LISA.

In conclusion an anomalous blueshift of the magnitude of the Pioneer anomaly would remain unde-
tected in the sensitivity band of LISA. Furthermore it would not affect LISA’s capability to observe GWs.
The blueshift remains unimportant because it is peaked around zero frequency and thus far away from
the sensitivity band of LISA. However it is still worth considering the potential impact of the anomaly at
frequencies below the sensitivity band of LISA where the effect becomes much larger.

3.3 Outside the sensitivity band

For long integration times, the arm-length rate of change cannot be treated as constant anymore. In the
following we use the simplified analytical model of the LISA orbits described in [43], in which only the
Kepler problem for each spacecraft is considered. Computing the corresponding power spectrum, one can
plot the two-way Doppler signal, outside the sensitivity band of LISA.

Unfortunately, the noise spectra for LISA at frequencies below the measurement band have not yet
been fully investigated (cf. [45]). For our purposes we use an extrapolation of the noise spectra obtained
in [45]. The acceleration noises might become considerably higher if a suspension mode for low frequencies
would be implemented along the optical axes of the interferometer. However the results of [44] indicate
that the best performance of LISA is obtained if the drag-free mode along the sensitivity axes is maintained
also for low-frequencies. Hence an extrapolation of the noise spectra given in [45] should give a reasonable
impression of the actual performance to expect from LISA at low frequencies.

The result is displayed in Fig. 3. The term due to the anomalous blueshift is of the same order
of magnitude as the secondary noise but remains still below the laser phase noise. However, for the
integration time required to reach these frequencies, the laser noise cancellation algorithm can no longer
be implemented because the arm length changes from the orbital motion of LISA are so big that the
algorithm becomes ineffective [38, 40]. Thus the presence of an anomalous blueshift cannot be revealed
at low frequencies either.

To summarise, the anomalous blueshift would have an amplitude several orders of magnitude higher
than the weakest GWs detectable, on the LISA’s arms. However, this “large” impact of the anomaly
comes from the constant part of the arm lengths. Hence it is located at null Fourier frequency while
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relevant GWs for LISA are expected at Fourier frequencies between 10−4 and 1Hz. In the sensitivity
band of LISA, the effect of the anomaly is well below all the instrumental noises and hence is neither
detectable nor does it have an impact on the GW detection. With a finite observation time, power of
the constant contribution of the anomaly can leak in the sensitivity band. The analysis of the spectral
leakage of the anomalous blueshift would however require a knowledge of the arm length that would have
to be far more precise than it is achievable. Below the sensitivity band, we found that the contribution of
the anomalous blueshift should be just above the secondary noise sources but still below the laser phase
noise. On these timescales, the arm lengths change much more than it is allowed to remove efficiently
the laser phase noise. Therefore, we can conclude that the Pioneer anomaly has no impact on the GW
detection and cannot be detected with the frequency domain method.

4 Time delay interferometry

Time delay interferometry (TDI) is a noise cancellation method for unequal arm interferometers that is
performed in the time domain [11, 39, 46, 47] (see also the contribution by M. Tinto in this volume).
The basic principle of TDI consists in combining appropriate one-way Doppler signals in order to remove
the laser phase noise (actually, it also cancels the acceleration noise of the optical benches). Whereas
TDI had originally been developed as a purely algebraic method its data combinations have a physical
interpretation as virtual measurements of a synthesised interferometer [48]. The major question to be
addressed here is how the Pioneer anomaly affects the TDI combinations. Since the frequency domain
study showed that the effect of the anomalous blueshift is negligible when folded with the GW strain, we
can restrict our attention on the anomalous blueshift occurring at low frequencies.

4.1 Linear Data combinations

In principle there is an unlimited number of TDI observables corresponding to more and more complicated
synthesised interferometers. For applications to LISA the number of beams to combine is usually limited
to eight in the limit of a static interferometer. For this maximum number of beams there are ten linear
combinations, which cancel the laser noises from all the spacecraft.

These TDI combinations cancel the laser phase noise of an interferometer at rest with unequal but
constant arm lengths and are commonly dubbed first generation TDI. For the nominal operation mode
of LISA, the unequal-arm Michelson interferometer, three independent possible combinations exist which
are called X,Y and Z. In the following we only consider the X combination,

X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31

+
1

2
(−z21,2233 + z21,33 + z21,22 − z21) +

1

2
(+z31,2233 − z31,33 − z31,22 + z31) . (20)

The Doppler data to be analysed are now called yij = ∆ν/ν, where ∆ν is the frequency deviation from
the centre frequency ν. The subscripts label the transmitting and receiving spacecraft. The convention is
that yij is the beam transmitted from spacecraft i and received at spacecraft j. Internal metrology signals
to correct for optical bench motions are denoted by zij , with the same labelling convention. These will
however play no role in our considerations because their travel times are too short to show an appreciable
anomalous blueshift. They are hence omitted from now on. Delay of laser data streams is indicated by
commas in the subscripts: y31,23 = y31(t − l2 − l3) = y31,32 , etc. (li is the light-time on the i-arm).

The Y and Z combinations are obtained from the X combination by cyclic relabelling of the spacecraft.
Hence our results hold for all three of the unequal-arm Michelson combinations. It is easy to verified by
direct substitution of the laser noise contribution, that the combination, Eq. (20), does not contain any
laser noise. In the unequal-arm Michelson combinations, each one-way signal occurs twice, at two different
times; one term is added and the other subtracted. As a consequence, the Pioneer anomaly component,
given by Eq. (3),

y∗ij = −a∗

c
li(t) = α∗li(t) , (21)
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disappears. Even the spectral leakage of the data has no impact because the terms, which contain the
anomaly are all cancelled exactly. The same property holds for the other combinations of the data present
in the literature (see [39] for a description of the other combinations).

In the combinations called α, β, γ and ζ, which represent synthetic Sagnac interferometers, the
contribution of the anomaly would not be cancelled if the frequency shift would depend on the direction
of the light beam with respect to the Sun. To obtain such a direction dependent anomaly, that does not
decay significantly over tens of AUs, one would however have to resort to exotic ideas like a topological
defect located in the Sun. Such a model is hard to envisage and no such effect has been suggested as an
explanation of the Pioneer anomaly. Hence we do not further consider this possibility.

4.2 Effect of the orbital motion on Time Delay Interferometry

The first generation TDI observables, as presented above, have been formulated in the limit, that LISA
is fixed in space. However, each year, LISA will accomplish a complete rotation around its centre and
the symmetries provided by a fixed interferometer will be broken. Because of this loss of symmetry,
the contribution of the anomalous blueshift, arising on each arm, would not be cancelled completely
anymore in the TDI combinations. Moreover, the laser phase noise does not cancel exactly, either. More
complicated TDI combinations have been developed to overcome this problem [49, 50, 51]. In addition
to the rotation, there occurs a flexing of the arms of the detector, which is caused by the orbital motion
and the perturbations of the planets. The interaction of these two effects with the anomaly is considered
in the following.

4.2.1 The effects of rigid rotation

For the discussion of rigid rotation, a more subtle notation for the Doppler signals is required because the
light travel times will now depend on the direction of the signal with respect to the rotation. While in the
previous section L3 was the length of the arm between the first and the second spacecraft, we denote now
by L12 the length travelled by the signal sent from spacecraft 1 and received at spacecraft 2. The length
travelled by the signal sent from spacecraft 2 and received at spacecraft 1 is called L21. As illustrated

L12

1

3 2

1

3

2L12

L21

Figure 4: The rotation of the interferometer breaks the direction symmetry in the arm lengths.

in Fig. 4 the interferometer is rotating in the clockwise direction if viewed from the celestial pole. The
spacecraft move while the signals are travelling along the arms. If we define the length of the arm between
spacecraft 1 and 2 to be L12 in the limit of no rotation, then the actual distance travelled by the signal
from spacecraft 1 to spacecraft 2 will be L12 < L12. In the same manner, the signal from spacecraft 2 to
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spacecraft 1 will have to reach spacecraft 1 in its motion and will therefore travel a distance L21 > L12.
Hence also the magnitude of an anomalous blueshift on an arm would depend on the direction, in which
the signal has travelled. Then, if the signals, which have travelled on the same arm but in opposite
direction, are subtracted, a residual contribution of the anomalous blueshift would remain.

The direction dependence of the light travel times has different effects on the induvidual TDI combi-
nations. For the unequal-arm length interferometric combinations X(t), Y (t) and Z(t), the contribution
of the anomaly still cancels exactly. Indeed, if we take the X(t) combination (the reasoning is the same
for Y (t) and Z(t)), we see that the one-way signals appear twice for a given direction with opposite
signs in the combination but that they are delayed by different times. For a rigid rotation the relation
Lij(t + τ) = Lij holds and the contribution of the anomaly is cancelled. The (P, Q, R), (E, F, G) and
(U, V, W ) have the same property so that one reaches the same conclusion for these combinations.

For the Sagnac combinations (α, β, γ and ζ), the structure of the signal is different (cf. [39]). In
these observables two signals from each arm, running in opposite direction are combined. For instance
the signal ζ reads,

ζ = y32 − y23,3 + y13,3 − y31,1 + y21,1 − y12,2 . (22)

Hence the effect of the anomaly is not totally removed. The anomalous component in Eq. (22) reads

ζ∗ = α∗(l12 − l13 + l23 − l21 + l31 − l32) . (23)

The terms of this equation can be grouped into two parts: ∆l− ≡ l12 + l23 + l31, which is the total time
around the interferometer in the counterclockwise direction and ∆l+ ≡ l13 + l21 + l32, which is the total
time in the clockwise direction. Even for a perfectly rigid triangle, the times of flight are not equal. Since
the LISA constellation rotates in clockwise direction, we always have ∆l− < ∆l+. The corresponding
Sagnac time shift is given by, cf. [49],

∆l− − ∆l+ = ∆lSagnac =
4AΩ

c2
≈ 2π

√
3L2

c2T
. (24)

Here Ω is the angular velocity of the rotation, A is the area enclosed by the light path, T is the period of
rotation and L is a typical arm length. For the LISA orbit (T = 1 year and L = 5 × 109 m), the Sagnac
effect has the magnitude ∆lSagnac = −10−4 s. Therefore, the residual effect of the anomalous blueshift on
the combination ζ would be

ζ∗ = α∗(∆l− − ∆l+) ≃ 3 × 10−22 . (25)

The same result is obtained for the other Sagnac combinations α, β, γ. The effect of the anomalous
blueshift is to add a constant frequency shift in the Sagnac combinations. The amplitude of this addi-
tional Doppler shift would be comparable to the weakest GWs detectable by LISA. However, the optimal
sensitivity of LISA occurs in a Fourier frequency range far from the zero Fourier frequency, where the
constant residual contribution of the anomaly has its impact. Hence, again the effect would not be
detectable.

As mentioned above the rigid rotation induces a Sagnac effect on the noises as well. In order to
maintain noise cancellation up to linear order in the rotational velocity for all observables modified TDI

has been introduced, in which each Doppler signal from a specific arm enters twice travelling in the same

direction. In modified TDI the anomalous blueshift is cancelled at linear order in the rotational velocity
and the effect of the anomaly would become even smaller.

4.2.2 The effects of flexing

As we have seen in Section 3.3, the arm lengths of LISA don’t remain constant due to the orbital motion
and the perturbations of the orbits by the planets. Unlike the rigid rotation, the flexing of the arms does
not preserve the continuous symmetry, Lij(t + τ) = Lij(t). For example, the X combination, Eq. (20),
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becomes for time varying runtimes (cf. [49])

X = y12

[
t − l31 − l

(1)
13 − l

(2)
21

]
− y13

[
t − l21 − l

(1)
12 − l

(2)
31

]
+ y21

[
t − l31 − l

(1)
13

]

−y31

[
t − l21 − l

(1)
12

]
+ y13(t − l31) − y12(t − l21) + y31(t) − y21(t) , (26)

where l21 ≡ l21(t), l31 ≡ l31(t), l
(1)
12 ≡ l12(t − l21), l

(1)
13 ≡ l13(t − l31), l

(2)
21 ≡ l21(t − l31 − l

(1)
13 ) and

l
(2)
31 ≡ l31(t− l21 − l

(1)
12 ). Using Eq. (21), the contribution of the anomalous blueshift in the X combination

is given by

X∗ = α∗
[
l12

(
t − l31 − l

(1)
13 − l

(2)
21

)
− l13

(
t − l21 − l

(1)
12 − l

(2)
31

)
+ l21

(
t − l31 − l

(1)
13

)]

+ α∗
[
−l31

(
t − l21 − l

(1)
12

)
+ l13 (t − l31) − l12(t − l21) + l31(t) − l21(t)

]
(27)

= α∗
[
l
(3)
12 − l

(3)
13 + l

(2)
21 − l

(2)
31 + l

(1)
13 − l

(1)
12 + l31 − l21

]
,

where l
(3)
12 ≡ l12(t − l31 − l

(1)
13 − l

(2)
21 ) and l

(3)
13 ≡ l13(t − l21 − l

(1)
12 − l

(2)
31 ). The arm lengths can be estimated

by their first order changes l
(n)
ij = lij(t) − nVijl, where Vij is the rate of change of the arm’s light travel

time in seconds per second and l is a typical one-way light-time [49]. Then we find from Eq. (27)

X∗ = 4α∗(V13 − V12)l = 6 × 10−24 , (28)

where, in accordance with [49], we have used V13 − V12 . 10(m/s)/c. This relation determines the
maximum effect of the blueshift due to the flexing induced by the orbital motion. The Doppler shift stays
below the optimal sensitivity of LISA which is about 10−23. Results at the same order of magnitude are
obtained for all TDI combinations. Hence we conclude that the effect of the anomalous blueshift due the
flexing of the interferometer arms will not be detectable.

The flexing of the arms inhibits laser noise cancellation to first order in the velocities for first gener-
ation TDI or modified TDI. To achieve the noise cancellation up to first order, inclusive, another set of
observables has been designed. The so-called second generation TDI achieves the cancellation by having
not only a signal for each arm entering twice in the same direction but also having each term linear in
the change rate of the length of an arm entering twice. Hence second generation TDI also cancels the
anomalous blueshift from terms linear in the change rate of the arms.

We found that TDI observables, especially those of second generation TDI, are particularly insensitive
to the anomalous blueshift. This result has a simple geometric justification. The anomalous blueshift
of sizable magnitude arises proportional to arm-length differences. However TDI is based on combining
signals in a way, that yields overall light-times of zero (cf. [48]). Hence the very principle of the TDI
algorithm leads to an automatic cancellation of the anomalous blueshift in the signal.

5 Summary and conclusions

The Pioneer anomaly is attracting a growing interest in the scientific community. Hence a verification of
the effect beyond the Pioneer data would be highly desirable. Here we studied in which way the LISA
mission could contribute to a test of the Pioneer anomaly. Due to its Earth-like orbit LISA would most
likely not experience an anomalous force since this would require a strong violation of the weak equivalence
principle. On the other hand, if one interprets the Pioneer anomaly as an anomalous blueshift of light
this effect would affect also the LISA interferometer.

Several models in the literature consider the Pioneer anomaly as a homogeneous and isotropic blueshift
originating from the cosmic expansion through various mechanisms [24]-[30]. All of these distinct models
lead to a common Doppler response function for LISA up to linear order in the anomalous blueshift and
in the GW strain. We derived this Doppler response function as an extension of the well known two-point

14



response to GWs. We found that the blueshift arises on the one hand as a cross term with the GW signal
and on the other hand as a low-frequency bias depending on the interferometer arm length. The cross
term with the GW signal is much larger than a possible second-order GW term but still too small to be
detectable by LISA.

The low-frequency term was found to induce a relative frequency shift of 10−16, which is several orders
of magnitude larger than the weakest measurable GW strain of 10−23. The implications of this number
are however not immediate because the anomalous blueshift arises at zero frequency whereas the LISA
sensitivity lies between 10−4 Hz and 1 Hz.

Consequently we investigated the power spectral density of the anomalous frequency shift, that arises
from the orbital motion of the LISA satellites. We considered both, short times and timescales, which
comprise a considerable fraction of the orbital period of LISA. These results were compared with the
noise spectra of LISA. Unfortunately, due to its low-frequency nature the anomalous blueshift is always
overwhelmed by some noise source of the LISA interferometer. Hence an anomalous blueshift would
remain undetectable.

This conclusion is then reconsidered in the framework of TDI, the current baseline method for laser
phase noise cancellation in LISA. The dedicated discussion of TDI is necessary because the complicated
signals synthesised in TDI could produce a by-chance amplification of a homogeneous isotropic signal.
Our results show on the contrary that TDI cancels the blueshift in all data combinations to a high
degree due to the inherent symmetries of the TDI observables. Only from the rotation and flexion of the
interferometer, a residual contribution of the anomaly would arise. This effect would however be below
the detection threshold of LISA. Hence an anomalous blueshift will not be recognisable in TDI and will
not degrade the performance of TDI for the detection of GWs either.

In the present study we have focused our attention on models of the anomaly, that predict a homoge-
neous and isotropic blueshift. At first glance this seems a bit restrictive, since also models, in which the
Pioneer anomaly arises from a central force, can lead to a considerable blueshift of light. An example is
the model of [52], which introduces separate momentum-dependent gravitational couplings for the scalar
and the conformal sector of the Einstein equations. In this model about half of the Pioneer anomaly is
due an anomalous blueshift. However the blueshift induced into the LISA signal by a central force would
be proportional to the difference in light-travel time between the way back and forth in a two-way signal,
whereas a homogeneous and isotropic blueshift is proportional to the two-way light travel time. Thus the
blueshift from a central force, that is supposed to explain the Pioneer anomaly, would in general have
much less effect on the LISA signal than a homogeneous and isotropic blueshift.

In conclusion, LISA cannot be used to test the Pioneer anomaly and one will have to look for other
options to verify if the Pioneer anomaly could be a novel physical effect. Considering the blueshift
interpretation of the anomaly, missions for a test of general relativity by interferometry like LATOR [53]
(see also the contribution by S. Turyshev in this volume) or ASTROD [54] (see also the contribution by
Wei-Tou Ni in this volume) might be sensitive to this effect. However also these missions would face the
problem that the anomalous blueshift becomes significant only at low frequencies, i. e. for large changes
of the light travel time in the interferometer.

More promising – and probably mandatory if the Pioneer anomaly represents a force and not a blueshift
– would be a test in the outer Solar system by radio-tracking of a deep space vehicle with very well know
onboard systematics [7]. Preferably this would be a dedicated mission to explore the anomaly although
a planetary exploration spacecraft, which has been designed with the secondary goal to test the Pioneer
anomaly could already gain considerable insights [5].3 The analysis of the full archive of Pioneer 10 and
11 Doppler data, that is currently being initiated, might further help to identify mission scenarios that
are especially suited for a test of the anomaly.

3See [55, 56] for an example implementation of a Pioneer anomaly test on a Pluto exploration mission.
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