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Comparative value of post-remission treatment in
cytogenetically normal AML subclassified by NPM1 and
FLT3-ITD allelic ratio
J Versluis1, FEM in ‘t Hout2,3, R Devillier1, WLJ van Putten4, MG Manz5, M-C Vekemans6, M-C Legdeur7, JR Passweg8, J Maertens9,
J Kuball10, BJ Biemond11, PJM Valk1, BA van der Reijden3, G Meloni12, HC Schouten13, E Vellenga14, T Pabst15, R Willemze16,
B Löwenberg1, G Ossenkoppele17, F Baron18, G Huls2 and JJ Cornelissen1

Post-remission treatment (PRT) in patients with cytogenetically normal (CN) acute myeloid leukemia (AML) in first complete
remission (CR1) is debated. We studied 521 patients with CN-AML in CR1, for whom mutational status of NPM1 and FLT3-ITD was
available, including the FLT3-ITD allelic ratio. PRT consisted of reduced intensity conditioning (RIC) allogeneic hematopoietic stem
cell transplantation (alloHSCT) (n= 68), myeloablative conditioning (MAC) alloHSCT (n= 137), autologous hematopoietic stem cell
transplantation (autoHSCT) (n= 168) or chemotherapy (n= 148). Favorable overall survival (OS) was found for patients with mutated
NPM1 without FLT3-ITD (71 ± 4%). Outcome in patients with a high FLT3-ITD allelic ratio appeared to be very poor with OS and
relapse-free survival (RFS) of 23 ± 8% and 12 ± 6%, respectively. Patients with wild-type NPM1 without FLT3-ITD or with a low allelic
burden of FLT3-ITD were considered as intermediate-risk group because of similar OS and RFS at 5 years, in which PRT by RIC
alloHSCT resulted in better OS and RFS as compared with chemotherapy (hazard ratio (HR) 0.56, P= 0.022 and HR 0.50, P= 0.004,
respectively) or autoHSCT (HR 0.60, P= 0.046 and HR 0.60, P= 0.043, respectively). The lowest cumulative incidence of relapse
(23 ± 4%) was observed following MAC alloHSCT. These results suggest that alloHSCT may be preferred in patients with molecularly
intermediate-risk CN-AML, while the choice of conditioning type may be personalized according to risk for non-relapse mortality.
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INTRODUCTION
Acute myeloid leukemia (AML) is a cytogenetically and mole-
cularly heterogeneous disease. Cytogenetically normal AML
(CN-AML) is the largest cytogenetic subgroup (40–50% of AML
patients),1 which currently can be further refined based on
molecular markers. Mutations in nucleophosmin-1 (NPM1) and
fms-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD)
are found in, respectively, 50% and 30% of patients with CN-AML.2

Molecular diagnostic analyses provide additional prognostic
information that may be used for a risk-adapted treatment
approach.3–6 FLT3-ITD, particularly FLT3-ITD with a high-mutant to
wild-type ratio, is associated with an unfavorable prognosis,
whereas NPM1 mutations in the absence of FLT3-ITD are
associated with a relatively favorable outcome.2,3,7–11 Patients
who obtain a first complete remission (CR1) are subsequently
treated with post-remission treatment (PRT), including an

additional cycle of chemotherapy, high-dose chemotherapy
followed by autologous hematopoietic stem cell transplantation
(autoHSCT) or allogeneic HSCT (alloHSCT) following either
myeloablative conditioning (MAC) or reduced intensity condition-
ing (RIC). PRT in patients with CN-AML CR1 is a subject of
continued debate, especially taking molecular markers into
account.12–19 AlloHSCT is generally not associated with better
survival in patients with NPM1 mutations without FLT3-ITD,
whereas the role of autoHSCT and alloHSCT in patients with
FLT3-ITD is not definitely settled.3,9,10,12,19–21 In addition, large
comparative studies of PRT including autoHSCT are lacking in
molecularly defined subgroups. In the present study, we
addressed the impact of NPM1 and FLT3-ITD including the FLT3-
ITD allelic ratio on the outcome in patients with CN-AML, treated
upfront within four prospective, consecutive HOVON-SAKK and
EORTC studies. Second, we compared the outcome of PRT with
alloHSCT and autoHSCT vs chemotherapy by time-dependent
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analysis in patients with AML in CR1, according to molecularly
defined subgroups.

PATIENTS AND METHODS
Patients
A total number of 521 patients with newly diagnosed CN-AML were
included, treated between 1995 and 2010 and who obtained CR1 after one
or two induction cycles of chemotherapy. Patient data were derived from
two cohorts including consecutive, prospective HOVON-SAKK phase III
trials (AML29, AML42/42A and AML92; n= 399),22–24 and a prospective
EORTC phase III trial (AML12; n=122).25 Patients were excluded if
molecular information was not available or if EVI1 overexpression was
present. Figure 1 shows the total number of patients enrolled in different
trials and reasons why patients were excluded in the present analysis. The
ratio of FLT3-ITD mutant to wild-type, defined by FLT3-ITD divided by FLT3-
ITD plus FLT3 wild-type, was available for 86% of the patients with FLT3-ITD
AML. A predefined cutoff of40.50 was applied to define subgroups with a
low or high allelic ratio of FLT3-ITD. Patients were considered as having a
low allelic ratio in case the ratio was not available in order to define a mere
poor-risk group. Details of the molecular analysis are provided in the
Supplementary Appendix. All studies were approved by the ethics
committees of participating institutions and were conducted in accor-
dance with the Declaration of Helsinki. All participants had given written
informed consent. A detailed description of the inclusion and exclusion
criteria of the studies can be found in the Supplementary Appendix.

Treatment protocols
Treatment in the HOVON-SAKK AML29, AML42/42A and AML92 studies
involved a maximum of two remission induction cycles consisting of an

anthracycline with cytarabine chemotherapy, as previously described.22–24

Induction chemotherapy was followed by three types of PRT in patients in
CR1 according to a predefined strategy as outlined in the study protocols,
including either a third cycle of chemotherapy with mitoxantrone and
etoposide, high-dose chemotherapy with busulfan and cyclophosphamide
followed by autoHSCT, or alloHSCT following either MAC or RIC. These
different therapeutic modalities were applied according a risk-adapted
strategy as previously described.22–24,26,27 Induction treatment in the
EORTC AML12 study consisted of a combination of anthracycline,
etoposide and cytarabine-based chemotherapy.25 All patients in the
EORTC AML12 study received PRT with at least one cycle of chemotherapy
after obtaining CR1 followed by continued PRT with either autoHSCT or
alloHSCT. The preferred type of PRT in patients below the age of 50 years
with an available donor was alloHSCT, whereas in patients above the age
of 50 years or patients lacking a donor autoHSCT was performed as the
preferred PRT.25 Conditioning with either RIC or MAC was performed based
on center’s choice.

Transplantation protocols
Patients received either a MAC or a RIC regimen followed by the infusion of
donor cells. RIC alloHSCT was introduced in patients below 60 years as
from 2001, whereby the indication for RIC or MAC was selectively
determined by age and consistently adhered to by the individual center
throughout the HOVON AML42/42A and AML92 studies. While some
centers maintained their policy of MAC alloHSCT for all patients up to the
age of 60, a number of centers changed their policy by setting the age
limit for MAC at o40 and RIC for patients of 40 years and beyond. The
MAC regimen contained high-dose cyclophosphamide with total body
irradiation (TBI) in 61 out of 81 (84%) HOVON patients, whereas the
remainder received busulfan with cyclophosphamide. RIC regimens varied,
but the vast majority consisted of 2.0 gray total body irradiation preceded
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Figure 1. Patient flow chart. Patients with AML, included in EORTC and HOVON-SAKK trials, who were eligible for the present analysis with CN-
AML in CR1 with available molecular analysis who received PRT.
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by fludarabine (n= 51, 93%). MAC alloHSCT in the EORTC study preferably
consisted of high-dose cyclophosphamide with total body irradiation and
alternatively busulfan with high-dose cyclophosphamide. The most
frequently used RIC regimen in the EORTC study was busulfan combined
with fludarabin. A calcineurin inhibitor (either ciclosporin or tacrolimus)
plus mycophenolate mofetil or methotrexate was given as prophylaxis for
graft vs host disease.

End points
The primary end point of the study was overall survival (OS), according to
the type of PRT received. OS and relapse-free survival (RFS) were measured
from the date of starting the first PRT. OS was based on death from any
cause, and patients were censored at the date of last contact if alive. The
events for RFS were death in CR1, designated as non-relapse mortality
(NRM) or hematological relapse. The cumulative risks of relapse and NRM
over time were calculated as competing risks with actuarial methods,
where patients alive in continuing CR1 were censored at the date of last
contact.

Statistical methods
A time-dependent analysis of PRT was performed as described previously,27,28

by applying multivariable Cox regression with time-dependent covariates
autoHSCT and alloHSCT following MAC or RIC. The multivariable analysis is
conceptually similar to a Mantel–Byar analysis,29 but more general as it
allows for the adjustment of other factors. A number of patients received
PRT with chemotherapy (n=28) first before they proceeded to alloHSCT. In
both the multivariable analysis and the estimation of survival curves, these
patients were counted as at risk in the chemotherapy group from start of
PRT until alloHSCT and after that as at risk in the MAC or RIC alloHSCT
group. Multivariable Cox regression analysis for OS, RFS, relapse and NRM
was applied, stratified by study cohort with adjustment for age, sex, white
blood cell count at diagnosis and late CR (after cycle II instead of I).
Outcome estimates are at 5 years unless explicitly stated otherwise. All
P-values were based on log-likelihood ratio tests, except when explicitly
stated otherwise. Log-likelihood ratio tests were also used to test for
interactions. The proportional hazard assumption was tested on the basis
of Schoenfeld residuals.29,30 P-values were not adjusted for multiple
testing. All analyses were done with Stata Statistical Software: Release 13.1
(2013, Stata Corporation, College Station, TX, USA).

RESULTS
Patients
A total of 521 patients with CN-AML proceeded to PRT with either
chemotherapy (n= 148), autoHSCT (n= 168) or alloHSCT following
MAC (n= 137) or RIC (n= 68). Patient characteristics are presented
in Table 1. Recipients of MAC alloHSCT were younger as compared
with the other types of PRT. Patients with wild-type NPM1 received
RIC alloHSCT more frequently as compared with chemotherapy
and autoHSCT. More allografted patients obtained a relatively late
CR1 (achieved after two cycles of induction chemotherapy). In
addition, time from remission to PRT was longer for recipients of
autoHSCT, and RIC alloHSCT was performed more frequently in
the recent years. The median follow up of patients still alive
was 77 months and differed between patients receiving
chemotherapy (100 months), autoHSCT (70 months), MAC
alloHSCT (79 months) and RIC alloHSCT (72 months). Patient's
characteristics by the different study cohorts are presented in
Supplementary Table 1. Due to different study protocols, time
from CR1 to PRT was significantly longer for patients treated by
the EORTC. All patients treated by the EORTC received PRT with
chemotherapy followed by final PRT with either autoHSCT or
alloHSCT with RIC or MAC.

Treatment outcome
OS and RFS of all patients were 53± 2% and 47 ± 2%, respectively,
at 5 years from the start of PRT. Outcome by molecular sub-
groups demonstrated distinct favorable and poor-risk subgroups
(Figure 2). Outcome of patients with mutated NPM1 was clearly

determined by the absence or presence of FLT3-ITD with OS of
71 ± 4% and 39± 4%, respectively. In contrast, OS of patients with
FLT3-ITD appeared to be not influenced by NPM1 mutational
status (NPM1mut 39 ± 4%, NPM1wt 39 ± 8%), but by the ratio of
mutant to wild-type FLT3-ITD (low ratio 42 ± 3%, high ratio
23 ± 8%). Patients with mutated NPM1 without FLT3-ITD had a
favorable outcome with OS and RFS of 71 ± 4% and 65 ± 4%,
respectively. In contrast, AML patients with a high FLT3-ITD mutant
to wild-type ratio appeared to exhibit a very poor outcome with
OS and RFS of 23 ± 8% and 12 ± 6%, respectively. A large group of
AML patients, designated as molecular intermediate risk, with
either a low FLT3-ITD ratio (mutant or wild-type NPM1) or wild-
type NPM1 without FLT3-ITD showed fairly similar OS and RFS
estimating about 45% and 40%, respectively, allowing us to
consider these three subgroups as one intermediate-risk group.

Outcome by PRT in molecular subgroups
Favorable risk (NPM1 mutant without FLT3-ITD AML). Patients with
mutated NPM1 without FLT3-ITD shared similar OS following
chemotherapy, autoHSCT, MAC alloHSCT or RIC alloHSCT (68 ± 7%
and 71 ± 6%, 74 ± 7% or 67 ± 14%, respectively, P= 0.94, Figure 3a,
Table 2). Although autoHSCT or alloHSCT following either MAC or

Table 1. Patient characteristics

Post-remission treatment

Chemotherapy
(N= 148)

AutoHSCT
(N= 168)

AlloMAC
(N= 137)

AlloRIC
(N=68)

Sex
Male 72 49% 87 52% 67 49% 36 53%
Female 76 51% 81 48% 70 51% 32 47%

Age (years)
Median 50 48 44 54
Range 18–60 16–61 16–59 37–60

WBC at diagnosis
Median 34 28 26 11
Range 0.8–400 0.8–278 0.6–291 0.9–182

NPM1
Mutated 95 64% 96 57% 72 53% 30 44%
Wild-type 53 36% 72 43% 65 47% 38 56%

FLT3-ITD
Not present 94 64% 116 69% 92 67% 44 65%
Low ratio 39 26% 48 29% 37 27% 20 29%
High ratio 15 10% 4 2% 8 6% 4 6%

CR reached after
Cycle 1 (early CR) 126 85% 155 92% 97 71% 49 72%
Cycle 2 (late CR) 22 15% 13 8% 40 29% 19 28%

Time from CR to PRT (months)
Median 2.1 2.6 2.4 2.3
IQ range 1.4–2.7 2.0–2.9 1.0–2.9 1.2–2.8

Year of PRT
o2005 104 70% 86 51% 76 55% 20 29%
⩾ 2005 44 30% 82 49% 61 45% 48 71%

Abbreviations: AlloMAC, allogeneic hematopoietic stem cell transplanta-
tion following myeloablative conditioning; AlloRIC, alloHSCT following
reduced intensity conditioning; AutoHSCT, autologous hematopoietic stem
cell transplantation; CR, complete remission; FLT3-ITD, fms-like tyrosine
kinase 3 internal tandem duplication; IQ, interquartile range; NPM1,
nucleophosmin-1; PRT, post-remission treatment; WBC, white blood
cell count.
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RIC reduced relapse more strongly, RFS appeared not statistically
significantly different as compared with chemotherapy (66 ± 6%,
71 ± 7% or 67 ± 14 vs 58 ± 7%, respectively, P= 0.78, Figure 3b,
Table 2 and Supplementary Table 2). Limiting the analysis to
strictly favorably risk patients with an early CR (after one cycle of
induction chemotherapy) did not show any differences in OS
or RFS.

Intermediate risk (NPM1 wild-type without FLT3-ITD or low FLT3-ITD
allelic ratio). Recipients of RIC alloHSCT showed significantly
better OS as compared with chemotherapy (63 ± 7% vs 39 ± 6%,
respectively, P= 0.046). AutoHSCT and MAC alloHSCT had similar
OS, which was not significantly different as compared with
chemotherapy or RIC alloHSCT. RFS was improved by RIC alloHSCT
as compared with chemotherapy (59 ± 7% vs 30 ± 5%, respec-
tively, P= 0.008, Figure 3d). AutoHSCT and MAC alloHSCT reduced
relapse more strongly as compared with chemotherapy, but RFS
was not significantly different (40 ± 5%, 44 ± 5% vs 30 ± 5,
respectively, P= 0.20, Figure 3d, Table 2 and Supplementary
Table 2). These results remained similar in patients with an early
CR with improved OS and RFS by RIC alloHSCT as compared with
chemotherapy.

Poor risk (FLT3-ITD high-mutant to wild-type ratio). OS and RFS in
patients with a FLT3-ITD mutant to wild-type ratio of 40.50 are
very poor (Supplementary Figures 1A and B). Numbers of patients
were low hampering a reliable comparison of the different types
of PRT.

Multivariable analysis in molecularly intermediate-risk patients
Table 3 shows the results of the multivariable analysis with
adjustment for type of PRT, sex, age, white blood cell count below
or above 100 and late CR. OS and RFS were better by RIC alloHSCT
as compared with chemotherapy (hazard ratio (HR) 0.56, P= 0.022
and HR 0.50, P= 0.004, respectively) and autoHSCT (HR 0.60,
P= 0.046 and HR 0.60, P= 0.043, respectively), whereas NRM
was not significantly different comparing RIC alloHSCT with
chemotherapy or autoHSCT (HR 2.54, P= 0.16 and HR 1.58,
P= 0.42, respectively). Although no significant differences were
found comparing autoHSCT and chemotherapy, the risk of relapse
after autoHSCT was reduced with a HR of 0.71, P= 0.087. RFS was

improved comparing MAC alloHSCT with chemotherapy (HR 0.67,
P= 0.048), with a strongly decreased risk of relapse (HR 0.20,
Po0.001) and counterbalancing increased risk of NRM following
MAC alloHSCT (HR 9.14, Po0.001). OS and RFS following
autoHSCT or MAC alloHSCT yielded similar results with an reduced
risk of relapse following MAC alloHSCT as compared with
autoHSCT (HR 0.29, Po0.001), but increased the risk of NRM
(HR 5.70, Po0.001). Furthermore, increasing age exhibited a
significant HR for worse OS. In addition, late CR was associated
with a significantly increased HR for OS, RFS and relapse as
compared with CR after one cycle of induction chemotherapy.
Of note, time from CR1 to start of PRT and year of treatment
(before and after 2005) were added as factors to the model but
showed no significant effects on OS, RFS, relapse or NRM. In
addition, a sensitivity analysis of only patients receiving PRT
after 2005 showed similar results for PRT on all outcome
parameters.

DISCUSSION
The preferred type of PRT in patients with CN-AML in CR1
continues to be debated. Molecular diagnostics provide additional
prognostic information to further stratify patients with CN-AML in
CR1. Here, we demonstrate that type of PRT does not differentially
affect outcome in the favorable group of patients with mutated
NPM1 without FLT3-ITD. Outcome in patients with a high allelic
ratio of FLT3-ITD appeared very poor, with low patient numbers
hampering a comparison by type of PRT. In contrast, outcome by
type of PRT appeared to differ in a larger intermediate group,
characterized by FLT3-ITD with a low allelic ratio and wild-type
NPM1 without FLT3-ITD AML. RIC alloHSCT appeared associated
with significantly better OS and RFS as compared with
chemotherapeutic PRT, whereas MAC alloHSCT and autoHSCT
yielded similar OS, which did not significantly differ from PRT by
chemotherapy.
The FLT3-ITD is an important molecular determinant of

AML risk classification and outcome.4,5,31 Here, not only FLT3-ITD
itself, but especially the mutant to wild-type ratio strongly affected
outcome with poor outcome for patients with a high allelic
ratio. Based on these and previous results, the FLT3-ITD allelic
ratio should be included in AML risk classifications and PRT
decision-making.7–10,19,32 PRT has not extensively been studied in
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Figure 3. OS and RFS in molecular subcategories by post-remission treatment. OS and RFS in molecularly favorable risk (a) and (b) and molecularly
intermediate-risk (c) and (d) patients with CN-AML in first complete remission from start of post-remission treatment. Molecularly favorable
includes patients with mutated NPM1 without FLT3-ITD, and molecularly intermediate includes patients with wild-type NPM1 without FLT3-ITD or
patients with a low allelic ratio of FLT3-ITD. Of note, numbers of patients at risk (indicated below the x axis) differ from the patient numbers
(indicated in Table 1 and within the figure) because of the time-dependent nature of this analysis, which allows for time to transplantation by
switching patients at the time of allograft in CR1 to the transplantation curve. Auto, autologous hematopoietic stem cell transplantation; Cox LR,
cox likelihood ratio; CT, chemotherapy; F, number of failures (i.e., death whatever the cause); MAC, myeloablative conditioning; N, number of
patients; RIC, reduced intensity conditioning hematopoeitic stem cell transplantation.

Table 2. Outcome by post-remission treatment in CN-AML patients subclassified by NPM1 and FLT3-ITD mutational status

Molecular subgroup Outcome at 5 years (%) by post-remission treatment

Chemotherapy AutoHSCT AlloMAC AlloRIC

No. OS RFS No. OS RFS No. OS RFS No. OS RFS

Favorable (NPM1mut without FLT3-ITD) (n= 162) 51 68± 7 58± 7 60 71± 6 66± 6 39 74± 7 71± 7 12 67± 14 67± 14
Intermediate (n= 328) 82 39± 6 30± 5 104 47± 5 40± 5 90 47± 5 44± 5 52 63± 7 59± 7
NPM1wt without FLT3-ITD (n= 184) 43 43± 8 27± 7 56 48± 7 40± 7 53 54± 7 52± 7 32 65± 9 59± 9
NPM1mut FLT3-ITD mut to wt ratio o0.50 (n= 104) 30 44± 9 42± 9 33 45± 9 35± 8 27 41± 9 37± 9 14 42± 13 42± 13
NPM1wt FLT3-ITD mut to wt ratio o0.50 (n= 40) 9 0± 11 0± 0 15 49± 14 50± 14 10 30± 14 20± 13 6 100± 0 100± 0

Poor (FLT3-ITD mut to wt ratio 40.50) (n= 31) 15 20± 10 7± 6 4 50± 25 25± 22 8 13± 12 13± 12 4 25± 22 25± 22

Abbreviations: AlloMAC, allogeneic hematopoietic stem cell transplantation following myeloablative conditioning; AlloRIC, alloHSCT following reduced
intensity conditioning; AutoHSCT, autologous hematopoietic stem cell transplantation; CN-AML, cytogenetically normal-acute myeloid leukemia; FLT3-ITD,
fms-like tyrosine kinase 3 internal tandem duplication; mut, mutant; NPM1, nucleophosmin-1; OS, overall survival; RFS, relapse-free survival, wt, wild-type.

PRT in CN-AML by NPM1 mutations and FLT3-ITD allelic ratio
J Versluis et al

30

Leukemia (2017) 26 – 33 © 2017 Macmillan Publishers Limited, part of Springer Nature.



patients with AML, with a high allelic burden of FLT3-ITD, but
improved outcome following alloHSCT has been suggested in
patients with a FLT3-ITD allelic ratio of 40.50.10,19,32 In our study,
the few surviving patients with a high allelic burden of FLT3-ITD
were recipients of an alloHSCT in either CR1 or CR2, which
compares well with recent results by Ho et al.,19 suggesting
improved outcome by alloHSCT.
Studies evaluating PRT by alloHSCT in patients with FLT3-ITD

irrespective of the allelic ratio reported different results. While a
study from the French GOELAMS study group reported improved
outcome by alloHSCT,33 a recent prospective-matched pair study
failed to show such a survival benefit.34 The evaluation of all FLT3-
ITD patients, including an unknown number of patients with a
high allelic ratio, may have impacted on those results, questioning
the comparability of those and other studies, focusing on FLT3-
ITD. We combined patients with a low FLT3-ITD allelic ratio
(irrespective of NPM1 mutations) and patients with wild-type
NPM1 without FLT3-ITD into an intermediate-risk group because of
similar OS and RFS in these subgroups. In that molecularly
intermediate-risk group, OS and RFS were significantly better
following RIC alloHSCT as compared with chemotherapy, which
was confirmed by multivariable analysis stratified by study cohort
and following adjustment for covariates. Of note, with a median
follow up of 72 months, NRM was low and a graft-vs-leukemia
effect was preserved as evidenced by a HR of 0.35 for relapse as
compared with chemotherapy. Although MAC alloHSCT showed
an even stronger HR of 0.20, the anti-leukemic activity was
counterbalanced by a significantly higher NRM (HR 9.14). Although
a number of studies have shown a higher relapse rate following
RIC alloHSCT as compared with MAC alloHSCT,35–41 the net effect
in terms of OS and RFS in well-defined and sufficiently sized
subcategories of AML CR1 patients is still underreported. Here, we
show that the balance of a preserved graft-vs-leukemia and a low
NRM eventually resulted in favorable outcome in molecularly
intermediate-risk AML CR1 recipients, who proceeded to RIC
alloHSCT. MAC alloHSCT and autoHSCT yielded similar outcomes
in that intermediate-risk category of patients. Most comparative
PRT studies in molecular subgroups compare alloHSCT with
chemotherapy, but lack a group of autoHSCT recipients. Here, a
large subgroup of recipients of an autograft was also included.
Although autoHSCT was not significantly associated with
improved outcome as compared with chemotherapy or MAC
alloHSCT, autoHSCT may provide a valuable alternative PRT in
these subgroups, especially in patients lacking a well-matched

donor or in patients at higher risk for NRM determined by risk
scores.42–44 In addition, the incorporation of minimal residual
disease status assessed by flow cytometry45,46 or molecular
analysis47 may add to that decision-making by the preferred
application of autoHSCT in minimal residual disease negative,
molecularly intermediate-risk patients in CR1. Of note, while RFS
following autografting estimated 40% in the intermediate-risk
group, OS was 47%, indicating that a considerable number of
relapsing patients may be rescued by an allograft in CR2, as
previously reported in AML patients.48–50

Combining results from two cooperative groups may implicate
limitations. Although the induction chemotherapeutic regimens
varied among the different study groups, all patients received
cytarabine-/anthracycline-based chemotherapy, obtained a hema-
tological CR1 within two cycles of induction chemotherapy, and
outcome was not significantly different among the different study
groups. In addition, differences in PRT approach among the study
groups may have resulted in selection bias, although that bias is
presumably similar among the three molecularly defined groups
in the analysis, which were not differentially approached by the
study groups. The analysis presented did not prospectively
compare RIC and MAC regimens prior alloHSCT, which withholds
us from conclusions in that regard. Given the significant lower
NRM associated with RIC, as shown in many studies, the
presentation of RIC alloHSCT and MAC alloHSCT as two distinct
categories is, however, warranted. The latter notion is supported
by results of the prospective randomized US study, showing
different outcomes following either conditioning type.51 Although
MAC alloHSCT is associated with a significantly stronger anti-
leukemic effect, its counterbalancing effect on NRM need to be
taken into account, especially in older patients with comorbidities.
Therefore, as advocated before,5 we prefer to apply either
treatment modality in a personalized fashion, tailored by risk
factors, predicting NRM.52

Collectively, these results suggest that RIC alloHSCT may
provide better survival than chemotherapeutic PRT in patients
with CN-AML with wild-type NPM1 without FLT3-ITD or FLT3-ITD
with a low allelic burden. AutoHSCT may be applied if not eligible,
if no well-matched donor is available in CR1 or in case of absence
of minimal residual disease. Although MAC alloHSCT is associated
with the strongest anti-leukemic effect, our results suggest that it
might preferentially be applied in patients with an acceptable risk
for complications and NRM.

Table 3. Multivariable analysis in molecularly intermediate-risk patientsa

OS RFS Relapse NRM

HRa 95% CI P-value HRa 95% CI P-value HRa 95% CI P-value HRa 95% CI P-value

Post-remission treatment
Auto vs CT 0.93 0.63–1.38 0.72 0.83 0.57–1.20 0.32 0.71 0.48–1.05 0.087 1.60 0.40–6.48 0.50
MAC alloHSCT vs CT 0.86 0.57–1.30 0.48 0.67 0.45–1.00 0.048 0.20 0.12–0.35 o0.001 9.14 2.74–30.42 o0.001
RIC alloHSCT vs CT 0.56 0.34–0.93 0.022 0.50 0.31–0.82 0.004 0.35 0.20–0.62 o0.001 2.54 0.65–9.95 0.16
MAC alloHSCT vs Auto 0.93 0.62–1.38 0.72 0.81 0.55–1.19 0.29 0.29 0.16–0.50 o0.001 5.70 2.33–13.89 o0.001
RIC alloHSCT vs Auto 0.60 0.36–1.00 0.046 0.60 0.37–1.00 0.043 0.49 0.27–0.89 0.014 1.58 0.51–4.88 0.42

Sex (female vs male) 0.99 0.73–1.34 0.94 0.96 0.72–1.29 0.80 1.00 0.71–1.39 0.99 0.81 0.44–1.48 0.48
Ageb 1.19 1.03–1.37 0.014 1.08 0.95–1.23 0.26 1.07 0.92–1.24 0.37 1.17 0.86–1.60 0.29
WBC at diagnosis (4100 vs ⩽ 100) 1.43 0.96–2.14 0.086 1.34 0.90–1.99 0.16 1.93 1.23–3.02 0.006 0.49 0.19–1.25 0.10
CR (late vs early) 1.55 1.09–2.20 0.019 1.51 1.07–2.12 0.022 1.81 1.21–2.70 0.006 1.21 0.63–2.33 0.57

Abbreviations: Allo, allogeneic hematopoietic stem cell transplantation; Auto, autologous hematopoietic stem cell transplantation; CI, confidence interval; CR,
complete remission; CT, chemotherapy; HR, hazard ratio; HSCT, hematopoietic stem cell transplantation; MAC, myeloablative conditioning; NRM, non-relapse
mortality (with event death in first CR and censored at relapse); OS, overall survival (with event death whatever the cause); RFS, relapse-free survival (with
event death in first complete CR or relapse); Relapse (with time as RFS and with event relapse and censored at death in first CR); RIC, reduced intensity
conditioning; WBC, white blood cell count. aThe HRs are the estimates of the effect of covariates for each outcome parameter, adjusted for sex, age, CR (late vs
early), WBC at diagnosis below or above 100 and the type of post-remission treatment. bLinear with estimates of 10 years difference.
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