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Thesis Abstract

We explore three problems in this thesis and develop solution methods for each
problem. First, an inventory routing problem for a perishable product with stochastic
demands is considered and different approximate solution methods are developed to
solve. Based on computational experiments, the solution methods are compared in
terms of average profit, service level, and actual freshness. The impact of relevant
parameters on the performance of the solution methods is investigated. Managerial
insights are drawn by analyzing the impact of shelf life and store capacity on the profit.
The value of considering uncertainty and the value of accessing full information are
measured. The computational results highlight that a simple ordering policy can often
replace a more sophisticated solution method, while preserving the same efficacy.

Second, we introduce a vehicle routing problem (VRP) where a set of stores places
deterministic orders to a logistics service provider (LSP) for two successive periods.
Deliveries requested in each period can be shifted by the LSP to the other period,
possibly with modified quantities. The LSP incurs a penalty for any diversion from the
initial delivery period. The data regarding shifted delivery quantities and penalties are
provided by the stores. From the perspective of the LSP, diversions could be beneficial
if savings in the routing costs outweigh the penalties. In this work, we introduce a
new two-period VRP model where the LSP seeks to improve its total cost, compared to
solving two independent VRPs with fixed delivery periods, by allowing deliveries to be
shifted. We solve this model to optimality by an efficient branch-and-price algorithm
implementing several cutting-edge techniques. We draw algorithmic and managerial
insights based on our test instances.

Third, a two-period VRP is considered where the orders placed by stores for each
period can be partially shifted to the other period, given that the sum of the delivery
quantities in two periods to each customer is fixed. A linear penalization of delivery
shifts is assumed based on the quantity shifted. We represent two mixed integer linear
programming (MILP) formulations for the problem. A column-row generation algo-
rithm to solve the LP-relaxation of the first formulation is developed. To solve the
LP-relaxation of the second formulation, we develop a column generation algorithm.
Details of two label-setting algorithms to solve the pricing problems of the column-row
generation and column generation algorithms are discussed. Numerical results can be
compared with a similar model in which only full delivery shifts are allowed.
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Chapter 1

Introduction

The subject of this thesis falls in the domain of supply chain management (SCM). In
SCM, the flow of products and services from origin to point of destination is planned
and monitored, with the objective of minimizing costs or maximizing profit. Production
systems exploit benefits of SCM by synchronizing the activities of their procurement,
production, and sale units. SCM is also applied to service systems, where the coordina-
tion of activities in procurement and sale units (both including distribution) is planned.
In practice, there are often several points of origin to pick up raw materials, several
production units, possibly geographically scattered or dealing with different types of
products, and multiple destination points where the final products should be delivered.
The assumption of multiplicity of origin and destination points are also valid in many
service systems.

An omnipresent application of SCM in service systems is observed in food retail
chains, where products are shipped from suppliers to warehouses and from warehouses
to stores to make them available to end customers. Consider a simplified version of the
addressed SCM service system with a single origin point (supplier or warehouse) and
a set of stores as destination points. Assume that the only decisions to be made in such
a simplified system are on inventory (how much and how often to deliver to each store)
and distribution (how to dispatch vehicles to deliver to stores). Devising a centralized
decision making model in order to optimize total costs or total profits of this network
is not a trivial task, and often needs some additional simplifying assumptions. In food
retail chain systems, there are often more features which add to the complexity of the
problem, such as stochastic demands from end customers and multiple dry and fresh
products. Despite imposing simplifying assumptions, mathematical models are valu-
able because of providing insights for practitioners and managers. The more realistic
the assumptions are, the more reliable the insights are.

1.1 Research incentives
The research carried out in this thesis is motivated by the inventory control of perish-
able products in food retail industry, where multiple perishable products each with a
limited shelf life are distributed from a central warehouse to a set of geographically
dispersed sale points. This has been a crucial decision-making problem for retail chain
managers worldwide for decades, due to a very narrow profit margin in food retail
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industry. Although the problem has been studied by many researchers, but retail man-
agers always look for new opportunities to increase revenue and service level, decrease
costs, and consequently improve the profit.

Two of the most common inventory control policies in food retail chains are simpli-
fied versions of retail managed inventory (RMI) policy and periodic deliver-up-to-level
(PUL) policy. Both policies need to decide on delivery quantities and delivery routes,
where each delivery route is a sequence of stores to be visited by a vehicle. In the
RMI policy, each store applies its own inventory control system and places its orders
independently from other stores with the objective of minimizing long-term inventory
costs. In this system, either the transportation costs are completely neglected or a fixed
delivery cost is considered as the transportation cost incurred by each store when it
is visited. Then, from the perspective of a logistics service provider (LSP), decisions
are made on delivery routes, i.e. transportation decisions, in each period with the ob-
jective of minimizing transportation costs in the current period. Under a PUL policy,
however, a centralized decision making system decides how often each store should be
visited depending of how small or big its daily demand is. Big stores are visited every
day, whereas small stores are visited every other day or every three days. The delivery
quantity in each visit is up to a predetermined level, e.g. store capacity. Then, a trans-
portation fleet is used to plan delivery routes in each period such that the transportation
cost in the current period is minimized.

The mentioned policies are simple to implement and abundant in practice but not
efficient enough in terms of overall long-term inventory and routing costs. The ineffi-
ciency is mainly due to the lack of synchronization between inventory and transportation-
related decisions. Many other relevant works in the literature which take into account
the synchronization, neglect perishability of products or stochasticity of demand from
end customers. In this sense, there is a research gap between the real problem and the
problems addressed in the literature.

1.2 Research questions and objectives
The main research questions of this thesis are:

• Can we formulate an optimization model to help retail chain managers to make
decisions on inventory control and routing of perishables?

• Can the model be solved by the existing solution methods in the literature? If
not, what are the shortcomings? Can we develop new solution methods to solve
it? How do they compare?

• What insights can be drawn out of the problem and by applying the solution
method(s)?

The main objective of this research is to provide useful insights for supply chain
managers in food retail chains on inventory control and distribution of fresh products.
More specifically, we aim at providing a practical way about how such a decision mak-
ing problem can be formulated as a mathematical model, and how the resultant model
can be solved. The mathematical models we develop in this thesis may not perfectly
match the real problem that a food retail chain faces. This is because inventory con-
trol and distribution policies are different in retail chains. However, similar to other
scientific works, this research provides some generic models which can be viewed as
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benchmarks for many retail chains whatever their inventory control and distribution
policies are.

From a mathematical point of view, a very essential objective of this research is to
synchronize the inventory and routing-related decisions. A centralized inventory con-
trol system to manage inventory levels at a set of stores is know under the appellation
of vendor-managed inventory (VMI) in the literature. Perhaps the best known math-
ematical problem in the framework of a VMI policy is the inventory routing problem
(IRP), where a centralized decision making system is established to coordinate delivery
quantities and delivery routes to a set of geographically scattered stores during a plan-
ning horizon, so that the overall inventory and routing costs are minimized and none of
the stores runs out of inventory. In the stochastic IRP (SIRP), where demands from end
customers are uncertain, the no-shortage constraint is replaced by satisfying a service
level. This thesis studies an SIRP for fresh products, i.e., products with a limited shelf
life. We consider realistic assumptions in inventory routing of products in retail chains.
These include stochasticity of demands from end customers, perishability of products,
and high service level.

1.3 Research restrictions
In a food retail chain, fresh products are usually shipped together in refrigerated trucks.
This implies that inventory and routing decisions of several fresh products should be
coordinated, i.e., an SIRP for multiple fresh products should be developed. Due to the
complexity of the real problem, we confine ourselves to a single perishable product, as
is the case in the main body of the literature. Nonetheless, careful analysis of an SIRP
for fresh products may provide useful insights which are also applicable to multiple
products. Indeed, this research has led to some of these insights.

1.4 Structure of the thesis
In order to address the research questions and achieve the research objectives, we have
conducted an extensive literature review in Chapter 2 on the most relevant topics to
this research. More specifically, we discuss similarities and differences among the
VRP-type problems. In Chapter 3, we define a classical SIRP for perishables with a
constraint on the target service level. We develop different solution methods to solve
the problem and compare them in terms of average profit, service level, and actual
freshness. As part of the most efficient solution method to solve the SIRP, we have to
solve a two-period VRP with deterministic demands. Although Chapter 3 deals with
solving the latter problem heuristically, a more formal definition and formulation of
it is presented in Chapter 4, where an exact solution method is developed to solve it
while considering an additional assumption. Indeed, in Chapter 4, a VRP is considered
where there are initial deterministic quantities to be delivered to a set of stores in two
successive periods. The initial delivery in each period can be fully shifted to the other
period, possibly with modified quantities. A penalty is incurred for any diversion from
the initial delivery period. The objective is minimizing the total routing and shifting
costs. A branch-and-price algorithm is developed to solve the model to optimality. In
Chapter 5, we define the same two-period VRP as in Chapter 3 with the possibility
of shifting the deliveries partially, rather than fully. We assume that the sum of the
delivery quantities in two periods is fixed and shifting penalties are proportional to
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the quantity shifted. Two mixed integer linear programming (MILP) formulations are
presented. A column-row (resp., column) generation algorithm is developed to solve
the LP-relaxation of the first (resp., second) MILP formulation. Finally, Chapter 6
concludes the thesis and discusses further research perspectives.
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Chapter 2

A classified literature review

2.1 Introduction
In this chapter, we discuss VRP-type problems, namely, the classical VRP, multi-period
VRP, periodic VRP, and inventory routing problem. The underlying assumptions for
each problem are stated, and the main parameters and decision variables are introduced.
We also review the inventory routing problem and inventory control of perishables.

2.2 Vehicle routing problem
The vehicle routing problem (VRP) is defined as the problem of designing delivery
routes to a set of geographically scattered stores, subject to side constraints, with the
objective of minimizing total routing costs. Each store places an order which must
be delivered through a single visit. Each route starts from and ends at a depot and
includes a set of customers. By the VRP we mean the capacitated VRP with time
windows, where each vehicle has a limited capacity and each store must be visited
within an acceptable time window. The time window also applies to the depot, which
shows the earliest departure time from and the latest arrival time to the depot. The VRP
is defined as follows:

Given:
- G = (V,A): a complete directed graph, where V = {0,1, · · · ,n} represents a depot
and a set of geographically scattered stores, and A = {(i, j) ∈ V, i 6= j} is a set of arcs
(i, j) linking stores i and j,
- ci j: cost of traversing arc (i, j),
- di: demand of store i,
- [ei, li]: time window during which customer i must be visited,
- K: number of vehicles each with capacity Q.

Find:
- a set of routes, where each route is a sequence of customers.

Such that:
- each vehicle is able to perform one route,
- each route starts from and ends at the depot and includes each customer at most once
(route elementarity),
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- each customer is visited by exactly one vehicle (non-split deliveries),
- each customer is visited within its time window,
- the sum of the demands of customers included in each route does not exceed the
vehicle capacity Q,
- the number of routes does not exceed the total number of vehicles available K.

Objective:
- total cost of traversed arcs (to be minimized).

A fixed cost may be considered when using each vehicle. If so, the objective func-
tion is total cost of traversed arcs and fixed costs. There are two principal mathematical
formulations of the VRP: arc-flow formulation and route-based formulation. In an arc-
flow formulation, the binary decision variables are defined on arcs, where xi j takes
value 1 if arc (i, j) is used in the solution and 0 otherwise. The constraints include:
(1) flow-conservation constraints (input flow to each customer must be equal to output
flow from it), (2) vehicle capacity constraints (total load on each vehicle cannot exceed
its capacity), (3) time window constraints (each customer as well as the depot must
be visited within its time window), (4) sub-tour elimination constraints (a route cannot
start from and end at any node but the depot), (5) number of vehicles (total output flow
from the depot cannot exceed the fleet size). The pitfall of an arc-flow formulation is
that it contains a huge number of sub-tour elimination constraints, i.e., one constraint
for each subset of customers. However, the arc-flow formulation is used when one aims
to apply a branch-and-cut (b&c) algorithm to solve it.

In a route-based formulation, on the other hand, the binary decision variables are
defined as feasible routes, where xr takes value 1 if feasible route r is used in the so-
lution and 0 otherwise. The feasibility of a route is defined in terms of starting from
and ending at the depot while visiting each customer at most once (elementarity), re-
specting vehicle capacity, and respecting time windows. Consequently, the constraints
include: (1) set-partitioning constraints (exactly one of the routes covering customer i
must be used in the solution), (2) number of vehicles (total number of routes used in a
solution cannot exceed the fleet size). The set-partitioning constraints can be replaced
by set-covering constraints (at least one of the routes covering customer i must be used
in the solution) without affecting the single visit requirement to each customer, while
being more efficient in terms of convergence [Feillet, 2010]. This is due to the fact that
the dual prices associated with the set-covering constraints are non-negative, whereas
those associated with the set-partitioning constraints are free in sign. The pitfall of a
route-based formulation is that it lends itself to column generation algorithms which
contain a huge number of decision variables, i.e., feasible routes, especially when ve-
hicle capacity is large and time windows are not very restrictive. The advantage, how-
ever, is that column generation-based algorithms, branch-and-price algorithm (b&p),
or branch-and-price-and-cut algorithm (b&p&c) developed to solve a route-based for-
mulation, usually provide reasonably tight lower bounds as compared to the algorithms
developed to solve arc-flow formulations.

In practice, several variants of the VRP have been developed due to the diversity of
underlying assumptions and constraints faced in real-life applications. These include
the VRP with multiple use of vehicles [Azi et al., 2010], the VRP with split deliver-
ies [Archetti et al., 2006a,b], the VRP with pick-up and deliveries [Dell’Amico et al.,
2006], the VRP with selective pick-up and deliveries [Gutierrez-Jarpa et al., 2010],
and the multi-depot VRP [Cordeau et al., 1997]. Therefore the VRP may be regarded
as a class of problems. A rich body of scientific literature has been developed on the
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VRP variants, and successful implementation of practical solution methods have been
carried out by researchers from heuristics to Metaheuristics and from Matheuristics to
exact methods. The reader is referred to Laporte [2009] as a great survey on exact meth-
ods, heuristics, and Metaheuristics to solve VRPs, and Archetti and Speranza [2014]
as a specialized survey on Matheuristics to solve the VRP and some of its variants.
The most successful exact methods to solve the VRP are column generation-based al-
gorithms which use the route-based formulation, namely b&p and b&p&c algorithms.
The most efficient b&p algorithms are developed in Righini and Salani [2006]; Feillet
et al. [2004]; Jepsen et al. [2008]; Baldacci et al. [2011a]; Lübbecke and Desrosiers
[2005]. As the classical VRP is not the main focus of this research, we avoid further
discussion on it.

2.3 Multi-period vehicle routing problem
The multi-period vehicle routing problem (MPVRP) is an extension of the VRP where
each customer places an order which must be served within a period window, i.e., a
set of consecutive periods during a finite planning horizon T . In other words, each
order i has a release date (rdi) and a due date (ddi), which represents, respectively, the
earliest period and the latest period in which the order can be delivered to the associated
customer. The MPVRP is defined as follows:

Given:
- T : length of the planning horizon,
- G = (V,A): a complete directed graph, where V = {0,1, · · · ,n} represents a depot
and a set of geographically scattered customers, and A = {(i, j) ∈ V, i 6= j} is a set of
arcs (i, j) linking customers i and j,
- ci j: cost of traversing arc (i, j),
- di: demand of customer i,
- [rdi,ddi]: period window during which customer i must be visited,
- [ei, li]: time window of customer i,
- K: number of vehicles each with capacity Q.

Find:
- a set of routes for each period, where each route is a sequence of customers.

Such that:
- each vehicle is able to perform one route per period,
- each route starts from and ends at the depot and includes each customer at most once
(route elementarity),
- each customer is visited exactly once within its period window and by exactly one
vehicle (a single non-split delivery during the period window),
- the sum of the demands of customers included in each route does not exceed the
vehicle capacity Q,
- the time window for each store is respected if it is visited,
- the number of routes in each period does not exceed the total number of vehicles
available K.

Objective:
- total cost of traversed arcs during the planning horizon (to be minimized).

Similar to the VRP, arc-flow and route-based formulations are used to deal with
an MPVRP, and the same decision variables can be exploited by adding a time dimen-
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sion. In other words, in an arc-flow formulation the binary decision variable xi jt takes
value 1 if arc (i, j) is used in period t in the solution and 0 otherwise. Similarly, in a
route-based formulation the binary decision variable xrt takes value 1 if feasible route
r is used in period t in the solution and 0 otherwise. In an arc-flow formulation, the
constraints for each period are: (1) flow-conservation, (2) vehicle capacity, (3) time
window (if applicable) or the total travel time for each route, (4) sub-tour elimination,
(5) number of vehicles. Moreover, each customer must be visited exactly once during
its period window, say, (6) period window constraints. In a route-based formulation,
the constraints are: (1) set partitioning (or set covering) constraints, i.e., only one of
routes covering customer i is used during the entire planning horizon, (2) number of
vehicles, i.e., at most K vehicles are used in each period. All other types of constraints
are handled while generating feasible routes for each period. Route r in period t is fea-
sible given that it includes a subset of customers for which t is included in their period
windows, respects the time window of each customer, respects the vehicle capacity,
and is elementary.

In an MPVRP, the delivery is guaranteed within the period window. In addition to
the period window, each customer may impose a time window within which it must
be visited, whatever the visiting period is. A Logistics Service Provider (LSP) decides
on the delivery period to each customer and the delivery routes in each period, given
that the delivery quantities are fixed and non-split. The length of the period window
depends on the level of service to be provided to each customer. Contracts are often
established between supplier and customers whose cost depends on the length of the
period window; the narrower the period window, the higher the service level and the
more expensive the contract [Athanasopoulos and Minis, 2013; Archetti et al., 2015a].

Applying efficient exact algorithms to solve the classical MPVRP is quite straight-
forward. As a case in point, Athanasopoulos and Minis [2013] develop a b&p algo-
rithm for the MPVRP. An elementary shortest path problem with resource constraints
(ESPPRC) is solved for each period to identify new routes with negative reduced costs.

Similar to the VRP, extensions of the MPVRP have been examined by researchers.
Mancini [2016] considers a MPVRP with additional features such as heterogeneity of
fleet and multiple depots. He develops a mixed integer programming (MIP) formu-
lation of the problem, and exploits the adaptive large neighborhood search (ALNS)
heuristic to solve it. Archetti et al. [2015a] present different arc-flow formulations,
enhanced by valid inequalities, for an MPVRP. Their setting includes not only regular
customers with due dates within the planning horizon, but also a set of customers with
due dates beyond it. The problem formulation allows postponing service of the latter
set of customers to some unknown period beyond the planning horizon at a cost, i.e.,
they do not have to be served. For such customers, postponement penalties proportion-
ate to the length of their period windows are taken into account. The models are solved
using a commercial b&c solver.

Dynamism has different meanings in the VRP context. In one definition of a dy-
namic MPVRP (DMPVRP), customers place orders dynamically during the planning
horizon. For instance, Wen et al. [2010] and Albareda-Sambola et al. [2014] consider a
DMPVRP, where at the end of each period, exact information about the orders placed
in that period and earlier periods is available, and partial information about the orders
upcoming in subsequent periods is gradually revealed. Wen et al. [2010] formulate the
problem as an integer non-linear programming (INLP) problem and propose a heuristic
method to solve it. They consider the weighted linear combination of three objective
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functions to be minimized, namely, total travel time, total number of waiting periods,
and unbalanced workload in different periods. Albareda-Sambola et al. [2014] develop
a formula for the DMPVRP to measure the approximate profit of serving each cus-
tomer in the current period. In order to decide which customers should be served in the
current period, they formulate a VRP where the objective function accounts for profit
collection and routing costs. Angelelli et al. [2007a] and Angelelli et al. [2007b] handle
a DMPVRP with a single uncapacitated vehicle where, in each period, a set of orders
appear. The release date for orders is 1 and the due date is either 1 or 2. Demands with
due date 2 can be interpreted as regular demands while demands with due date 1 are
urgent demands. The authors consider a planning horizon of two periods and analyze
the competitive ratio of three simple heuristics to determine which orders should be
delivered in period 1. The heuristics are: (a) deliver orders with due date 1, (b) deliver
orders with due date 1 or 2, and (c) deliver orders with due date 1 and a subset of orders
with due date 2 which are close to the orders with due date 1. The competitive ratio is
a measure of quality of an online algorithm, in terms of a ratio between the value of the
solution computed by the algorithm and the value of the optimal solution that can be
obtained when demands are known over the whole planning horizon. Angelelli et al.
[2009] analyze a similar DMPVRP and develop a variable neighborhood search (VNS)
heuristic to solve the problem. Contrary to Angelelli et al. [2007a] and Angelelli et al.
[2007b] where the planning horizon is two periods, Angelelli et al. [2009] consider a
longer planning horizon and analyze the impact of short term strategies on the average
operational costs per period.

Andreatta and Lulli [2008] consider an MPVRP with stochastic demands and a sin-
gle uncapacitated vehicle. Each node in the network has a known stationary probability
to have an urgent request (to be satisfied in the same period), a regular request (to be
satisfied in either the same period or the subsequent period), or no request. The objec-
tive is to minimize the expected cost per period of serving all demands. The authors
use a Markov decision process (MDP) to solve the problem. Each state of the system
shows the nodes with urgent requests, the nodes with postponed regular requests, and
the nodes with newly placed regular requests. Given the current state of the system,
the decision is which newly placed regular requests (along with urgent and postponed
requests) should be served in the current period and in which order. Table 2.1 presents
some of the MPVRP publications most relevant to this thesis, their characteristics, and
the solution methods applied to solve the problems.

2.4 Periodic vehicle routing problem
The periodic VRP (PVRP) is a generalization of the VRP in which vehicle routes must
be constructed over a planning horizon of T periods, during which a total demand of
Wi units must be delivered to customer i. There is a set of feasible delivery sched-
ules Si for customer i [Beltrami and Bodin, 1974; Christofides and Beasley, 1984], and
one of these schedules must be assigned to i. Assigning a schedule to a customer im-
plies that the customer will receive service in the periods specified in that schedule.
For example, S1 = {{Monday,Wednesday,Friday},{Tuesday,T hursday,Saturday}}
implies that customer 1 can be visited either on Mondays-Wednesdays-Fridays or on
Tuesdays-Thursdays-Saturdays in a one-week planning horizon, and the chosen sched-
ule is repeated every week. Let |si| indicate the number of visits to customer i according
to schedule si. Then, assigning delivery schedule si to customer i implies that the de-
livery quantity to customer i at each visit is Wi

|si| . The PVRP is defined as follows:
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Table 2.1: Multi-period vehicle routing models and solution methods: finite planning
horizon

Study Demand Number
of
vehicles

Maximum
length of pe-
riod window

Length of
the planning
horizon

Solution method

Angelelli et
al. [2007a]

dynamic single 2 2 heuristic

Angelelli et
al. [2007b]

dynamic single 2 2 heuristic

Angelelli et
al. [2009]

dynamic K 2 T > 2 VNS

Andreatta and
Lulli [2008]

dynamic single 2 infinite MDP

Wen et al.
[2010]

dynamic K > 2 T > 2 INLP formula-
tion; heuristic

Athanasopoulos
and Minis
[2013]

deterministic K > 2 T > 2 b&p

Albareda-
Sambola et al.
[2014]

dynamic K > 2 T > 2 ILP formulation;
VNS

Archetti et al.
[2015a]

deterministic K > 2 T > 2 commercial b&c
solver

Mancini
[2016]

deterministic K > 2 T > 2 MIP formulation;
ALNS

Given:
- T : length of the planning horizon,
- G = (V,A): a complete directed graph, where V = {0,1, · · · ,n} represents a depot
and a set of geographically scattered customers, and A = {(i, j) ∈ V, i 6= j} is a set of
arcs (i, j) linking customers i and j,
- ci j: cost of traversing arc (i, j),
- Wi: total demand of customer i for the entire planning horizon,
- Si: set of feasible delivery schedules for customer i,
- [ei, li]: time window of customer i,
- K: number of vehicles each with capacity Q.

Find:
- an allocation of a feasible schedule si in Si to customer i,
- a set of routes for each period, where each route is a sequence of customers.

Such that:
- each vehicle is able to perform one route per period,
- each route starts from and ends at the depot and includes each customer at most once
(route elementarity),
- each customer is visited at most once in each period (at most one non-split delivery
in each period),
- number of visits to customer i during the planning horizon is |si|,
- delivery quantity at each visit to customer i is Wi

|si| ,
- the sum of demands of the customers included in each route does not exceed the
vehicle capacity Q,
- the time window for each store is respected if it is visited,
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- total number of routes in each period does not exceed the total number of vehicles
available K.

Objective:
- total cost of traversed arcs during the planning horizon (to be minimized).

In some PVRPs, an explicit enumeration of delivery schedules for each customer is
not given. Instead, it is assumed that each customer i must be visited at a predetermined
frequency fi, i.e., customer i must be visited fi times during the planning horizon. A
fraction 1

f i of the total demand has to be delivered to customer i at each visit, i.e.,

di =
Wi
fi

is the delivery quantity at each visit [Francis et al., 2008]. Such problems may
enforce constraints on the minimum and maximum required spacing between deliveries
[Gaudioso and Paletta, 1992]. When the minimum and maximum spacing are the same,
say mi, it implies that deliveries to customer i must occur every mi periods Cordeau et
al. [1997]. In this case, the planning horizon T is the least common multiple of the mi
values. Hence, T

mi
is an integer number for all i and represents the number of times

customer i is to be served over the planning horizon. The key characteristic of the
PVRP is that the delivery quantity to each customer only depends on the number of
visits, i.e., the delivery quantity is Wi

|si| or Wi
fi

or mi·Wi
T . In fact, all these representations

can be viewed as specific cases of the PVRP definition with feasible delivery schedules
introduced earlier.

Customer capacity is not a constraint in the PVRP models, but it is implicitly ap-
plied when determining the frequency of visits or when enumerating the feasible deliv-
ery schedules. In many PVRP applications, customers with larger demands (or smaller
storage capacities) require to be visited more frequently as compared to customers with
smaller demands (or larger storage capacities). The examples include grocery distri-
bution, soft drink industry, and waste collection [Hemmelmayr et al., 2009a]. When
dealing with a PVRP with given delivery schedules, most of the works assume that the
number of visits in each delivery schedule, |si|, is a fixed number for each customer i.
In other words, all si in Si have the same number of delivery visits.

Most of the PVRP papers use an arc-flow formulation, where the decision variables
are: xt

i jk taking value 1 if vehicle k traverses arc (i, j) in period t and 0 otherwise,
and ys

ik taking value 1 if vehicle k visits customer i on schedule s and 0 otherwise.
Note that, in general, using index k for vehicles in VRP-type formulations dismisses
the necessity of including sub-route elimination constraints. Some formulations use
aggregated versions of the above variables as follows: x̃t

ik = ∑ j∈V xt
i jk taking value 1 if

vehicle k visits customer i in period t and 0 otherwise, and ỹs
i = ∑k∈K ys

ik taking value 1
if customer i is visited on schedule s. See Francis et al. [2008] for more details on the
arc-flow problem formulations. The route-based formulation defines zt

r taking value 1
if route r in period t is in the solution and 0 otherwise, and ỹs

i taking value 1 if customer
i is visited on schedule s and 0 otherwise. The latter formulation is seen in Baldacci et
al. [2011b].

Variants of the PVRP exist in the literature. The periodic traveling salesman prob-
lem (PTSP) is a special case of the PVRP restricted to one vehicle. The PVRP with
time windows (PVRPTW) generalizes the PVRP to include time windows for deliver-
ies to the customers. Cordeau et al. [1997] demonstrate that the MDVRP [Cordeau et
al., 1997; Vidal et al., 2012] can be viewed as a special case of the PVRP by consid-
ering each of T depots to be a day on a T -day planning horizon, and each customer
to require one delivery over that horizon. Recall that in the MDVRP, each vehicle is
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assigned to one depot from a set of depots, and the planning horizon is restricted to a
single day.

The PVRP arises in a variety of applications which can be classified into: (a)
pickup, (b) delivery, (c) pickup-delivery, and (d) routing for on-site service. Some
applications with pickup are: garbage collection where customers have the same fre-
quency with sparsely distributed customers or big street containers, waste collection at
hospitals or industrial sites, collection of recyclable materials, and goat milk collection.
The applications with delivery include: Coca-Cola products (some customers once a
week some twice a week), grocery customers (higher frequency for large customers
lower for small customers), hospital linens, vending machine stock. An application
with pickup-delivery is inter-library loan services. The applications with routing for
on-site service include: maintenance crews, quality inspectors, teaching assistants, and
home health care nurses [Campbell and Wilson, 2014].

Variants of the classical PVRP have been defined in the literature. As an instance,
Gaudioso and Paletta [1992] formulate a PVRP with the objective of minimizing the
maximum number of vehicles employed simultaneously over the planning horizon, i.e.,
the fleet size, where having multiple routes per vehicle is possible. They also impose
additional constraints on the minimum and maximum spacing between two successive
deliveries to each customer. They propose heuristic algorithms to solve the problem.

Heuristics have been used in the early works on the PVRP to solve the problem.
Beltrami and Bodin [1974] introduces two heuristic ideas: (1) route customers using a
Clarke and Wright procedure, then assign routes to days, and (2) assign customers to
delivery days randomly, then create routes for each day based on this assignment. In
the heuristic presented by Russell and Igo [1979], the authors cluster customers that
are close together and that have the same weekly delivery requirements. Then, they
consider three heuristics: (1) assign all daily customers to each day of the week, then
schedule the remaining customers based on the estimated costs of combining with cus-
tomers already scheduled on those days, (2) use link exchanges to improve the initial
solution, (3) use Clarke and Wright procedure to enforce the spacing of periodic deliv-
eries throughout the week. Christofides and Beasley [1984] offer an exact formulation,
but solve the PVRP via a heuristic: assign customers to days, then solve the result-
ing daily VRPs. The initial assignment in their heuristic is based upon an ordering of
customers where those with fewer delivery combinations and larger delivery quantities
are scheduled first. Then, customers yielding the smallest increase in total costs are
inserted using the allowable delivery combinations.

Metaheuristics have been developed to solve PVRPs. These include: Tabu Search
(TS) [Cordeau et al., 1997], Variable Neighborhood Search (VNS) [Hemmelmayr et
al., 2009a; Pirkwieser and Raidl, 2010], Genetic Algorithm (GA) [Vidal et al., 2012],
and Ant Colony Optimization (ACO) [Matos and Oliveira, 2004].

Few papers exploit exact methods to solve PVRPs. Francis et al. [2006] present an
IP formulation in which the frequency of visits, fi, is a decision variable, generalizing
the definition of periodicity in most of the PVRP papers (i.e., a fixed frequency for all
delivery schedules of a customer). They create two different relaxations of the prob-
lem by separating the decision variables on schedules from those pertinent to routes.
Then, they use sub-gradient optimization on a Lagrangian function incorporating both
of these relaxations to calculate lower bounds for the objective function. Finally, a
b&b algorithm is used to close the optimality gap. Mourgaya and Vanderbeck [2007]
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develop a model which simultaneously addresses two objective functions: balancing
the load on vehicles and creating routes that keep drivers in familiar areas. A Dantzig-
Wolfe reformulation and column generation are used to solve the relaxed problem,
where the authors use insertion heuristics to price out columns. After solving the LP
relaxation at the root node, the resulting solution is rounded to produce a feasible solu-
tion to the PVRP by heuristically exploring the b&b tree. Baldacci et al. [2011b] have
arguably developed the most successful exact solution method for the PVRP. They
present a new IP formulation for the problem and three relaxations based on the formu-
lation which are used to generate strong lower bounds. Along with information from a
related dual solution, these lower bounds are exploited to reduce the solution space in
such a way that no optimal integer solutions are eliminated. This procedure results in
a tractable IP which can be solved to optimality using a commercial solver.

Interested readers are referred to Campbell and Wilson [2014] and Francis et al.
[2008] as excellent review papers on the PVRP and its variants. Some of the most
important PVRP works we have found in the literature are summarized in Table 2.2.

Table 2.2: Periodic vehicle routing models and solution methods: deterministic de-
mand, single product, finite planning horizon

Study Periodicity Other characteristics Solution method
Pirkwieser and
Raidl [2010]

Si VNS

Hemmelmayr et al.
[2009a]

fi VNS

Cordeau et al.
[1997]

Si TS

Gaudioso and
Paletta [1992]

mi minimizing number of vehicles heuristic

Beltrami and Bodin
[1974]

Si heuristic

Christofides and
Beasley [1984]

Si IP formulation; heuristic

Vidal et al. [2012] Si GA
Matos and Oliveira
[2004]

Si ACO

Francis et al.
[2006]

Si service frequency is a decision
variable; fi is the minimum re-
quired service frequency; La-
grangian relaxation to find a LB

b&b

Mourgaya and Van-
derbeck [2007]

Si balancing the load on vehicles;
keeping drivers in familiar areas

CG; b&b

Baldacci et al.
[2011b]

Si CG; strong LB; commer-
cial solver

2.5 Inventory routing problem
Vendor-managed inventory (VMI) system is an example of successful and still promis-
ing business practice. The VMI relies on the cooperation between a supplier and its
customers, where information about demand and inventory is shared by the customers
with the supplier. Under a VMI system, the supplier takes over the responsibility of
managing the inventory of the customers by deciding on replenishment quantities and
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delivery periods. The consequences are beneficial for both parties: customers need to
employ less resources for controlling their inventory, and the supplier has more flex-
ibility for integrating the replenishment quantities and periods to different customers
and therefore smooth its production, inventory, and distribution systems [Desaulniers
et al., 2016]. The VMI is a managerial policy, which is to be contrasted with retailer-
managed inventory (RMI); see Archetti and Speranza [2016]. In an RMI system, the
customers decide when and how much to order, independently of each other. In such
traditional distribution system, the power of the supplier to optimize the distribution is
strongly constrained by the decisions made by its customers, even when the objective
is to minimize the transportation cost only [Bertazzi and Speranza, 2012].

Looking at the RMI from an LSP’s perspective takes us to the VRP, MPVRP, and
PVRP, whereas following a VMI policy leads to an inventory routing problem (IRP)
as one of the models under this policy. The classical IRP deals with deterministic
demands, whereas the stochastic IRP (SIRP) refers to an IRP with stochastic demands.
In the sequel we first deal with the IRP and then review the SIRP.

2.5.1 Deterministic inventory routing problem
The IRP is concerned with the distribution of a single product from a single depot to
a set of customers with deterministic demands over a given planning horizon. The
objective is to minimize the distribution and inventory costs during the planning period
without causing stock-outs at any of the customers. The main decisions in an IRP are:
(a) when to serve each customer, (b) how much to deliver to a customer when it is
visited, and (c) which routes to use. A more mathematical definition of the IRP is as
follows [Coelho et al., 2014a].

Given:
- T : planning horizon,
- G = (V,A): a complete directed graph, where V = {0,1, · · · ,n} represents a depot
and a set of geographically scattered customers, and A = {(i, j) ∈ V, i 6= j} is a set of
arcs (i, j) linking customers i and j,
- ci j: cost of traversing arc (i, j),
- Ii0: initial inventory at the depot (I00) and at customer i,
- dit : demand of customer i in period t,
- hi: unit inventory holding cost at the depot (h0) and at customer i,
- Ci: store capacity at customer i,
- Bt : quantity of the product made available at the supplier at the beginning of period t,
- [ei, li]: time window of customer i,
- K: number of vehicles each with capacity Q.

Find:
- delivery quantity to each customer in each period (note that when delivery quantity
to customer i in period t is zero, then customer i is not visited in period t due to the
triangular inequalities on distances),
- a set of routes for each period, where each route is a sequence of customers.

Such that:
- each vehicle is able to perform one route per period,
- each route starts from and ends at the depot and includes each customer at most once
(route elementarity),
- each customer is visited at most once in each period (at most one non-split delivery
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in each period),
- the sum of the delivery quantities to customers included in each route does not exceed
vehicle capacity Q,
- the time window for each store is respected if it is visited,
- total number of routes in each period does not exceed the total number of available
vehicles K,
- inventory level of each customer at the end of a period does not exceed its inventory
capacity,
- inventories at customers are not allowed to be negative, i.e., all demand must be met
by previous inventory plus deliveries performed during the time period considered,
- total shipments from the depot to all customers in each period do not exceed its
inventory level plus the quantity made available in that period.

Objective:
- total inventory and distribution costs during the planning horizon (to be minimized).

Most IRP models are MIP formulations using arc-flow decision variables such as:
xi jt takes value 1 if arc (i, j) is used in period t in the solution and 0 otherwise, yit
is a non-negative decision variable representing the delivery quantity to customer i in
period t. If one aimed to use a route-based formulation in a column generation frame-
work, it would not be easy to determine the feasibility of a route in the pricing problem
in terms of respecting vehicle capacity. This is due to the fact that delivery quantities
are not know in advance but they are decision variables. The only exact method we
have found which uses a route-based formulation is the paper by Desaulniers et al.
[2016].

The IRP has a wide range of road-based applications including the distribution of
gas [Campbell and Savelsbergh, 2004a; Gronhaug et al., 2010], fuel [Popović et al.,
2012], automobile components [Alegre et al., 2007; Stacey et al., 2007], perishable
products [Federgruen and Zipkin, 1984; Federgruen et al., 1986], groceries products
[Gaur and Ficher, 2004], cement [Christiansen et al., 2011], and blood products [Hem-
melmayr et al., 2009b].

Since the IRP has the flexibility to decide how much to deliver to each customer
and which routes to use in each period, the decision space becomes enormously large as
compared to the VRP, the MPVRP, and the PVRP. Therefore, determining the optimal
solution in an IRP is extremely difficult. In most cases, it is quite challenging to find
the optimal solution for even very small instances of the IRP [Campbell et al., 1998].
As the IRP is considerably more complex than other VRP variants, researchers have
striven to develop solution methods for simplified IRP models rather than generalizing
the classical IRP definition. Here, we briefly mention the most common simplifying
assumptions on the IRP.

The deliver-up-to-level policy: The deliver-up-to-level (UL) policy is the most-
widely used replenishment policy. It simplifies the decisions on the quantities to be
delivered when a customer is visited. In the UL policy, each delivery must fill the
inventory to its maximum capacity Ci. Hence, the quantity to be delivered to customer
i is the difference between its maximum capacity and its current inventory level. As
a result, the decisions in an IRP with the UL policy are restricted to: (a) the periods
when each customer should be visited, (b) the delivery routes. Contrary to the UL
policy, in the maximum-level (ML) policy, any quantity can be delivered as long as the
maximum level determined by the customer is not exceeded. The maximum level can
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simply be the maximum capacity Ci or any other level below Ci. The ML policy clearly
encompasses the UL policy and is more flexible, but also more difficult to solve given
the extra set of decision variables. The UL policy has been used as a way to simplify the
search for good solutions and has been widely studied [Bertazzi et al., 2002; Archetti
et al., 2007; Solyali and Süral, 2011]. Other works which do not explicitly consider a
UL policy indeed follow an ML policy. In the work of Bertazzi et al. [2002], shipments
from the supplier to the customers are performed by a single capacitated vehicle. Each
customer determines a minimum and a maximum level of the inventory, and needs to
be visited before its inventory hits the minimum level. Every time a customer is visited,
the replenishment quantity is such that the maximum level of the inventory is reached at
the customer (this is a UL policy). The authors propose a two-step heuristic algorithm
to solve the problem. Archetti et al. [2007] consider the same problem defined by
Bertazzi et al. [2002] under both UL and ML policies. They present an MILP model
and derive new additional valid inequalities used to strengthen the linear relaxation
of the model. Archetti et al. [2007] are the first to implement an exact branch-and-
cut algorithm to solve the model optimally. Later, Solyali and Süral [2011] develop a
stronger formulation under a UL policy and solve it by branch-and-cut.

Direct delivery: Large delivery quantities to customers can encourage the supplier
to resort to a direct delivery policy. Gallego and Simchi-Levi [1990] show that in the
case of continuous shipping times, the worst-case performance ratio of direct shipping
with respect to a lower bound on the optimal cost is less than 1.06, whenever the eco-
nomic lot size of each customer is at least %71 of the vehicle capacity. When the direct
delivery policy is applied to an IRP, the decisions are restricted to: (a) the periods
when each customer should be visited, (b) the delivery quantity to each customer. The
resultant problem has no routing aspect anymore. However, it is still called the IRP
with direct deliveries and definitely falls in the class of the VMI systems, as the limited
number of vehicles at hand or the limited supply at the depot needs a sort of coordi-
nation between the decisions on delivery periods and delivery quantities to different
customers. Bertazzi [2008] analyze different direct shipping policies in an IRP with an
unlimited fleet but a limited supply. Unlike Gallego and Simchi-Levi [1990], the de-
liveries can be performed at discrete time instants in Bertazzi [2008]. He demonstrates
that, in the worst-case, the ratio between the cost of the optimal direct shipping policy
and the optimal cost of the problem in which routing is allowed is not greater than 2
whenever the unit volume of the product to be delivered to each customer is not lower
than 1/4 of the vehicle capacity, and the ratio is 1.2 if the unit volume is not lower than
the capacity; more than one visit to each customer is required in the latter case. See
Bertazzi and Speranza [2012] for a tutorial on the IRP papers with direct delivery.

Zero inventory delivery: Following this policy, in each period, only the set of
customers whose inventory levels are down to zero are replenished. Given a current
inventory level, the next delivery period to each customer is easily determined. How-
ever, depending on the next delivery quantity, the subsequent delivery periods are not
known. Chan et al. [1998] and Jaillet et al. [2002] apply this policy to the IRP. Al-
though this policy maximizes the volume delivered to a customer, it is not necessarily
the best option in terms of long-term distribution costs. This is because it does not
recognize the synergies that may exist between customers. Indeed, it may happen that
two customers that are geographically close (and thus can be served on a single trip)
will never be routed together because of their initial inventories and their usage rates
(optimal replenishment days differ).

Single vehicle: Dealing with a single vehicle means that only one route per period
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is created. In this case, the main decisions are: (a) the set of customers to be visited in
each period, (b) the delivery quantity to each customer. Once these decisions are made
for every period, the routing part is simply a set of independent TSPs to be solved.
However, solving the TSPs cannot sequentially follow the first two decisions, as the
total cost of the TSPs depends on the customers to be visited and the delivery quan-
tities. Bertazzi and Speranza [2013] formulate the problem as an MILP under an ML
policy with arc-flow decision variables and present valid inequalities, but do not de-
velop any solution method. Heuristic algorithms developed to solve the single vehicle
IRP include the fast local search of Bertazzi et al. [2002], the hybrid of mathematical
programming and tabu search of Archetti et al. [2012], and the adaptive large neigh-
borhood search (ALNS) of Coelho et al. [2012a]. Works using an exact branch-and-cut
algorithm to solve an IRP with a single vehicle include Archetti et al. [2007] (under UL
and ML policies) and Solyali and Süral [2011] (under UL policy).

Constant demand rate: The consumption rates of the customers are assumed sta-
tionary over time under this policy. Some papers assume that the demand of each
period must be satisfied at once, so the demand of each period must be available at
the beginning of the period [Raa and Aghezaaf, 2008, 2009]. Other works assume that
customers deplete inventory on a continuous time basis [Ekici et al., 2015]. Under the
latter assumption, not only do the delivery periods matter but also the delivery time is
important so that no stock-out occurs during the delivery period.

Periodic delivery: Solving IRPs solely based on cost considerations may lead to
inconveniences to both parties in terms of frequency of the deliveries [Coelho et al.,
2012b]. Periodic or cyclic routing strategies are schedules for a short-term planning
horizon which are assumed to be repeated over the entire planning horizon. The peri-
odicity of the policy implies that the inventory levels at the end of the period must be
equal to the initial levels [Bertazzi and Speranza, 2012]. Periodic deliveries are desir-
able to many customers as they can better organize their human resources when they
receive deliveries on a regular basis. Periodic deliveries also lead to less fluctuations in
the fleet size, vehicle load, and delivery quantities. When applying a periodic delivery
policy to an IRP with constant consumption rates for customers, the resultant problem
can be formulated as a PVRP. The constant consumption rates can be used to deter-
mine the time between two consecutive visits, mi, for each customer [Campbell and
Wilson, 2014]. The time between two visits should be as long as possible to minimize
delivery costs, but should be sufficiently small to keep the customer from running out
of product. Once mi is known, the remaining problem can be solved as a PVRP for a
defined planning period. This can be regarded as an OU replenishment policy, where
the deliver up-to-level point is not the customer capacity but is calculated based on the
delivery frequency. In order to be able to exploit such transformation, the usage rate
must be constant and the time between two consecutive visits must be fixed so that
the delivery quantity to each customer is a fixed value. Rusdiansyah and Tsao [2005]
transform an IRP inspired by the replenishment of vending machines into an instance
of the PVRPTW, and Hemmelmayr et al. [2009b] transform an IRP for the blood bank
into a PVRP. If demand consumption is not stationary, considering periodicity of de-
livery in the IRP leads to the periodic IRP rather than the PVRP; see Gaur and Ficher
[2004]. The crucial constraint, to be respected in both PVRP and PIRP, is that every
customer must have the same inventory level at the beginning of each cycle.

Decomposition approaches: Some of the algorithms proposed in the literature
decompose the IRP into two stages: (a) inventory control (determining the delivery
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amounts), and (b) vehicle routing [Campbell and Savelsbergh, 2004b; Federgruen and
Zipkin, 1984; Qu et al., 1999]. In some papers, the overall solution is found by it-
erating between these two problems [Federgruen and Zipkin, 1984; Qu et al., 1999].
For example, Campbell and Savelsbergh [2004b] develop a two-phase decomposition
approach. In phase 1, a few periods of the planning horizon are considered, say the
first k days, and periods k+ 1 and onward are aggregated into greater time units, say
weeks. Moreover, a small set of good delivery routes are considered and a route-based
MIP formulation is solved. The solution to the MIP in phase 1 specifies the delivery
quantity to each customer in each of the first k periods. In phase 2, given the deliv-
ery quantities, a VRP is solved for each period. The set of good routes in phase 1 is
determined by partitioning customers into disjoint good clusters and then developing
good routes for each cluster. A good cluster is defined as a group of customers that
can be served at low cost by a single vehicle for a long period of time. To this end, the
cost of a cluster does not only depend on the geographic locations of the customers in
the cluster, but also on whether the customers in the cluster have compatible inventory
capacities and usage rates.

The IRP without simplifying assumptions: Algorithms capable of solving the
IRP without simplifying assumptions are more recent. These include the ALNS heuris-
tic of Coelho et al. [2012b], the exact branch-and-cut algorithms of Coelho and La-
porte [2013a], Coelho and Laporte [2013b], and Coelho and Laporte [2014d], and the
branch-and-price-and-cut algorithm of Desaulniers et al. [2016]. All of these papers
provide an algorithm to solve the problem under the same assumptions, and are tested
on the same set of benchmark instances, thus allowing for a clear comparison of the per-
formance of each algorithm. In the most recent work, Desaulniers et al. [2016] apply
a branch-and-price-and-cut algorithm to solve an IRP with an ML inventory replen-
ishment policy. Route delivery patterns are generated, where a route delivery pattern
specifies the quantity delivered to each customer along the corresponding route; only
extreme route delivery patterns are considered and their convex combinations are used
to generate any other route delivery patterns. In the branch-and-bound algorithm, the
lower bounds in each node are computed using a column generation algorithm, where
one subproblem for each period is solved as an ESPPRC. Cutting planes are added
dynamically to tighten the linear relaxations. Violated inequalities are found by enu-
meration and added to the master problem, and the subproblem is adjusted to include
dual variables of the added inequalities and is solved again. The valid inequalities they
use include inequalities on the minimum number of visits per customer introduced by
Archetti et al. [2007] for the single vehicle case and Coelho and Laporte [2014d] for the
multi-vehicle case with an arc flow model, minimum number of routes per time inter-
val, minimum number of sub-deliveries per demand introduced by Desaulniers [2010],
and capacity inequalities introduced by Laporte et al. [1985].

The IRP with extra features: Coelho et al. [2012a] introduce the concept of con-
sistency in IRP solutions, in terms of the fleet size, the vehicle load, the frequency of
the deliveries, and the quantities delivered. Indeed, having consistency means sacri-
ficing a part of cost improvement with the aim of having a more stable required fleet
size, attaining less fluctuations in the vehicle load, and visiting each customer more
regularly. The authors formulate the multi-vehicle IRP, with and without consistency
requirements, as MILP problems and propose a matheuristic for their solution. Some
of the consistency features depend on the stability of the demand. If the demand is
highly variable, customers would expect delivery quantities to be variable as well, so
consistency in delivery quantities to each customer makes little sense. However, the
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application of the VMI requires some demand stability, which legitimates the consis-
tency features they propose. Coelho et al. [2012b] introduce the IRP with Transship-
ment (IRPT). They consider the possibility of performing transshipment between cus-
tomers so as to further reduce the overall cost. They present a formulation that allows
transshipment, either from the supplier to customers or between customers. They also
propose an adaptive large neighborhood search heuristic to solve the problem. Their
approach solves four different variants of the problem, i.e., the IRP with and without
transshipment under UL and ML policies: the IRP-UL, the IRP-ML, the IRPT-UL, and
the IRPT-ML.

The interested reader is referred to Andersson et al. [2010] and Coelho et al. [2014a]
as excellent review papers on IRPs from the application and the methodological point
of views, respectively. For tutorials on the IRP see Bertazzi and Speranza [2011, 2012,
2013]. Table 2.3 shows some of the most important IRP papers we have found under
the following assumptions: finite planning horizon, storage capacity, vehicle capacity,
single product, discrete and instant consumption of demand.

2.5.2 Stochastic inventory routing problem
The SIRP assumes uncertain future demands for customers, and this is the way it differs
from the IRP. In the SIRP, we are given the probability distribution of the demands.
While the majority of papers on the SIRP assume that demands in each period are fully
realized at the end the period, there are models assuming that demands are realized
upon arrival of the vehicle at each customer [Berman and Larson, 2001; Huang and
Lin, 2010].

Demand stochasticity means that shortages may occur, and there is often a positive
probability that a customer runs out of stock. To discourage the shortages, a penalty
is imposed whenever a customer runs out of stock, and this penalty is usually modeled
as a proportion of the unsatisfied demand. Unsatisfied demand is typically considered
to be lost sale [Minkoff, 1993; Kleywegt et al., 2004], and is rarely dealt with as back-
logging, as in the work by Yu et al. [2012]. In either case, penalties may apply. A
pre-defined service level may apply too, which imposes a minimum inventory level at
each customer in each period [Yu et al., 2012]. The objective is to choose a delivery
policy that minimizes the expected cost per unit time when the planning horizon is in-
finite. So, in both cases, the objective is to minimize the expected cost per unit time.
The SIRP is defined as follows:

Given:
- T : planning horizon, possibly infinite,
- G = (V,A): a complete directed graph, where V = {0,1, · · · ,n} represents a depot
and a set of geographically scattered customers, and A = {(i, j) ∈ V, i 6= j} is a set of
arcs (i, j) linking customers i and j,
- ci j: cost of traversing arc (i, j),
- Ii0: initial inventory at the supplier (I00) and at customer i,
- Dit : random variable representing demand at customer i in period t,
- hi: unit inventory holding cost at the depot (h0) and at customer i,
- pi: unit back-order or lost sale cost at customer i,
- Ci: inventory holding capacity at customer i,
- Bt : quantity of the product made available at the supplier at the beginning of period t,
- [ei, li]: time window of customer i,
- K: number of vehicles each with capacity Q.
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Find:
- delivery quantity to each customer in each period (note that based on the triangular
inequalities on distances, when delivery quantity to customer i in period t is zero, the
customer is not visited in period t),
- a set of routes for each period, where each route is a sequence of customers.

Such that:
- each vehicle is able to perform one route per period,
- each route starts from and ends at the depot and includes each customer at most once
(route elementarity),
- each customer is visited at most once in each period (at most one non-split delivery
in each period),
- the sum of the delivery quantities to customers included in each route does not exceed
vehicle capacity Q,
- the time window for each store is respected if it is visited,
- total number of routes in each period does not exceed the total number of available
vehicles K,
- inventory level of each customer at the end of a period does not exceed its inventory
capacity,
- pre-defined service levels (if any) at customers are respected,
- total shipments from the depot to all customers in each period does not exceed its
inventory level plus the quantity made available in that period.

Objective:
- expected inventory and distribution costs per period or expected total cost over the
planning horizon (to be minimized).

Due to complexity of the SIRP, simplifying assumptions are frequent in the models,
as they are in the IRP. These assumptions include considering a single capacitated
vehicle [Coelho and Laporte, 2014c; Schwartz et al., 2006; Reinman et al., 1999], a
single uncapacitated vehicle [Qu et al., 1999], and direct deliveries [Kleywegt et al.,
2002; Reinman et al., 1999; Barnes-Schuster and Bassok, 1997].

Markovian decision process (MDP) is the most widely exploited solution approach
to solve an SIRP. Most of the papers that use an MDP to solve an SIRP formulate the
cost (or reward) function explicitly for an infinite planning horizon. The underlying
assumption for such a formulation is that the demand probability function must be sta-
tionary, i.e., the probability distribution of demand at each customer, Pr(Di), does not
depend on the period and has the same parameters in all periods. Under this condition,
an optimal itinerary can be calculated which depends only on the current state (and
not on the period). The state of the system in each period is defined by the list of in-
ventory levels at customers, i.e., by x= (x1,x2, · · · ,xn), where xi is the inventory level
at customer i. In each period, a comprehensive decision regarding which customers
to visit, how much to deliver to them, and how to combine customers into delivery
routes is called an itinerary [Kleywegt et al., 2004], and is represented by y. Let us
indicate the vector of delivery quantities to customers (which is part of an itinerary)
by (y1,y2, · · · ,yn). The action space for state x is defined as the set of all feasible
itineraries for state x, i.e., itineraries that satisfy customers’ capacities and route con-
straints in terms of length, time window, vehicle capacity, and number of available
vehicles. By A (x), we represent the action space (all feasible itineraries) for state x,
and by X = [0,C1]× [0,C2]×·· · [0,Cn] we represent the state space, i.e., all feasible
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itineraries for all states. The cost function for an MDP is defined as follows:

V ∗(x) = min
y∈A (x)

{c(x,y)+R(y)+ ∑
z∈X

V ∗(z) ·Pr(z|x,y)} (2.1)

where,

c(x,y) = ∑
i∈N

∞

∑
di=0

Pr(Di = di) · [pi(di− xi− yi)
++hi(xi + yi−di)

+] (2.2)

and R(y) is the routing cost associated with itinerary y.

Usually an iterative procedure has to be used to solve problem 2.1. There are stan-
dard techniques such as policy iteration, value iteration, and successive approximation.
These algorithms are practical only if the state space is small, and the optimization
problem on the right-hand side can be solved efficiently. Neither of these requirements
are satisfied by practical instances of the SIRP, as the state space is usually extremely
large, and problem 2.1 has a vehicle routing problem as a special case, which is NP-
hard [Campbell et al., 1998]. Due to such complexity, many researchers use approxi-
mations of different functions embedded in the cost function 2.1 or decompose it. The
book by Powell [2011] introduces cutting-edge techniques to approximate the cost or
reward function of a generic MDP.

Rather than using the classical techniques to solve the optimization problem on
the right-hand side of function 2.1, Puterman [1994] develops a linear programming
approach. The number of variables in Putterman’s dual problem is (C + 1)n and the
number of constraints is B(n+ 1)×Cn, where C is the store capacity and B(n) is the
number of all partitions of all subsets of set N with |N| = n members. Due to such
enormous number of variables and constraints, neither column generation nor row gen-
eration algorithms could be efficient to tackle the problem.

By drawing inspiration from the primal LP formulation (P0) and its dual problem
(D0) from Puterman [1994], Adelman [2004] formulates and interprets two primal-dual
pairs of linear programs that are progressively more tractable. The first approximation
of the dual problem is based on estimating the objective function value corresponding
to the best decision when the state of the system is x = (x1, · · · ,xn) by the sum of the
objective function values when the state of the system in each customer (xi) is inde-
pendently dealt with. In other words, V (x) = ∑i V (xi). The primal-dual problems of
the first approximation are called P1 and D1, respectively. This is what Minkoff [1993]
does, too. Such an approximation restricts the feasible region of P0, while it relaxes
the feasible region of D0. Hence, D1 provides an upper bound on D0’s maximization
problem. The number of decision variables in D1 decreases to nC but the number of
constraints is unchanged. Row generation is the only practical approach to solve D1.
To mitigate the computational difficulties due to having so many constraints in D1,
Adelman [2004] introduces an additively separable approximation to the routing costs
R, which further relaxes D1. As a result, optimizing D2 provides another upper bound
for the original problem D0. Adelman [2004] also shows that any feasible solution in
either D1 or D2 provides a lower bound for P0 and the optimal solution to D1 provides
the tighter lower bound. However, solving D2 is easier compared to D1. The lower
bound obtained by solving D1 or D2 is useful to evaluate any algorithm solving P0 ap-
proximately. The method to calculate the bounds is applicable to multiple products.
However, as each customer-product is considered as a node, split deliveries of different
products to each customer are inevitable.
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Jaillet et al. [2002] define a SIRP involving a central depot as well as various satel-
lite facilities which the drivers can visit during their shift to refill their vehicles. In
case of a stockout, a direct delivery is made and a penalty cost is incurred. The authors
assume that the central supplier has no reliable monitoring of local inventories except
at the time of a delivery. This rules out any strategies that would schedule deliveries
based on the current inventory levels. Jaillet et al. [2002] reduce the problem from
an annual time base to a biweekly rolling planning period via the approximations of
delivery costs.

Kleywegt et al. [2004] formulate an MDP model of the SIRP and propose approxi-
mation methods to find good solutions in reasonable computational time. In an earlier
paper [Kleywegt et al., 2002], the authors formulated the SIRP with direct deliveries,
i.e., one delivery per trip, as an MDP and proposed an approximate dynamic program-
ming approach for its solution. Kleywegt et al. [2004] extend both the formulation and
the approach to handle multiple deliveries per trip. They present a solution approach
that uses decomposition and optimization to approximate the value function. Specifi-
cally, the overall problem is decomposed into smaller subproblems, each designed to
have two properties: (a) it provides an accurate representation of a portion of the over-
all problem, and (b) it is relatively easy to solve. In addition, an optimization problem
is defined to combine the solutions of the subproblems in such a way that the value of
a given state of the process is approximated by the optimal value of the optimization
problem.

Yu et al. [2012] aim to solve a large scale SIRP with split delivery. Service level
of customers is considered, and unsatisfied customer demand in each period is back-
logged. The number of routes each vehicle can perform in each period is not limited.
Yu et al. [2012] propose an approximate model, which significantly reduces the number
of decision variables compared to its corresponding exact model. They then develop a
hybrid approach that combines the linearization of nonlinear constraints, the decompo-
sition of the model into sub-models with Lagrangian relaxation, and a partial lineariza-
tion approach for a sub-model. Table 2.4 shows the most important SIRP papers we
have found in the literature. All the works assume a single product and an unlimited
production supply.

2.6 Inventory control of perishables
Deterioration refers to damage, spoilage, dryness, or vaporization of products [Goyal
and Giri, 2001]. Deteriorating products are divided into two categories: (a) perishable
products, e.g. vegetables, meats, human blood, having a maximum usable life time,
and (b) decaying products, e.g. alcohol and gasoline, having an unlimited shelf life
but decreasing in quantity due to vaporization. We only consider perishables in our
discussion. In the inventory modeling of perishables, a total profit maximization or
total cost minimization approach is predominantly pursued [Minner and Transchel,
2010]. The usual costs include ordering, holding, outdate, and shortage costs. In the
model settings, inventory system is reviewed periodically or continuously, products are
single or multiple, demands are deterministic or stochastic, shelf life is deterministic or
stochastic, replenishment lead time is zero or positive, shortages are backlogged or lost
sale, and issuing policy is first-in-first-out (FIFO) or last-in-first-out (LIFO). Customer
capacity and service level could be part of side constraints.
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Perishable products constitute the majority of sales revenue of the food retail in-
dustry. Perishables accounted for 52% of the 2011 total supermarket sales of about
$459 billion in the US, and hence mismanagement of perishable products represents a
major threat to the profitability of companies in the food retail industry. Roughly 10%
of all perishable goods go to waste before consumers purchase them [Kouki and Jouini,
2015a]. A survey by the National Supermarket Research Group reported an average
loss of $34 million a year due to spoilage in one major 300-store grocery chain in the
US. Thus, finding effective inventory management policies for perishable products has
always been of great interest to both practitioners and academic researchers [Chao et
al., 2015].

On the one hand, the increasing food prices and at the same time billions of dollars’
worth of food expiring every month raise major concerns in public discussion. On the
other hand, supermarkets lose revenue when products are not available on the shelf.
Especially in food retail distribution, some of the strongest requirements for practical
use of inventory management systems are safety stock planning approaches that can
deal with the demand seasonality and can satisfy service level requirements. This issue
is identified as one of the most important key performance indicators in fresh food
industries [Minner and Transchel, 2010]. The worldwide average out-of-stock rate is
8.3%; it accounts for 8.6% in Europe, and 7.9% in the US [Minner and Transchel,
2010].

It is widely known and accepted that stockout penalty cost approaches are difficult
to implement and hardly used in practice, mainly due to the estimation of their value,
e.g., to the quantification of the loss of goodwill. In fresh food retail, this is particularly
accentuated by cross selling arguments, i.e., the unavailability of fresh food products
impacts the sales of other product categories and even mid-term and long-term outlet
choice. Therefore, a service-level approach becomes essential for fresh food inventory
management [Minner and Transchel, 2010]. Here, we investigate inventory control of
perishables from the RMI and the VMI points of view.

2.6.1 Inventory control of perishables in an RMI system
Recall that in an RMI system, the stores decide on when and how much to order, inde-
pendently of each other. Therefore, the main decision variables in an RMI perishable
inventory system are the order time and the order quantity. In order to place an order,
the current inventory level and age of the stocked products (state of the system) are ob-
served. In most of the problem settings, an MDP provides an exact solution approach.
However, the computation of the optimal order for every state of the system using the
well-known techniques such as (stochastic) dynamic programming for a finite horizon
or value function for an infinite horizon is in general intractable because of the curse of
dimensionality. Thus, many researchers turned to seek effective heuristic policies for
these problems, and almost all heuristics developed so far have been focused on inde-
pendent and identically distributed demands [Chao et al., 2015]. The ordering policies
could be divided into: (a) periodic-review such as (R,S), (R,Q), (R,s,S), (R,s,Q), and
(b) continuous-review such as (s,S), (s,Q). In the periodic-review policies, R refers
to the number of periods between two consecutive reviews of the inventory system. In
both types of reviews, s denotes the inventory level triggering an order, whereas S and
Q are order-up-to level and order-up-to quantity values, respectively. A brief definition
of each policy is provided hereunder.
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-(R,S) : every R periods order up to level S,
-(R,Q) : every R periods order Q units,
-(R,s,S) : every R periods review the inventory position, and order up to level S if the
inventory position is below s,
-(R,s,Q) : every R periods review the inventory position, and order Q units if the in-
ventory position is below s,
-(s,S) : whenever inventory position hits s order up to level S,
-(s,Q) : whenever inventory position hits s order Q units.

Note that base stock policies (R,S− 1,S) and (S− 1,S) are special cases of the
periodic-review (R,s,S) policy and the continuous-review (s,S) policy, respectively,
where s = S− 1. The (R,S− 1,S) and (S− 1,S) policies are often used for slow-
moving expensive products where ordering cost is negligible compared to the price of
the product. In our literature review, we confine ourselves to periodic-review policies
for a single fast-moving product with stochastic demands and a deterministic shelf
life. The most widely used periodic-review ordering policies are (R,S) [Chiu, 1995;
Cooper, 2001; Deniz et al., 2010] and (R,s,S) [Broekmeulen and Van Donselaar, 2009;
Lian and Liu, 1999]. For other cases, the reader is referred to the following works on
perishable products:

(a) continuous-review [Berk and Gurler, 2008; Kouki et al., 2015b],
(b) multiple products [Nahmias, 2011; Karaesmen et al., 2011],
(c) deterministic demands [Hsieh and Dye, 2010; Hsu, 2000],
(d) stochastic shelf life [Nahmias, 2011; Kouki and Jouini, 2015a; Kouki et al., 2014],
(e) joint inventory control and pricing [Burnetas and Smith, 2000; Chen et al., 2014; Li
et al., 2009; Chen and Sepra, 2013],
(f) slow-moving products [Nandakumar and Morton, 1993; Olsson and Tydesjo, 2010].

When demands are stochastic, obtaining optimal parameters in periodic-review
policies even for a single perishable product with deterministic shelf life is notoriously
complicated. The fixed shelf life perishability problem remains a complex problem
when the product lifetime is longer than two units of time in a periodic review system
[Kouki and Jouini, 2015a]. Hence, researchers have worked on approximating outdate
costs [Broekmeulen and Van Donselaar, 2009; Chiu, 1995] or calculating upper and
lower bounds on the number of outdates [Cooper, 2001; Chiu, 1995]. There are mod-
els dealing with batch demands [Lian and Liu, 1999] or batch orders [Broekmeulen
and Van Donselaar, 2009]. Finally, service level is regarded as a constraint in some
papers including Minner and Transchel [2010], Adachi et al. [1999], and Broekmeulen
and Van Donselaar [2009].

The interested reader is referred to Nahmias [2011], Karaesmen et al. [2011], and
Goyal and Giri [2001] for the best review works on perishables. Table 2.5 shows the
most interesting papers we have found on inventory control of perishables in RMI sys-
tems dealing with a single product, deterministic shelf life, stochastic demand, periodic
review, and infinite planning horizon.

2.6.2 Inventory control of perishables in a VMI system
Most of the IRP and SIRP models in the literature assume an unlimited product shelf
life. This is one of the main obstacles for the application of the IRP and SIRP mod-
els in food logistics management. Inventory control of perishables in a system where
inventory and routing-related decisions are made centrally for products with limited
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shelf lives is a real problem faced by almost all food retail chains. The size of such
problems is very large in many applications. One of the typical retail chains in a coun-
try as small as Belgium dispatches over 18,000 perishable and dry products (except
beverages) from a central warehouse to more than 800 stores throughout the country.
Since perishable products in a food retail chain need to be kept and carried by special
vehicles in a cool temperature, we can isolate their IRP or SIRP model from that of
dry products. Though the real case usually consists of multiple perishable products,
which are simultaneously shipped together, the main body of the existing research de-
velops solution methods for a single perishable product. Profitability of the food retail
industry highly depends on efficient handling of the products, as the profit margin of
this sector is around 2%. Therefore, it is crucial to devise effective inventory routing
policies to yield a competitive profit margin.

The problem statement of an IRP for perishables is exactly the same as that for
non-perishables, except that products have a limited shelf life after which they have
no value. In the deterministic case, shortages are not allowed. Moreover, thanks to
the complete knowledge about the demands, nothing is deteriorated. This implies that
the objective function in the IRP for perishables remains the same as what we have
defined for non-perishables, i.e, minimizing total inventory holding costs and routing
costs during a planning horizon.

The largest difference between the classical IRP and the IRP for perishables is the
way in which the maximum delivery quantities to stores are defined. While the max-
imum delivery quantity in the IRP depends only on the physical storage capacity and
the on-hand inventory at the customer’s site, in the IRP for perishables it is restricted
by not only these two parameters but also the maximum shelf life of the product.

In the IRP for perishables, delivery frequency plays a big role. Less frequent deliv-
eries reduce the routing costs, but leave behind products with shorter remaining shelf
lives in the following periods subject to not only holding cost and deterioration, but
also undesirable freshness from the end customers’ perspective. Moreover, the demand
for the products may reversely be affected by the age of the inventory. If deliveries are
executed more frequently, freshness of products and consequently customer satisfac-
tion increases. However, higher routing costs are imposed to the system. Therefore,
finding a right trade-off between costs and freshness is crucial. The main objective in
most applications is minimizing the costs (or maximizing the profit), while freshness
is controlled by imposing additional side constraints on delivery quantities.

Hemmelmayr et al. [2009b] investigate a problem on delivery of blood products
from a blood bank to hospitals. Blood products are delivered to the hospitals using a
small fleet of identical vehicles. As the size of a bag with a blood product is very small,
vehicle capacity is ignored, though the route length has to be restricted. The objective
is to minimize total routing costs during a finite planning horizon; no inventory costs
are taken into account. As stock-outs may result in loss of life, hospitals actually prefer
to have high inventory, even if this results in higher costs. Outdate costs need not be
considered either, because their approach does not allow spoilage of blood products.
They develop and evaluate two delivery strategies. The first strategy retains the concept
of regions and the use of fixed routes, but uses integer programming techniques to
optimally decide on delivery days. The integer programming-based approach employs
a scheme in which the set of hospitals is divided into four regions and the hospitals
in each region are served by a single vehicle using a fixed route, which simply skips
those hospitals that do not require a delivery. At the heart of the integer programming
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model is the observation that shortcutting of a fixed route allows for the consideration
of a substantial number of routes and may therefore provide adequate flexibility to
achieve substantially reduced delivery costs. The second approach is based on viewing
the problem as a PVRP with route length constraints but without capacity constraints.
The challenge is to simultaneously select a visit combination for each customer and
to solve the implied daily vehicle routing problems. As different visit frequencies may
lead to feasible delivery patterns for hospitals, i.e., delivery patterns that do not result in
product shortages and product spoilage, they allow each hospital to have a set of visit
frequencies and thus of associated (periodic) visit combinations. Visit combinations
that lead to an infeasible delivery pattern will be deleted. They develop a variable
neighborhood search (VNS) algorithm to solve this variant of the PVRP.

Coelho and Laporte [2014c] consider an IRP for perishables, where inventory hold-
ing cost and selling price are age-dependent. The supplier has the choice to deliver
fresh or aged products, and each case yields different holding costs and different rev-
enues. The objective function maximizes the total sales revenue, minus inventory and
routing costs. It is up to the retailer to decide which items to offer to customers, which
will influence the associated revenue. Three different selling priority policies are in-
vestigated: (1) fresh first policy (FF), (2) old first policy (OF), (3) optimized priority
policy (OP). The latter policy lets the model determine which items to sell at any given
time period in order to maximize profit. This means that depending on the parameter
settings, one may prefer to spoil some items and sell fresher ones because they generate
higher revenues. Although they are similar, FF and OF policies are different from the
traditional FIFO and LIFO policies common in inventory management. Under a FIFO
policy, the first product delivered will be the first to be sold. This coincides with an
OF policy only if deliveries from the supplier to the retailer is always of fresh items.
However, when the supplier delivers products of different ages in different periods, the
sequence of deliveries does not necessarily coincide with the ages of the products in
inventory. They formulate this IRP for perishables as an MILP and devise an exact
branch-and-cut algorithm for the solution of the various models.

Le et al. [2013] propose a mathematical model for the IRP for perishables using the
concept of a feasible route. A feasible route is a route that starts from the depot, visits
a subset of customers at most one time and then returns to the depot. This is different
from the popular notion of a feasible route in the VRP, where a feasible route is defined
as a route for which the sum of demands of customers on the route are less than the
vehicle capacity. Le et al. [2013] use a column-generation based heuristic algorithm to
solve the problem.

Al Shamsi et al. [2014] extend the classical IRP for perishables to include the cost
of CO2 emissions due to transportation. Their model is similar to the model developed
in Le et al. [2013] but with cost of CO2 emissions incorporated into the objective func-
tion along with transportation costs and inventory holding costs. The CO2 emissions
are calculated based on the vehicle load and distance. The resultant model is a Mixed
Integer Nonlinear Programming (MINLP) problem which is solved using a commercial
solver.

Mirzaei and Seifi [2015] formulate an IRP for perishables in which the end cus-
tomers’ demand is a decreasing function of inventory age so that a portion of the de-
mand is considered as lost sale if inventory is not as fresh as it could be. The resultant
model is an MINLP but is linearized by the authors. The objective function is to min-
imize the total cost of routing, lost sale, and holding inventories. The mathematical
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model is solved up to optimality for small to medium size problems. The authors de-
velop a hybrid simulated annealing (SA) and tabu search (TS) heuristic for solving
larger problem instances. Table 2.6 shows the papers on the IRP for perishables that
we have found in the literature.

2.7 Conclusions
In this chapter, we have reviewed several problem formulations and solution methods
that are closely related to those studies in the thesis. The SIRP is a well-known prob-
lem in the literature. However, adding perishability of products and stochasticity of
demands to the features of the problem complicates it significantly. As a result, apply-
ing the existing solution methods is mathematically very difficult and computationally
very inefficient. In Chapter 3, we study the SIRP for perishables and develop differ-
ent approximate solution methods to solve the problem. In the most efficient solution
method we have developed to solve the SIRP for perishables, we need to solve a two-
period VRP. In Chapter 3, a Matheuristic is developed to solve it, but the problem is
further investigated in Chapters 4 and 5. More specifically, Chapter 4 introduces the
two-period VRP as a subproblem of the most efficient solution method we have de-
veloped to solve the SRIP for perishables. The two-period VRP is also motivated as
a chunk of a special DMPVRP to be solved in a rolling horizon. In this sense, it is
discussed in Chapter 4 that the two-period VRP is neither a MPVRP, nor a PVRP, nor
an IRP. Therefore, the common solution methods to solve the latter problems cannot
be applied to solve the two-period VRP. Chapter 5 deals with the same two-period
VRP under slightly different assumptions, which are less restrictive. Chapters 4 and 5
develop exact solution methods to solve the two-period VRP.
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Chapter 3

Stochastic inventory routing for
perishable products

3.1 Introduction
Consider a retail chain whose main goal is to optimize the long-term profit of a distri-
bution network where products are shipped from a central warehouse (depot) to several
stores. The decisions to be made are: (1) how much to deliver to each store in each
period, and (2) which routes to use. If demands from the end customers to the stores
are deterministic and known for the entire planning horizon, then this decision prob-
lem is known as the Inventory Routing Problem (IRP). Andersson et al. [2010] and
Coelho et al. [2014a] provide excellent reviews of the IRP from the application and the
methodological points of view, respectively.

In this chapter, we consider the IRP for a perishable product (e.g., a dairy product,
flowers, fruits, or vegetables) with stochastic demands from the end customers. We
develop four solution methods to tackle this problem: (1) an expected-value method
in which stochastic demands are replaced by their expected values, (2) a deliver-up-to-
level policy taking into account a high target service level, (3) a decomposition method
in which an independent inventory control model is developed for each store while
taking into consideration an estimation of the routing costs imposed by the store, (4)
a decomposition-integration method which improves the solution obtained by the de-
composition method through further analysis of the routing costs.

3.1.1 Motivation
In an IRP, the delivery quantities as well as the routes used to serve the stores are
determined by a centralized decision-maker for the entire planning horizon. IRPs are
generally very difficult to solve to optimality even when the distribution network is far
smaller than those encountered in practice. One of the typical retail chains in Belgium
(a rather small country) dispatches over 18,000 perishable and dry products (except
beverages) from a central warehouse to more than 800 stores throughout the country.
In contrast, as reported in the literature [Coelho and Laporte, 2014c], IRPs for a single
product and with deterministic demands can rarely be solved to optimality when the
number of stores is larger than 30.
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In most real-life IRP applications, demands to stores are uncertain, thus giving
rise to a more complex stochastic version of the IRP, denoted SIRP. In this stochastic
setting, the value of the current inventory levels must be periodically transferred from
the stores to the central warehouse. Taking this information into consideration, as
well as whatever information is available about future demand, the central decision-
maker determines the delivery quantities and the routes for only one period (or a few
periods) ahead and implements these short-term decisions. Then, the actual demands
from the end customers to the stores are observed, new inventory levels are reported
to the warehouse, and new one-period (or short-term) decisions are made. Due to the
complexity of such an integrated system, retail chains frequently rely on a sequential
decision-making process, whereby each store independently uses its own inventory
management system and places its order by neglecting the routing costs imposed to the
retail chain. Then, vehicle routing models are used by the central office to determine
the optimal delivery routes. Such a decision-making process does not necessarily yield
an optimal profit for the complete retail chain, but provides a pragmatic approach for
this complex system.

The common assumption of unlimited product shelf life is not applicable to perish-
ables. This is one of the main obstacles for the application of the classical SIRP models
in food logistics management. Perishable products constitute over 52% of sales revenue
of the grocery retail chains [Chao et al., 2015], but roughly 10% of them go to waste
before they are sold [Kouki et al., 2015b], while the profit margin in food retail indus-
try hardly exceeds 2%; see Euro Bank [2009]; FMI [2014]; NAICS [2012]. Therefore,
the profitability of this sector highly depends on efficient management methods, and
it is crucial to devise effective inventory routing policies to ensure a competitive profit
margin. The SIRP for perishables, or PSIRP, is the topic of this chapter. Note that,
since perishable products need to be carried by special refrigerated vehicles, food retail
chains can isolate their SIRP model from their model for dry products.

In a PSIRP, the delivery frequency plays a major role in determining the profit,
service level, and freshness. Indeed, infrequent deliveries with large delivery quantities
reduce the routing costs, decrease the risk of facing lost sales, and increase service
level. However, they result in units with shorter remaining shelf lives and subject to
deterioration in the following periods, due to the stochasticity of demand. Conversely,
if smaller quantities are delivered more frequently, then the freshness of products –
and consequently, customer satisfaction – increases, and deterioration costs decrease.
However, such a policy imposes higher routing costs to the system and may bring about
more lost sales. Our main objective is to maximize the profit; a predefined minimum
service level is considered as a hard constraint to be respected and freshness is regarded
as a lateral consequence.

3.1.2 Scientific contributions
The main contributions of this chapter are summarized here:

• We propose different solution methods to solve the PSIRP, a problem scarcely
explored in the literature despite its wide applicability. Each method emphasizes
some, though not necessarily all, crucial features of the real logistics problem,
such as perishability of the product, stochasticity of the demand, or service level
constraints. Each method may yield benefits over the other ones in terms of total
profit, average freshness, or simplicity of implementation.
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• Based on extensive computational tests, we examine the performance of each
solution method and the influence of different parameter settings.

• Managerial insights are drawn by analyzing the impact of store capacity and
shelf life on the expected profit. Moreover, we show that a simple replenishment
policy can be derived from a more complex solution method, while yielding
similar efficacy.

3.1.3 Related works
First of all, note that extending the SIRP model introduced in the transition function
2.1 to perishables is extremely difficult. Indeed, in the presence of perishability, the
transition function is far more complicated, and this complexity increases as the shelf
life increases. Moreover, transition function 2.1 is applicable when the probability
function of the demand is stationary over the planning horizon, i.e., the demand of end
customers has the same distribution function with the same mean and variance. It can
be easily verified by other research works, see Van Donselaar et al. [2010], that the
demand of end customers food retail stores varies significantly from day to day.

Research papers on the SIRP for perishables are scarce in the literature. We have
found only two research papers in this category. Hemmelmayr et al. [2010] consider
delivery of blood products with stochastic demands as an extension of Hemmelmayr et
al. [2009b] where demands are deterministic. They use sampling to solve their prob-
lem, where R random realizations of the demands for the entire planning horizon are
generated. Then, a two-stage approach is followed. In the first phase, based on a sample
of size R, i.e., R deterministic demand scenarios for the entire planning horizon, they
formulate an IP that considers a single uncapacitated vehicle with a maximum route
duration. To balance delivery costs and waste costs, they choose to limit the proba-
bility that spoilage occurs to at most 5%. In other words, they sample product usage
during the spoilage period and take the 5% quartile as the maximum inventory level at
the hospital (spoilage capacity). Vertices are visited in such a way that under any of
the realizations none of the vertices faces a stock-out nor does its inventory go beyond
the spoilage capacity. For the routing component, the IP model relies on shortcutting
a pre-determined fixed route. It implies that a TSP solution covering all vertices is at
hand. This solution is exploited to construct another TSP solution where a subset of
vertices are served. In the solution, they simply cut arc (i, j) if either node i or node j
is not served in the corresponding period. The remaining partial paths are connected to
make a complete TSP solution. The second phase suggests emergency daily deliveries
to avoid stock-outs. Further constraints are incorporated into the initial IP formulation
and the objective function is extended in order to include the emergency deliveries. To
this end, some recovery or recourse mechanisms are created to handle shortages if they
occur. The recourse actions are (1) changing the quantities of planned deliveries, (2)
introducing out-and-back emergency deliveries (direct deliveries) to hospitals that are
likely to experience a shortage based on the inventory at the beginning of the day, (3)
introducing a single emergency delivery route for each day visiting all hospitals that are
likely to run out of product on that day, and (4) introducing emergency deliveries into
the regularly planned delivery routes. The objective is to minimize total travel distance
during the planning period and the costs associated to the recourse actions. Variable
Neighborhood Search (VNS) is exploited to solve the two-phase IP formulation.
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A main obstacle to adopting the solution approach of Hemmelmayr et al. [2010] is
that the vehicles in their model are uncapacitated, whereas we consider capacitated ve-
hicles. Moreover, the assumption that TSP routes can be pre-determined is extremely
restrictive. Finally, for the solution approach developed by Hemmelmayr et al. [2010]
to remain efficient, only a very limited number of realizations of demands can be con-
sidered, and this might not be sufficient to represent the universe of potential scenarios.

Soysal et al. [2015] consider a SIRP for perishables in food supply chain for a single
product. Arc costs are vehicle-load dependent in order to reflect the fact that fuel con-
sumption depends on the vehicle load. The vehicle-load dependency of arc costs also
models CO2 emission and penalizes it. The authors use chance-constrained program-
ming to formulate the problem. The objective function includes the expected inventory
holding costs, waste costs, load-dependent arc costs, and driver costs. The constraints
are: (1) inventory balance equations in terms of the expected demand, inventory, and
waste, (2) routing-related constraints including flow conservation and sub-tour elimina-
tion, and (3) a service level constraint to ensure a high probability of not running out of
stock in each period. The service level constraint is approximated by a linear inequality
as a function of the expected waste and delivery quantity. The authors use a commer-
cial MILP solver to solve the problem, followed by a simulation model to compare the
solutions obtained from the model with its simplified versions where perishability or
fuel consumption is not taken into account.

In the work of Soysal et al. [2015], all constraints are simplified from the very
beginning, since the stochastic demands are replaced by their expected value in the
constraints. Indeed, the probability distribution of demand is only considered in the
service level constraint, which is equivalent to a constraint we impose in our model
about the minimum delivery quantity. All other constraints, however, bear on the ex-
pected demand rather than the random demand variable. In this sense, their model
could be regarded as a deterministic PIRP. Table 3.1 shows the two papers we have
found on the SIRP for perishables as well as how our work is positioned with respect
to them.

The remainder of this chapter is organized as follows. Section 3.2 presents the
problem statement. Sections 3.3-3.7 propose four solution methods. In Section 3.8, we
develop a matheuristic to solve the optimization problem arising in one of the solution
methods. Section 3.9 presents a heuristic algorithm for the deterministic case where
full information is available about future demands. An exhaustive computational study
is carried out in Section 3.10. Results of the computational experiments are analyzed
and discussed in Section 3.11, where we also draw algorithmic and managerial insights.
Finally, concluding remarks are formulated in Section 3.12.

3.2 Problem statement
We consider a generic retail chain that attempts to maximize the expected net profit
generated by the sales of a single perishable product. The net profit is measured by
deducting acquisition, distribution, and other miscellaneous costs from the total rev-
enue. Acquisition costs and revenue mostly depend on the quantities delivered to the
stores, whereas distribution costs are also a consequence of the way the vehicles are
dispatched. Miscellaneous costs are viewed as independent of either decision and are
regarded as constant costs. As a result, we do not consider them in the objective func-
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tion: the net profit is simply computed as Revenue – Acquisition costs – Distribution
costs, and its expected value defines the objective function.

We assume a finite planning horizon of length T . We consider an implicit complete
graph G = (V,A), whose vertices represent the depot and the stores, and arcs repre-
sent the road segments between pairs of vertices. The distance and/or travel time from
vertex i to vertex j is denoted as ci j. Products are picked up from the depot and de-
livered to the stores. Each route starts from the depot, ends at it, and cannot exceed
a predefined length. (Most of our work could actually handle different types of feasi-
bility constraints on routes, but we limit ourselves to route length for simplicity.) The
demand in period t from end customers to each store i is an integer random variable
Dti (assumed independent for all periods and all stores) with known probability dis-
tribution. We define L as the deterministic shelf life of each unit of product from the
moment it is delivered to the stores. The acquisition cost of each unit is a. All units
delivered in period t have the same selling price p during L periods, and unsold units
perish at the end of period t +L−1 with no salvage value. Unmet demand leads to lost
sales but does not generate any other cost. The inventory holding cost is considered
to be zero. We assume that the depot holds an unlimited supply. Capacity of store i is
denoted by Ci. The retail chain owns an unlimited number of identical vehicles with
capacity Q. Each vehicle incurs a fixed cost K per period when it is used, and a vari-
able cost equal to ci j when traveling from vertex i to vertex j. Split deliveries are not
allowed, i.e., each store is served by at most one vehicle in each period.

The retail chain uses a centralized decision-making system to determine delivery
quantities and routes in each period. The inventory state in store i at the beginning
of period t is denoted by Xti = (x1,x2, . . . ,xL−1)ti, where (xk)ti is the inventory level
with remaining shelf life k. At the beginning of each period t, based on the inventory
states, the retail chain decides about the delivery quantities, yti, and the routes, Rt , to
be used in the current period. There is no time window for the delivery to stores, but
in each period each vehicle is allowed to perform at most one route with a predefined
maximum length. The delivery lead time is zero, i.e., the delivery quantities yti are
available on the shelves at the beginning of period t, right after the decision is made by
the retail chain. This is not an unrealistic assumption as in practice decisions are made
at the end of period t−1 and the vehicles are dispatched over night. The real demand
for period t is observed during the period and after quantity yti has been delivered. We
assume that the oldest units of product are sold first (FIFO issuing policy), i.e., (xk)ti is
stored until (xk−1)ti is used up or perished.

A hard constraint on the inventory control model is that a predefined Target Service
Level (T SL) must be respected in every period and in every store. More precisely, the
total inventory available in store i at the beginning of period t after yti is delivered,
must be such that the probability of not incurring a stockout in period t is at least equal
to T SL. This constraint is enforced in most solution methods we develop in order
to ensure fair comparisons. In practice, the average service level of perishables can
be estimated to be around 92% in Europe and in the USA, as cited by Minner and
Transchel [2010].

In the following four sections, we develop four different solution methods to solve
the PSIRP introduced in this section. The corresponding algorithms appear at the end
of each section. In the following sections, we will use the notations summarized in
Table 3.2.
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Table 3.2: Indices, parameters, and decision variables

Indices:
i, j indices for vertices (depot and stores)
k index for remaining shelf life
r index for routes
t index for period
Parameters:
T length of the planning horizon
N number of stores
L shelf life of the product
T SL target service level to be respected in every period and in

each store
a acquisition price of each unit of the product
p selling price of each unit of the product

Ci capacity of store i
(xk)ti inventory level with remaining shelf life k in period t

before delivery in store i
(x1,x2, . . . ,xL−1)ti state of the system in period t in store i before delivery
Iti total inventory at the beginning of period t in store i before delivery
Dti random demand of end customers in period t in store i

(integer-valued)
Pr(Dti = d) probability function of demand in period t in store i

Q capacity of each vehicle
ci j distance and travel cost from vertex i to vertex j
Fti estimated cost-to-serve assigned in period t to store i
Decision variables:
yti delivery quantity in period t to store i (integer values)
Rt set of routes used in period t (index r)
π expected profit generated by all stores over the planning horizon

3.3 The expected value method
A classical way to reduce the complexity of stochastic models is to replace random
variables by their expected values. Following this approach, the expected value method
(EV ) considers that demands are deterministic and equal to E(Dti), for all i, t. In order
to describe this method more precisely, let us again assume that the inventory levels
in period t in store i before delivery are given as (x1,x2, . . . ,xL−1)ti, so that the total
inventory level is:

Iti =
L−1

∑
k=1

(xk)ti. (3.1)

At the beginning of period t, for each store i, EVλ determines the delivery quantity as
follows: if the current inventory level Iti is larger than or equal to the average demand
E(Dti), the delivery quantity is zero; otherwise, EVλ delivers enough to satisfy the
expected demands of λ periods (1 ≤ λ ≤ L), including the current period, provided
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that store capacity Ci is respected. Then, a VRP is solved based on these delivery
quantities, real demands are observed, new inventory levels are calculated for the next
period, and the same decision making process is repeated in period t +1.

All necessary computations can be carried out as follows. Assume that in pe-
riod t, yti units are delivered and the actual demand dti is observed in store i. Then,
the inventory level of the store in period t + 1 is determined by relation (3.3), where
(z)+ = max(z,0) and (xL)ti = yti by convention:

((x1,x2, . . . ,xL−1)ti,yti)
dti→ (x1,x2, . . . ,xL−1)t+1,i (3.2)

(xk)t+1,i = ((xk+1)ti− (dti−
k

∑
l=1

(xl)ti)
+)+, for k = 1, . . . ,L−1. (3.3)

The expected value algorithm (EVλ )
Begin

Step 0. Set t = 1.

Step 1. For each store i, if Iti ≥ E(Dti), set yti = 0; otherwise, set yti = min{Ci−
Iti, bE(Dti)+ . . .+E(Dt+λ−1,i)c− Iti}.

Step 2. Solve a VRP for the delivery quantities yti’s and serve the stores through the
optimal VRP routes.

Step 3. For each store i, observe the actual demand in period t, say dti. Calculate the
state of the system in period t+1, i.e., Xt+1,i by Relations (3.3). Set t = t+1 and
go to Step 1.

End

At each store, the expected value method can be viewed as an (R,s,S) policy, where
R = 1, s = E(Dti), and S = min{Ci, bE(Dti)+ . . .+E(Dt+λ−1,i)c}. Note that EVλ does
not enforce the target service level T SL in every period, as it does not access demand
probability function. Consider a scenario where Iti ≥ E(Dti) but Iti is very close to
E(Dti). Based on the EVλ method, nothing is delivered in period t to store i, but
there is a remarkable chance that store i encounters a stockout in period t, as there is
very little buffer inventory against excess demand beyond E(Dti). This phenomenon
happens in the periods right before the delivery periods.

However, by choosing a large value of λ , a buffer inventory against excess demand
is provided in more periods, and therefore we can ensure the TSL in more periods.
λ = L creates the biggest number of such periods, and it is a suitable setting especially
for small values of L. This compensates the likely poor service level in the periods
right before the delivery periods so that a higher average service level is attained. In
our computational experiments, we set λ = L, and EVL is simply shown by EV . Not
surprisingly, by this setting, the service level obtained with EV turns out to be high in
our computational experiments, especially for larger values of L. In this chapter, we
regard EV just as a basis to which other solution methods are compared.
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3.4 A deliver-up-to-level method
As compared to EV , more effective solution methods would exploit the probability
function of demand rather than merely its expected value. In particular, when the target
service level T SL is high, a simple replenishment policy is to deliver the minimum
number of units such that T SL is satisfied. Denote this quantity by y(1)ti , which is the
smallest integer value of yti satisfying Inequality (3.4):

Pr(Dti ≤ yti + Iti)≥ T SL. (3.4)

Given the quantities y(1)ti , a VRP can be solved in order to determine the optimal
delivery routes for period t. Then, real demands are observed and the process is re-
peated for period t +1. We denote by UL1 this simple deliver-up-to-level policy which
attempts to satisfy T SL for one period. A drawback of this policy is that, in the replen-
ishment stage, it completely neglects the routing costs generated by the deliveries. In
practice, if at least one unit of demand is observed in every period and in every store,
then all stores are served in all periods. A somewhat moderated policy would be to de-
liver a bigger quantity to each store in such a way that on average, each store is visited
every λ periods, with λ ≤ L. In other words, the retail chain would deliver the smallest
integer value yti satisfying Inequality (3.5):

Pr(Dti + · · ·+Dt+λ−1,i ≤ yti + Iti)≥ T SL. (3.5)

Denote by y(λ )ti this quantity, which suffices to meet the demand of λ consecutive
periods with probability T SL. If y(λ )ti + Iti is larger than the store capacity Ci, we reset
y(λ )ti :=Ci− Iti. We call the corresponding method ULλ .

The deliver-up-to-level algorithm (ULλ )
Begin

Step 0. Set t = 1.

Step 1. For each store i, if Pr(Dti ≤ Iti) ≥ T SL, set yti = 0; otherwise, calculate the
smallest integer value yti satisfying Inequality (3.5), i.e., y(λ )ti . If y(λ )ti > Ci− Iti,
set y(λ )ti =Ci− Iti.

Step 2. Solve a VRP for the delivery quantities y(λ )ti and serve the stores through the
optimal VRP routes.

Step 3. For each store i, observe the actual demand in period t, say dti. Calculate the
state of the system in period t + 1, i.e., Xt+1,i, by Relations (3.3). Set t = t + 1
and go to Step 1.

End

Note that, in this policy, we set yti = 0 whenever Iti suffices to satisfy T SL in pe-
riod t, since a positive delivery quantity would increase the routing costs in period t. If
the inventory does not suffice to satisfy T SL in period t, we deliver y(λ )ti . In this sense,
ULλ can be viewed as an (R,s,S) policy where s = q(1), S = min{Ci,q(λ )}, and q(λ )

is the smallest integer such that Pr(Dti + · · ·+Dt+λ−1,i ≤ q(λ )) ≥ T SL. As T SL must
be respected in every period, we set R = 1. Note that λ = 1 tends to provide the fresh-
est products on shelf thanks to daily delivery, whereas bigger values of λ yield lower
routing costs and possibly higher profit.
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3.5 A decomposition method
The deliver-up-to-level method ULλ mostly focuses on the target service level in order
to determine the delivery quantities, and downplays the importance of revenues and
routing costs. Our next method relies on a Stochastic Dynamic Programming (SDP)
model to account more explicitly for these elements .

In the SDP model, the state of the system in period t is defined by the inventory lev-
els in all stores, i.e., ((x1, . . . ,xL−1)t1, . . . ,(x1, . . . ,xL−1)tN). The decision variables are
the delivery quantities in period t, i.e., (yt1, . . . ,ytN), and the routing decisions. Given
a decision on delivery quantities in period t, the direct costs (acquisition and routing)
as well as the expected revenue in period t can be formulated, as well as the poten-
tial states of the system in period t + 1 and the transition probabilities. Theoretically,
one can set SDP relations to determine the optimal delivery quantities in each period
based on the state of the system. However, this can only be applied to very small-size
instances. Considering N stores, a maximum shelf life L, and inventory levels to be
integers in the interval [0,C], there are (C + 1)N(L−1) potential states in each period.
Therefore, it is necessary to resort to heuristic methods to solve even small instances
through SDP.

In our approach, we solve an independent SDP for each store, with the aim to
optimize an estimate of the expected revenue generated by the store over the planning
horizon. As a result, though such a decomposition yields sub-optimal solutions, the
complexity of the problem no longer depends exponentially on the number of stores.
With our previous notations, the number of states in each period for each store is (C+
1)(L−1), which is computationally tractable for small values of L. In each period, the
SDP relations allow us to determine a delivery quantity to each store, based on its
current inventory level, while neglecting the routing costs. Then, we next solve a VRP
to obtain optimal routes for these delivery quantities. We call this the decomposition
method (DE).

Since the SDP model considers each store independently, it cannot properly ac-
count for the routing costs. Therefore, in the model associated with store i, we charge
a fixed cost-to-serve Fti if the store is visited in period t. This cost-to-serve acts as a
surrogate for the routing cost generated by the delivery to store i. The choice of Fti will
be discussed later.

Let us use the shorthands Xti =
(
(x1)ti, . . . ,(xL−1)ti

)
, Xt = (Xt1, . . . ,XtN), and Yt =

(yt1, . . . ,ytN), so that (Xt ,Yt) denotes the complete state of the system at time t after the
quantities yt1, . . . ,ytN have been delivered. We define fti(Xti,yti) as the total expected
profit for store i from period t until the end of the planning horizon when the state of the
store is Xti and the delivery quantity is yti. The function fti includes total revenue, ac-
quisition costs, and the cost-to-serve. The optimal expected profit generated by store i
from period t to the end of the horizon is denoted f ∗ti(Xti), that is,

f ∗ti(Xti) = max
y(1)ti ≤yti≤Ci−Iti

fti(Xti,yti), (3.6)

where y(1)ti is the smallest integer satisfying Inequality (3.4). The optimal delivery
quantity is specified by Equation (3.7):

y∗ti = y∗ti(Xti) = arg max
y(1)ti ≤yti≤Ci−Iti

fti(Xti,yti). (3.7)
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In order to determine the optimal delivery quantity y∗ti, we can solve the recursive Equa-
tions (3.8) by backward induction:

fti(Xti,yti) =−Fti ·1(yti > 0)−ayti

+Pr(Dti > Iti + yti)
(

p(Iti + yti)+ f ∗t+1,i(0, . . . ,0,0)
)

+
Iti+yti

∑
d=0

Pr(Dti = d)
(

pd + f ∗t+1,i(Xt+1,i)
)
,

(3.8)

where Xt+1,i = (x1, . . . ,xL−1)t+1,i is defined by Equation (3.3).

The first term in Equation (3.8) is an estimate of the routing cost incurred to serve
store i; the second term is the acquisition cost of yti units; the third term accounts for the
expected revenue collected from store i when the demand in period t is larger than the
inventory available at i in period t, and for the expected profit in periods t + 1, . . . ,T ;
similarly, the last term expresses the expected revenue in period t and the expected
profit in periods t +1, . . . ,T when the demand does not exceed the available inventory.
In order to solve (3.8), we use the boundary condition:

f ∗T+1,i((x1,x2, . . . ,xL−1)T+1,i) =
a
2

IT+1,i, (3.9)

where the right-hand side of (3.9) is an estimate of the profit generated by the inventory
left over at the end of the horizon. In our computations, T will be large enough that the
effect of (3.9) will not be significant.

The decomposition algorithm (DE)
Begin

Step 0. Set a cost-to-serve, Fti, for each store i and each period t based on one of the
algorithms described in Section 3.6. Set t = 1.

Step 1. Use Equations (3.7)–(3.8) to determine a delivery quantity to each store i in
period t, y∗ti, given the state of the system Xti = (x1, . . . ,xL−1)ti.

Step 2. Solve a VRP for the delivery quantities y∗ti and serve the stores through the
optimal VRP routes.

Step 3. For each store i, observe the actual demand in period t, say dti. Calculate the
state of the system in period t+1, i.e., Xt+1,i by Relations (3.3). Set t = t+1 and
go to Step 1.

End

Note that the quantities y∗ti determined by Equations (3.7)–(3.8) are not optimal
for the original PSIRP but only for the decomposed problem. However, this approach
might yield reasonably good solutions for the PSIRP provided that the costs-to-serve
Fti are reliable estimates of the actual routing costs. In Section 3.6, we introduce two
methods to calculate an intermediate cost-to-serve to be assigned to each store.

3.6 Cost-to-serve estimation
Assuming that the arc costs ci j are symmetric and that they satisfy the triangle inequal-
ities, a natural range for the cost-to-serve of store i is [0,2ci0], where the upper bound
is the cost of a direct delivery to store i.
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When we set Fti = 0 for all stores, we obtain an algorithm that we call DE0: in
this case, the SDP relations tend to yield positive delivery quantities to all stores in all
periods, even though such a high delivery frequency may not be necessary. Indeed, it
provides very fresh products but ignores, and therefore implicitly increases, the routing
costs.

When the delivery quantity to store i is close to the vehicle capacity Q, so that no
other store can be served on the same route, Fti = 2ci0 is the correct delivery cost. In
this case, each store could be dealt with independently and resorting to IRP solution
methods no longer makes sense, at least as long as split deliveries are not allowed. In
other cases, i.e., when more than one store is served by each route, neither Fti = 0 nor
Fti = 2ci0 proves to be good settings. In the sequel, we introduce two methods to calcu-
late an intermediate cost-to-serve to be assigned to each store. The first approach yields
a distance-based cost-to-serve Fd

ti which focuses on the average distance between each
store and its closest neighbors. The second approach produces a route-based cost-to-
serve Fr

ti which allocates the total cost of a route to the stores it includes.

3.6.1 Distance-based cost-to-serve
The first approach to estimate costs-to-serve looks at the average distance between each
store and its “closest neighbors”. Defining Ji as a set of stores near store i, a distance-
based cost-to-serve for store i is calculated by Equation (3.10):

Fd
ti =

∑ j∈Ji ci j

|Ji|
(3.10)

Observe that Fd
ti does not depend on t. Our experimental results show that the size

of the set Ji should increase with the maximum shelf life L. The reason is that for large
L, stores are served less frequently. So, there is a smaller chance to serve store i and
its nearest neighbors in the same period, and, by way of consequence, it is more likely
that store i will be served together with some of its farther neighbors. We set |Ji|= 2L
in our experiments.

3.6.2 Route-based cost-to-serve
Our second approach is inspired by the work of Ozener et al. [2013]. These authors
introduce several methods to allocate a cost-to-serve to each store in an IRP. Based
on the same underlying concepts, we assign the whole cost of a route to the stores
it includes. However, we have to estimate the cost of the routes before solving any
IRP. This can be done by calculating and comparing the average routing cost plus the
average deterioration cost for different frequencies of deliveries. Assuming that the
ideal periodicity of delivery is λ periods, that store i is served in period t, and that
the store capacity is large enough, the delivery quantity in period t to store i can be
estimated by Equation (3.11):

αti = E(Dti)+ . . .+E(Dt+λ−1,i). (3.11)

Then, the average delivery quantity in period t to store i and to its neighbors is:

ᾱti =
αti +∑ j∈Ji αt j

1+ |Ji|
. (3.12)
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Given the average delivery quantity ᾱti and vehicle capacity Q, we approximate the
average number of stores included in the route serving store i in period t as:

n̄ti =
Q
ᾱti

, (3.13)

and the cost of the route serving i as:

Rti = 2ci0 +(n̄ti−1)Fd
ti . (3.14)

Finally, the portion of the estimated cost of the route allocated to store i is:

Fr
ti =

αti

αti +∑ j∈Ji αt j
·Rti. (3.15)

In our experiments, we determined that the best setting for the frequency of deliv-
eries is λ = L−1. We also observed that the costs Fr

ti computed by this approach are
high as compared to the former costs Fd

ti .

3.7 A decomposition-integration method
In this section, we improve our estimate of the expected profit given in Equation (3.8),
by taking into account the actual routing costs in period t and by refining the approxi-
mation of the routing costs in period t +1 (as compared to the costs-to-serve Fti). The
cost-to-serve estimates are still used from period t +2 onward. To understand how this
can be achieved, note that given the state of the system at time t, say Xt , and the vector
of delivery quantities denoted by Yt , a first estimate of the total profit for periods t to T
is simply obtained as:

π
1
t (Xt ,Yt) =

N

∑
i=1

fti(Xti,yti) =
N

∑
i=1

fti((x1, . . . ,xL−1)ti,yti). (3.16)

Now, let R(y1, . . . ,yN) represent the optimal routing cost for the VRP with delivery
quantities (y1, . . . ,yN). Then, Equation (3.16) can be improved if we replace the fixed
costs-to-serve by the actual VRP routing cost in period t. This correction leads to the
(presumably more accurate) estimate:

π
2
t (Xt ,Yt) =

N

∑
i=1

fti(Xti,yti)+
N

∑
i=1

Fti ·1(yti > 0)−R(yt1, . . . ,ytN) (3.17)

In order to apply a similar correction to the routing costs for period t + 1, let us
denote by y+t+1,1, . . . ,y

+
t+1,N the optimal delivery quantities in period t + 1. Note that

these quantities depend in a complex way on (Xt ,Yt) and are actually random vari-
ables, since they also depend on the realization of the demands Dt1, . . . ,DtN in period t.
With these notations, another estimate of the total expected profit can be derived from
Equation (3.17), as follows:

π
3
t (Xt ,Yt) =

N

∑
i=1

fti(Xti,yti)+
N

∑
i=1

Fti ·1(yti > 0)−R(yt1, . . . ,ytN)

+
N

∑
i=1

Ft+1,i ·Pr(y+t+1,i > 0 |Yt)

− ∑
(y1,...,yN)

Pr((y+t+1,1, . . . ,y
+
t+1,N) = (y1, . . . ,yN)|Yt)×R(y1, . . . ,yN).

(3.18)

55



In this expression, the fourth term corrects the expected value of the cost-to-serve
in period t + 1, and the last term represents the expected value of the routing cost in
period t +1, given the delivery decisions Yt . We estimate the random variable y+t+1,i by
its expected value. Based on Equation (3.7), this can be estimated as follows (compare
with Equation (3.8)):

E(y+t+1,i |yti) = Pr(Dti > Iti + yti)y∗t+1,i(0, . . . ,0,0)

+
Iti+yti

∑
d=0

Pr(Dti = d)y∗t+1,i(Xt+1,i)
(3.19)

where Xt+1,i is defined by Equation (3.3).

Replacing the random quantities y+t+1,i by bE(y+t+1,i |yti)c turns (3.18) into a de-
terministic problem where the delivery cost in period t + 1 can be approximated by
solving a single VRP. This approach has the drawback, however, of yielding strictly
positive values bE(y+t+1,i |yti)c for almost all stores i, which is unlikely to happen for
the optimal delivery quantities y+t+1,i because this would result in high routing costs.
Therefore, we further modify our approximation by considering delivery quantities
(ỹt+1,i |yti) defined by Equation (3.20) hereunder, where εi is a user-parameter whose
value depends on the magnitude of the demand (εi =

1
2 E(Dit) proved suitable in our

numerical experiments):

(ỹt+1,i|yti) =

{
bE(y+t+1,i|yti)c if bE(y+t+1,i|yti)c> εi,

0 otherwise.
(3.20)

The optimal expected total profit is then approximated by solving the optimization
Problem (3.21).

max
(yt1,...,ytN)

π̃(yt1, . . . ,ytN) =
N

∑
i=1

fti(Xti,yti)

+
N

∑
i=1

(Fti ·1(yti > 0)+Ft+1,i ·1((ỹt+1,i|yti)> 0))

−R(yt1, . . . ,ytN)−R((ỹt+1,1|yt1), . . . ,(ỹt+1,N |ytN))

subject to y(1)ti ≤ yti ≤Ci− Iti, i = 1, . . . ,N.

(3.21)

This formulation takes into account the routing costs in period t, the approximated
expected routing costs in period t + 1, and costs-to-serve for the following periods.
Note that by choosing a big value for εi in Equation (3.20), Problem (3.21) is simplified
to Equation (3.17) to be maximized over (yt1, . . . ,ytN), i.e., a problem considering the
routing costs in period t and cost-to-serve estimates in periods t +1 and onward.

The decomposition-integration algorithm (DI)
Begin

Step 0. Set a cost-to-serve, Fti, for each store i and each period t based on one of the
algorithms described in Section (3.6). Set t = 1.

Step 1. Solve Problem (3.21) to obtain the delivery quantities yti and the correspond-
ing routes in period t.

Step 2. Serve the stores with the delivery quantities yti through the routes obtained in
Step 1.
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Step 3. For each store i, observe the actual demand in period t, say dti. Calculate the
state of the system in period t+1, i.e., Xt+1,i by Relations (3.3). Set t = t+1 and
go to Step 1.

End

In the next section, we propose a matheuristic algorithm to solve Problem (3.21),
as required by Step 1 of Algorithm DI.

3.8 A matheuristic algorithm for Problem (3.21)
Optimizing the objective function π̃ in Problem (3.21) is a daunting task and therefore,
we use a matheuristic local search algorithm to maximize it approximately. Starting
from the initial solution Yt = (y∗t1, . . . ,y

∗
tN) proposed by Equation (3.7), we generate a

new feasible solution Y
′

t = (y
′
t1, · · · ,y

′
tN) as explained below, and we explore whether

π̃(Y
′

t ) is larger than π̃(Yt). If so, we move to the new solution; otherwise, we generate
another solution. The local improvement algorithm stops when a pre-defined number
of consecutively generated new solutions are rejected due to either lack of improve-
ment or infeasibility. Calculating π̃ in Problem (3.21) for any new solution involves
solving two VRPs. In order to avoid these expensive computations, each new solution
is not generated randomly but in a systematic way which allows us to recompute π̃(Y

′
t )

incrementally, by difference with π̃(Yt).

When moving from the current solution (the current set of delivery quantities and
their optimal routes) to a new solution, the difference in the approximated expected
total profit is calculated by Equation (3.22):

∆ = π̃(y
′
t1,y

′
t2, . . . ,y

′
tN)− π̃(yt1,yt2, . . . ,ytN) =

N

∑
i=1

( fti((x1,x2, . . . ,xL−1)ti,y
′
ti)− fti((x1,x2, . . . ,xL−1)ti,yti))

− (R(y
′
t1, . . . ,y

′
tN)−R(yt1, . . . ,ytN))

− (R((ỹ
′
t+1,1|y

′
t1), . . . ,(ỹ

′
t+1,N |y

′
tN))−R((ỹt+1,1|yt1), . . . ,(ỹt+1,N |ytN)))

+
N

∑
i=1

Fti · (1(y
′
ti > 0)−1(yti > 0))

+
N

∑
i=1

Fti · (1((ỹ
′
t+1,i|y

′
ti)> 0)−1((ỹt+1,i|yti)> 0)).

(3.22)

Let us assume that in every move from the current solution to a new solution, we
change the delivery quantities in such a way that the routes, and so the routing costs, in
period t +1 do not change. Moreover, let us indicate the decrease in the routing costs
in period t by δ :

δ = R(yt1, . . . ,ytN)−R(y
′
t1, . . . ,y

′
tN). (3.23)

Then, one can rewrite Equation (3.22) as follows:

∆ =
N

∑
i=1

( fti((x1,x2, . . . ,xL−1)ti,y
′
ti)− fti((x1,x2, . . . ,xL−1)ti,yti))

+δ +
N

∑
i=1

Fti · (1(y
′
ti > 0)−1(yti > 0)).

(3.24)
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In the proposed matheuristic, a new solution is generated in such a way that the
routing cost in period t decreases while the expected routing cost in period t + 1 does
not change. We explain the main idea here. Assume that in period t, a store j is ejected
from its current route and is inserted into another route, say route r∗, without modifica-
tion of the delivery quantities Yt . Denote by r′ the route in period t derived from route r∗

after inserting store j into it. If route r′ is feasible for the delivery quantities Yt and if
the routing cost in period t decreases as a result of this ejection-insertion step, then,
clearly, the new VRP solution is preferred to the previous one. Generally speaking,
however, since the VRP routes have been optimally selected for the delivery quantities
Yt , route r′ will be infeasible either with respect to its maximum allowed length or with
respect to the capacity of the vehicle. In the first case, we simply reject the new so-
lution. In the second case, we try to determine whether the delivery quantities Yt can
be adapted (presumably, decreased) in such a way that r′ becomes feasible. However,
modifying Yt also induces an effect on period t + 1 (more precisely, on the quantities
(Ỹt+1|Yt) which are likely to increase). In order to keep some control over this effect,
therefore, we restrict ourselves to certain modifications of Yt which do not affect the
feasibility of the current routes in period t and period t +1.

To describe our local search strategy, let us introduce additional notations. For an
arbitrary set of routes R, we denote by N(R) the set of stores contained in some route
of R (excluding the depot); when R contains a single route, say, R = {r}, we simply
write N(r) instead of N(R). Then, we define:

• Rt , Rt+1 are the sets of routes in period t and t+1, respectively, after the ejection-
insertion step has been performed on store j;

• D=N(r′) is the set of stores visited on route r′; we allow their delivery quantities
to decrease in period t so as to restore feasibility of route r′ (D is for “decrease”);

• Rt+1 = {r ∈ Rt+1 |D∩N(r) 6= /0} is the set of routes in period t +1 that contain
at least one store in D; these are the routes in period t +1 which may be affected
when we decrease a delivery quantity to a store in D in period t; we need to make
sure that these routes remain feasible, and this can be achieved by decreasing the
expected delivery quantities to some of the corresponding stores in period t +1;
or indirectly, by increasing the deliveries to these stores in period t; we model
this through the introduction of the sets Rt and I;

• Rt = {r ∈ Rt |N(Rt+1)∩N(r) 6= /0} is the set of routes in period t that contain at
least one store in N(Rt+1); the routes in Rt are considered as being potentially
affected in period t;

• I = (N(Rt+1)∩N(Rt)) \D is the set of stores (excluding stores in D) in the af-
fected routes in both periods t and t + 1; we allow their delivery quantities to
increase in period t so as to maintain the feasibility of the routes in Rt+1 (I is for
“increase”).

Moreover, define the following binary decision variables:

• for each store i∈D, vih = 1 if the delivery quantity to store i decreases by h units;
else, vih = 0;

• for each store i ∈ I, vih = 1 if the delivery quantity to store i increases by h units;
else, vih = 0.
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Assume that mi (resp., mi) is an upper bound on the largest possible decrease (resp.,
increase) of the delivery quantity yti in period t. We will later explain how such bounds
can be computed. Then, an IP model to determine new delivery quantities in period t
is set as follows:

max ∑
i∈D

mi

∑
h=0

fti(Xti,yti−h) · vih +∑
i∈I

mi

∑
h=0

fti(Xti,yti +h) · vih

subject to

(3.25)

mi

∑
h=0

vih = 1 ∀i ∈ D (3.26)

mi

∑
h=0

vih = 1 ∀i ∈ I (3.27)

∑
i∈D

mi

∑
h=0

(yti−h) · vih ≤ Q (3.28)

∑
i∈N(r)∩I

mi

∑
h=0

(yti +h) · vih + ∑
i∈N(r)\I

yti ≤ Q ∀r ∈ R̄t\r
′

(3.29)

∑
i∈N(r)∩D

mi

∑
h=0

(ỹt+1,i|yti−h) · vih + ∑
i∈N(r)∩I

mi

∑
h=0

(ỹt+1,i|yti +h) · vih

+ ∑
i∈N(r)\(D∪I)

(ỹt+1,i|yti)≤ Q ∀r ∈ R̄t+1

(3.30)

vih ∈ {0,1} ∀i ∈ D,h ∈ [0,mi] and ∀i ∈ I,h ∈ [0,mi]. (3.31)

The objective function (3.25) maximizes the total expected profit obtained by the
new delivery quantities to the stores in sets D and I, i.e., the stores whose delivery
quantities may change. Constraints (3.26) and (3.27) along with Constraints (3.31)
imply that exactly one of the decision variables vih takes value 1 for each store i∈D∪ I.
Constraint (3.28) indicates that the new delivery quantities to the stores in the expanded
route r

′
must respect the vehicle capacity. Constraints (3.29)–(3.30) guarantee that for

every affected route in period t or t +1, the sum of the new delivery quantities does not
exceed the vehicle capacity.

If the IP has a feasible solution, the new delivery quantities to the stores in D and
I are calculated by using Equations (3.32) and (3.33), respectively. Delivery quantities
to other stores do not change.

y
′
ti =

mi

∑
h=0

(yti−h) · vih ∀i ∈ D (3.32)

y
′
ti =

mi

∑
h=0

(yti +h) · vih ∀i ∈ I. (3.33)

Note that only the routes belonging to either R̄t or R̄t+1 appear in the IP formulation.
Moreover, in order to decrease the current excess load on route r

′
, we only consider

in (3.25)–(3.31) a subset of promising stores (those in D∪ I) for which the current
delivery quantities can either increase or decrease. Thus, we cannot claim that the
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optimal solution of Problem (3.25)–(3.31) provides the optimal adjustment of delivery
quantities to restore the capacity constraint in route r

′
. In particular, Problem (3.25)–

(3.31) may be infeasible, while there actually exists an adjustment of delivery quantities
such that the capacity of route r

′
is not exceeded and all other routes in periods t and

t +1 remain feasible.

Thus, summing up, our local search approach to Problem (3.21) acts as a "large
neighborhood search" framework, which explores the neighborhood of the current so-
lution by solving the IP subproblem (3.25)–(3.31). The solution of (3.25)–(3.31) hope-
fully yields new delivery quantities which increase the expected total profit. The fol-
lowing algorithm must be embedded in Step 1 of algorithm DI.

The Matheuristic algorithm
Begin

Step 0. Initial solution: Solve two independent VRPs for periods t and t +1 where
the delivery quantities are respectively yti = y∗ti and (ỹt+1,i|yti) calculated by
Equations (3.7) and (3.20).

Step 1. Termination: If Steps 2-5 have been repeated for a predetermined number of
iterations, then stop.

Step 2. Ejection-insertion: Choose two random stores j and j
′

which are served in
period t but are not included in the same route. Assume that j is ejected from its
current route and is inserted immediately before or after j

′
, whichever leads to

a lower cost for the expanded route r
′
. If the expanded route r′ is infeasible in

terms of the route length, go to Step 1.

Step 3. Saving: Calculate δ as the decrease in the routing costs in period t resulting
from the ejection-insertion in Step 1. If δ ≤ 0, go to Step 1.

Step 4. New deliveries: If the sum of the current delivery quantities on r
′

does not
exceed Q, go to Step 5; otherwise, solve Problem (3.25)–(3.31). If the prob-
lem does not have a feasible solution go to Step 1; otherwise, calculate the new
delivery quantities by Equations (3.32)–(3.33).

Step 5. Move: Use Equation (3.24) to calculate ∆, i.e., the difference between the
expected total profit for the new solution and the current solution. If ∆ > 0 move
to the new solution. Go to Step 1.

End

The Matheuristic algorithm proposed to solve Problem (3.21) relies on decreasing
the routing costs in period t while keeping the expected routes in period t + 1 un-
changed. We have tested the reverse as well, i.e., modifying the delivery quantities in
period t so that the routes in period t do not change while the expected routing costs in
period t + 1 decrease. Our results show that this strategy does not perform well. This
may be due to the fact that the second strategy tries to decrease the expected costs of
routes which may not be realized at all in period t +1. In contrast, the former strategy
reaps an immediate benefit by decreasing the routing costs in the current period.

Maximum decrease and increase in delivery quantities:
Following the notations, here we determine the maximum decrease (resp., increase) in
delivery quantity to the stores in D (resp., I), i.e., we determine mi for i ∈ D (resp., mi
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for i ∈ I). This helps us to restrict the number of decision variables in the IP formula-
tion. Let us define qtr as the current load on route r in period t, and qt(i) as the current
load on the route which includes store i in period t.

The delivery quantity to store i ∈ D can decrease as long as it respects T SL, i.e.,
mi ≤ yti−y(1)ti , where y(1)ti is, as before, the smallest integer delivery quantity satisfying
Inequality (3.4). Moreover, there is no need to decrease the delivery quantity to store
i ∈ D by more than the excess load on route r′, i.e., mi ≤ qtr′ −Q. The decrease must
not cause vehicle load violation in any of the routes in R̄t+1. In order to analyze the
latter constraint, consider two cases. In the first case, store i ∈ D is not included in any
route in R̄t+1, i.e., i ∈ D\N(R̄t+1). For such a store, the delivery quantity in period t,
yti, can decrease as long as the expected delivery quantity in period t + 1, (ỹt+1,i|yti),
remains zero; otherwise, the routing costs in period t+1 would increase. This translates
into mi ≤ min0≤y≤yti{y | (ỹt+1,i|y) = 0}. Hence, for every store i ∈ D\N(R̄t+1), the
maximum decrease of the delivery quantity yti is determined as:

mi = min{yti− y(1)ti , qtr′ −Q, yti− min
0≤y≤yti

{y | (ỹt+1,i|y) = 0}}. (3.34)

The second case considers stores i ∈ D which are also served in period t + 1, i.e.,
stores i ∈ D∩N(R̄t+1). A similar reasoning about the necessity of respecting T SL and
the uselessness of decreasing a delivery quantity more than the excess load on r

′
applies

for these stores and lead to the same constraints as in the previous case. Constraints
(3.30) in the IP formulation guarantee that a decrease of the delivery quantity to i ∈
D∩N(R̄t+1) does not cause any vehicle capacity violation in period t + 1. Therefore,
for all stores i ∈ D∩N(R̄t+1), the maximum decrease of delivery quantity is simply
determined as:

mi = min{yti− y(1)ti , qtr′ −Q}. (3.35)

A maximum increase of delivery quantity, say mi, for any store i ∈ I can also be
determined. On one hand, the increase cannot be so high as to exceed the vehicle
capacity, i.e., mi ≤ Q− qt(i) must hold. On the other hand, store capacities must be
respected, i.e., mi≤Ci−Iti−yti. As a result, the maximum increase of delivery quantity
to any store i ∈ I is determined as

mi = min{Q−qt(i),Ci− Iti− yti}. (3.36)

3.9 Full information
When assessing the performance of the above algorithms, it is interesting to consider
the value of full information, that is, the additional expected profit that could be reaped
if full information about the actual demands was available to the decision-maker. With
such information in hand, the PSIRP simplifies to a deterministic PIRP. In this section,
we develop a simple heuristic, to be called FI, for the resulting PIRP. From the inven-
tory control perspective, FI should deliver in such a way that no waste is incurred and
no lost sales occur. To this end, there is no difference between delivering the demand
of the current period only, or the demands of two periods ahead, or the demands of λ

periods ahead as long as λ ≤ L, since no inventory holding cost is charged. From the
routing point of view, however, it can be beneficial to serve all stores in the same peri-
ods and with larger delivery quantities. In this sense, when demands are deterministic,
serving all stores every λ = L periods sounds like an effective strategy. However, here
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is a caveat: λ < L might be a better choice than λ = L because the average filling rate of
vehicles could be higher. Therefore, while we expected λ = L to be the best choice, we
have tested other λ values too. Based on our setting for Q and E(Dti), λ = 2 (resp., 3,
3) numerically proved to be the best choice for L = 2 (resp., 3, 4). In the algorithm FI,
we assume that the stores’ capacities are large.

The full information algorithm (FI)
Begin

Step 0. Set t = 1 and λ .

Step 1. For each store i, set yti = dti+ . . .+dt+λ−1,i− Iti, where dti is the deterministic
demand in period t in store i.

Step 2. Solve a VRP for period t by considering delivery quantities yti, and serve the
stores with these delivery quantities through the optimal VRP routes.

Step 3. For each store i, set yt+1,i = . . .= yt+λ−1,i = 0. Set t = t +λ and go to Step 1.

End

3.10 Computational study
All algorithms are coded in Java and the instances are run on an Intel Core i7 processor
with 1.8GHz CPU and 8GB RAM. No time limit is imposed to any of the algorithms,
but each algorithm is used to determine delivery quantities and delivery routes for a
finite planning horizon.

In order to solve the VRP models that arise as subproblems in all algorithms, we
use a fast but effective heuristic. The heuristic first solves the LP relaxation of a route-
based formulation of the VRP by column generation [Righini and Salani, 2006]. Then,
the restricted master problem obtained at the end of the column generation process
is solved to optimality as an integer programming problem by calling ILOG CPLEX
12.4. Testing this heuristic on the original random instances created by Solomon [1987]
showed an average optimality gap of 0.6% with respect to the exact optimal values.
CPLEX is also used to solve the integer programming problems (3.25)-(3.31) described
in Section 3.8.

3.10.1 Instances
For the computational experiments, the first N = 40 stores in the R-series random in-
stances created by Solomon [1987] are considered with some modifications. Each route
length remains limited to 230 time units, but we do not impose any time window for
the stores. The vehicle capacity in the homogeneous fleet is Q = 120. Demands are
randomly generated during a planning horizon of T = 30 periods.

We assume that demands from end customers to the stores, Dti, are i.i.d. random
variables following a binomial distribution with parameters 200 and 0.1, i.e., Dti ∼
Bin(200,0.1). So, the average demand is E(Dti) = 20 for each period and for each
store. Three deterministic shelf lives are analyzed, namely, L ∈ {2,3,4}.
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As the original instances suggest, the fixed cost of using each vehicle is zero, and
Euclidean distances represent the cost ci j of traveling from store i to store j. The ac-
quisition price and selling price per unit are respectively a = 6 and p = 10. A target
service level of T SL = 90% is to be respected in every period and every store in all
solution methods, except EV (note that EV does not access the probability distribu-
tion of demand). A capacity of Ci = 120 is considered for every store. However, our
computational results reveal that when algorithms ULλ , DE, and DI are applied, the
proposed delivery quantities by the algorithms plus the inventory level is always strictly
less than 40 (resp., 60, 80) for L = 2 (resp., 3, 4). This implies that for these algorithms
the latter store capacities are large enough. When algorithm FI is applied, store capac-
ity 80 (resp., 100, 120) is large enough for L = 2 (resp., 3, 4). We will later analyze
the impact of limited store capacity on profit, freshness, and actual service level. In
the next subsections, we discuss some of the performance measures that we have col-
lected. Following our settings, Equations (3.10) and (3.15) suggest Fd = {11,13,15}
and Fr = {18,25,31} for L = {2,3,4}.

3.10.2 Simulation
In order to evaluate the performance of different solution methods, we use random
scenarios to simulate the sequence of decisions made by each method over a planning
horizon of T = 30 periods. We generate a set of 30 scenarios, where each scenario
consists of initial inventory as well as demands of the stores over the planning horizon.
We use the same scenarios for all solution methods and for all shelf lives. The initial
inventory of each store is a uniform random number in the interval [0,30] (resp., [0,50],
[0,70]) for L = 2 (resp., 3, 4), and is considered to have shelf life L−1.

For each solution method, the expected profit is estimated by averaging the total
profit over the 30 random scenarios. Since each algorithm faces the same sequence of
demands in each scenario, we can meaningfully compare the profits associated with
the decisions made by each algorithm with regard to delivery quantities and delivery
routes. Besides, we also collect other useful information such as average actual service
level and freshness as additional criteria to measure the performance of each method.

3.10.3 Actual service level
For each run of the simulation, we calculate the average actual service level in two
ways, based on the number of stock-outs (ξs) and fill rate (ξ f ). Recall that, according
to Equation (3.1), Iti indicates the inventory level at the beginning of period t in store i,
i.e., the inventory level before delivery. The quantity 1(dti≤ Iti+yti) is 1 if no stock-out
happens in period t in store i, and 0 otherwise. Hence, in Equation (3.37) hereunder, ξs
is the proportion of observations where no stock-outs occurred, over all stores and all
periods. This metric is consistent with our initial definition of T SL in Equation (3.4).

ξs =
∑t ∑i1(dti ≤ Iti + yti)

T N
. (3.37)

Our second definition of service level considers the fill rate of demands. In this
case, min{dti, Iti + yti} shows the demand satisfied in period t in store i. Thus, Equa-
tion (3.38) calculates the average fill rate of demand in all stores over the planning
horizon.

ξ f =
∑t ∑i min{dti, Iti + yti}

∑t ∑i dti
. (3.38)
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3.10.4 Actual freshness
For each run of the simulation, the actual freshness of products is calculated in two
ways. First, the average actual freshness on shelf φs is calculated by Equation (3.39):

φs =
∑t ∑i(1x1 +2x2 + · · ·+(L−1)xL−1)ti +Lyti

∑t ∑i(Iti + yti)
. (3.39)

Next, Equation (3.40) is used to calculate φc, the average actual freshness from a
customer’s perspective. In this definition, (sk)ti is the number of units with remaining
shelf life k sold in period t in store i.

φc =
∑t ∑i(1s1 +2s2 + · · ·+(L−1)sL−1 +LsL)ti

∑t ∑i(s1 + s2 + · · ·+ sL)ti
. (3.40)

In Equation (3.40), values of sk are determined by the following recursive relations:

u1 = d s1 = min(u1,x1)
u2 = (u1− x1)

+ s2 = min(u2,x2)
u3 = (u2− x2)

+ s3 = min(u3,x3)
...

...
uL = (uL−1− xL−1)

+ sL = min(uL,y)

(3.41)

3.10.5 Verifying route schedule estimations in period t +1

In the decomposition-integration method DI, we use Equation (3.20) to approximate
the expected deliveries in period t + 1. The main purpose of this approximation is to
estimate the routing costs in period t +1; see Equation (3.21). Therefore, the accuracy
of the approximation can be evaluated for each scenario by measuring the similar-
ity between the set of routes forecasted when using Equation (3.20), denoted here by
E(Rt+1), and the set of routes actually used in period t + 1, namely, Rt+1. We define
the degree of similarity between these sets by Equation (3.42):

Similarity =
∑(i, j)∈(Rt+1∩E(Rt+1)) ci j

∑(i, j)∈(Rt+1∪E(Rt+1)) ci j
. (3.42)

3.10.6 Results
For each scenario, each solution method is applied over a planning horizon of T = 30
periods. Tables 3.3 and 3.4 summarizes the results. The first column denotes the
maximum shelf live L ∈ {2,3,4}. The second column indicates the solution meth-
ods applied to determine delivery quantities and routes for each scenario, namely: the
expected value method (EV ), deliver-up-to-level with daily deliveries (UL1), deliver-
up-to-level with large delivery quantities to satisfy T SL for λ = L−1 periods (ULL−1),
decomposition without costs-to-serve (DE0), decomposition with distance-based costs-
to-serve (DEd), decomposition with route-based costs-to-serve (DEr), decomposition-
integration without costs-to-serve (DI0), decomposition-integration with distance-based
costs-to-serve (DId), decomposition-integration with route-based costs-to-serve (DIr),
and the full information method (FI). Column 3 displays the average computation
times over 30 scenarios for each instance. When L = 2, most of the computation time
is spent in solving the VRPs, in that all N = 40 stores are served in every period when
applying ULλ , DE, or DI. When L = 4, however, most of the computation time is
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devoted to solving the expensive SDP relations (3.8). In the latter case, solving the
VRPs takes almost no time because the average number of stores served in each period
is around 15. The next columns report, respectively, average values over 30 scenar-
ios of the profit, revenue, acquisition cost, routing cost, waste cost, average number
of vehicles per period, average number of stores per route, average time between two
consecutive visits to stores, freshness on shelf, freshness from customers’ perspective,
service level based on the number of stock-outs, and service level based on the filling
rate.

In order to increase the readability of the table, the values in Columns 4–8 are
normalized with respect to the profit obtained by EV for each shelf life. For ULλ , we
obtained the highest profit by setting λ = L−1. For FI, we obtained the highest profit
by setting λ = 2 (resp., 3, 3) for L = 2 (resp., 3, 4).

3.11 Discussion
In this section, we analyze and discuss the results of the computational study. We
demonstrate that the differences between the profits generated by different solution
methods are statistically and economically significant. We also draw some additional
managerial insights.

3.11.1 Comparing the solution methods
Before we focus on the profit criterion, let us briefly discuss the other trends that emerge
from Tables 3.3 and 3.4. Regarding freshness, method UL1 provides the freshest prod-
ucts, while the other solution methods strive to reap a higher profit. All methods lead to
extremely high service levels, especially when measured by the fill rate of demand ξ f .
These high service levels are obtained even for EV , especially when L is large. As
indicated by ξs, the proportion of stock-outs is higher with EV and UL1 than with the
other methods, but is still reasonably low. Finally, all solution methods but EV yield
extremely low waste costs.

Table 3.3 reveals that the computation time of DI is always more than that of DE,
as the former algorithm builds upon the solution of the latter one. Interestingly, the
computation time of DE and DI with positive cost-to-serve values for L = 3 are less
than that for L = 2 and 4. The reason is that for a larger value of L the SDP compu-
tations take more time, but the stores are visited less frequently. This implies that a
fewer number of stores are visited in each period with larger delivery quantities, which
consequently facilitates solving the VRPs. Indeed, when L = 2, the SDP computations
are carried out very quickly, whereas solving the VRPs take a lot of time, as almost all
stores are visited in every period. On the contrary, when L = 4, the SDP computations
take most of the computation time, whereas the VRPs are solved more conveniently.
In this sense, when L = 3, the sum of the computation time to solve the SDP relations
and the VRPs is less than L = 2 and 4.

Let us now take a closer look at the profit. Recall that all values are normalized
so that the expected profit generated by EV is 1 in all scenarios. As expected, the
average profit tends to increase when we move from method EV to UL, to DE, and
to DI. Figure 3.1a illustrates the average additional profit when each of the methods is
applied.

65



Table 3.3: Comparing different solution methods

L Method Time(sec) Pro.= Rev. −Acq. −Rou. Waste

2

EV 4 1.000 3.598 2.331 0.267 0.149

UL1 1626 1.126 3.596 2.175 0.295 0.008
ULL−1 1626 1.126 3.596 2.175 0.295 0.008

DE0 1802 1.129 3.623 2.196 0.297 0.011
DEd 1484 1.130 3.623 2.196 0.297 0.011
DEr 1482 1.130 3.623 2.196 0.297 0.011

DI0 8783 1.133 3.622 2.196 0.293 0.011
DId 7003 1.133 3.621 2.196 0.293 0.011
DIr 7188 1.133 3.621 2.196 0.293 0.011

FI 7 1.210 3.604 2.170 0.224 0.007

3

EV 3 1.000 3.376 2.164 0.212 0.103

UL1 1673 1.045 3.310 1.994 0.271 0.000
ULL−1 2 1.082 3.379 2.065 0.232 0.011

DE0 1575 1.052 3.359 2.032 0.274 0.000
DEd 49 1.082 3.382 2.073 0.227 0.016
DEr 50 1.078 3.384 2.079 0.227 0.020

DI0 7697 1.057 3.356 2.036 0.263 0.005
DId 98 1.088 3.384 2.073 0.223 0.015
DIr 98 1.085 3.383 2.077 0.221 0.019

FI 1 1.132 3.317 1.995 0.189 0.005

4

EV 0 1.000 3.418 2.182 0.236 0.084

UL1 1672 1.046 3.315 1.997 0.272 0.000
ULL−1 0 1.109 3.423 2.110 0.205 0.014

DE0 2568 1.054 3.364 2.036 0.275 0.000
DEd 1086 1.111 3.425 2.109 0.205 0.012
DEr 1107 1.106 3.431 2.121 0.204 0.018

DI0 7716 1.070 3.362 2.039 0.253 0.005
DId 1365 1.111 3.424 2.104 0.210 0.007
DIr 1597 1.117 3.426 2.113 0.197 0.014

FI 1 1.138 3.322 1.998 0.186 0.005
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Table 3.4: Comparing different solution methods

L Method Veh. Cus. Bet. φs φc ξs ξ f

2

EV 8.5 3.2 1.6 1.6 1.4 91% 98%

UL1 7.7 5.6 1.0 1.7 1.7 93% 99%
ULL−1 7.7 5.6 1.0 1.7 1.7 93% 99%

DE0 7.8 5.5 1.0 1.7 1.6 97% 99%
DEd 7.8 5.5 1.0 1.7 1.6 97% 99%
DEr 7.8 5.3 1.0 1.7 1.6 97% 99%

DI0 7.5 5.5 1.0 1.7 1.6 97% 99%
DId 7.6 5.7 1.0 1.7 1.6 97% 99%
DIr 7.5 5.5 1.0 1.7 1.6 97% 99%

FI 7.8 2.6 2.0 1.6 1.5 100% 100%

3

EV 8.5 2.0 2.6 2.3 1.9 95% 99%

UL1 7.7 5.6 1.0 2.7 2.7 93% 99%
ULL−1 8.1 3.1 1.8 2.4 2.0 99% 99%

DE0 7.7 5.5 1.0 2.6 2.3 99% 99%
DEd 8.2 2.8 1.9 2.3 1.9 99% 99%
DEr 8.2 2.0 2.0 2.3 1.9 99% 99%

DI0 7.5 5.5 1.0 2.6 2.3 99% 99%
DId 7.8 3.0 1.9 2.4 2.0 99% 99%
DIr 7.8 2.0 2.0 2.3 1.9 99% 99%

FI 8.0 1.7 3.0 2.3 2.0 100% 100%

4

EV 11.7 1.0 3.6 3.0 2.5 97% 99%

UL1 7.7 5.6 1.0 3.7 3.7 93% 99%
ULL−1 8.2 1.0 2.8 3.1 2.5 99% 99%

DE0 7.7 5.5 1.0 3.6 3.3 99% 99%
DEd 8.2 1.9 2.8 3.1 2.5 99% 99%
DEr 8.2 1.4 2.9 3.0 2.4 99% 99%

DI0 7.4 5.3 1.1 3.5 3.2 99% 99%
DId 7.9 2.6 2.2 3.2 2.7 99% 99%
DIr 7.7 2.1 2.6 3.1 2.5 99% 99%

FI 8.0 1.7 3.0 3.3 2.9 100% 100%
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When the demand distribution is known, DE0 can be applied, whereby the profit
increases on average by 12.9% (resp., 5.2%, 5.4%) for L = 2 (resp., 3, 4). This increase
can be interpreted as the value of accessing the probability distribution and of explicitly
accounting for the uncertainty of demand. The additional gap filled by DEd shows the
value of considering some aspect of routing when we determine delivery quantities.
On average, it amounts to an additional increase in profit of 0.1% (resp., 3.0%, 5.7%)
for L = 2 (resp., 3, 4). Then, by using DId the profit increases again on average by
0.3% (resp., 0.6%, 0.0%) for L = 2 (resp., 3, 4): this measures the value of further
integrating inventory and routing-related decisions. Finally, accessing full information
and applying FI provides some 7.7% (resp., 4.4%, 2.7%) average additional profit for
L = 2 (resp., 3, 4). This can be interpreted as the value of full information. Figure 3.1a
also shows the profit gained by applying ULL−1. Interestingly, the performance of this
simple deliver-up-to-level policy is very close to the performance of the more sophis-
ticated method DE. Figure 3.1b can be interpreted in the same way as the previous
figure, when the cost-to-serve Fd is replaced by Fr.

We have also tested the performance of DI if the profit function in Problem (3.21) is
replaced by a simpler estimate, say, (3.17). In the latter estimation, costs-to-serve Ft+1,i
are considered for period t +1, whereas Problem (3.21) calculates a VRP routing cost
for period t + 1 based upon the expected delivery quantities. Solving (3.17) is easier
than (3.21), but our computational results show that the profit generated by (3.17) falls
between the profits generated by DE and by DI.

3.11.2 Statistical tests
Algorithm DI takes the solution provided by DE as an initial solution and tries to
improve it by applying a Matheuristic. The resulting average improvement of profit
is apparently small, but proves statistically significant as we demonstrate next. Let us
first consider the cost-to-serve Fd and the associated methods DEd and DId . We test
the statistical hypothesis H0 : PDId ≤PDEd , where PDEd and PDId indicate the total profits
obtained by DEd and DId , respectively. The results of the t-test for paired samples are
displayed in Table 3.5, where P̄=PDId−PDEd . Recall that for paired samples, t-statistic
is calculated as:

t− statistic =
E(PDId −PDEd )

Std(PDId −PDEd )/
√

n
, (3.43)

where n is the sample size, and the t-statistic has n−1 degrees of freedom.

The threshold for the t-statistic with 29 degrees of freedom (above which the null
hypothesis is rejected with confidence level 99.99%) is t0.9999;29 = 4.25. Table 3.5
shows that H0 is rejected in all cases but one, which shows that DI dominates DE in
terms of profit.

Superiority of DI over DE is not confined to improving the profit. In particular,
DI uses fewer vehicles than DE, and the difference is again statistically significant, as
shown in Table 3.6, where V̄ = VDEd −VDId . Similar conclusions apply when Fd is
replaced by Fr. These results demonstrate that it makes sense to use our Matheuristic
to build upon DE.

3.11.3 Impact of cost-to-serve values on DE and DI

So far, we have defined two ways to assign a positive cost-to-serve to a generic store,
namely, Fd and Fr. In general, Fr is much larger than Fd . Therefore, we have also
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Figure 3.1: Contribution of different solution methods to increasing profit
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Table 3.5: Statistical tests on profit

L C E(P̄) Std(P̄) t-statistic Hypothesis Result Prof. inc.

2 30 192 53 20.0 H0 : PDId ≤ PDEd Reject 0.3%
≥40 217 62 19.2 H0 : PDId ≤ PDEd Reject 0.3%

3

30 118 48 13.4 H0 : PDId ≤ PDEd Reject 0.2%
40 379 96 21.6 H0 : PDId ≤ PDEd Reject 0.5%
50 391 147 14.6 H0 : PDId ≤ PDEd Reject 0.5%
≥60 408 130 17.2 H0 : PDId ≤ PDEd Reject 0.5%

4

30 118 48 13.4 H0 : PDId ≤ PDEd Reject 0.2%
40 407 85 21.6 H0 : PDId ≤ PDEd Reject 0.5%
50 352 111 17.4 H0 : PDId ≤ PDEd Reject 0.4%
60 911 204 24.4 H0 : PDId ≤ PDEd Reject 1.2%
70 233 166 7.7 H0 : PDId ≤ PDEd Reject 0.3%
≥80 30 230 0.7 H0 : PDId = PDEd Accept 0.0%

Table 3.6: Statistical tests on number of vehicles

L C E(V̄ ) Std(V̄ ) t-statistic Hypothesis Result Vehi. dec.

2 30 0.22 0.09 13.4 H0 : VDId ≥VDEd Reject 2.8%
≥40 0.21 0.08 14.4 H0 : VDId ≥VDEd Reject 2.8%

3

30 0.13 0.11 6.5 H0 : VDId ≥VDEd Reject 1.7%
40 0.19 0.10 10.4 H0 : VDId ≥VDEd Reject 2.5%
50 0.32 0.10 17.5 H0 : VDId ≥VDEd Reject 3.9%
≥60 0.34 0.11 16.9 H0 : VDId ≥VDEd Reject 4.2%

4

30 0.13 0.11 6.5 H0 : VDId ≥VDEd Reject 1.7%
40 0.22 0.10 12.0 H0 : VDId ≥VDEd Reject 2.8%
50 0.31 0.09 18.9 H0 : VDId ≥VDEd Reject 3.8%
60 0.91 0.12 41.5 H0 : VDId ≥VDEd Reject 10.3%
70 0.42 0.13 17.7 H0 : VDId ≥VDEd Reject 5.1%
≥80 0.30 0.16 10.3 H0 : VDId ≥VDEd Reject 3.6%

tested the sensitivity of the performance of DE and DI when other values of the cost-
to-serve are considered. The results are shown in Figure 3.2. It appears that, for all
three shelf lives, DE achieves its best performance when Fd is set as cost-to-serve.
(Note that the horizontal axis is normalized so that Fd = 1 in all cases, and the vertical
axis shows the relative profit with respect to EV .) However, when DI is used, the best
setting of cost-to-serve is not that clear: while Fd provides the highest profit for shelf
lives L = 2 and L = 3, Fr ≈ 2.2Fd results in the best profit for shelf life L = 4.

In fact, our test results show that if the average number of stores per route, say n̄, is
at least 3, then Fd works well for all values of L. On the other hand, n̄ < 2 implies that
routes rarely include more than two stores. In this case, Fi = K + 2ci0 proves a better
estimation for cost-to-serve than Fd , and we can adopt a direct delivery policy for
store i. This is consistent with the results in [Gallego and Simchi-Levi, 1990; Bertazzi,
2008], i.e., when the delivery quantity is a large fraction of the vehicle capacity, direct
shipping is preferable in almost all routing strategies.

Figure 3.2 also demonstrates that, no matter what value is selected for the cost-to-
serve, there is always some improvement in profit when DI is used.
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Figure 3.2: Profit obtained by DE and DI with different costs-to-serve for Q = 120.
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3.11.4 Managerial insights
In this section, we discuss the economic significance of the profit improvements, the
impact of shelf life and store capacity on the profit obtained by the best solution
method, and the interpretation of DE as an (R,s,S) policy.

Economic interpretation of profit improvements. We argue here that the improve-
ment in profit provided by DI over DE is not only statistically, but also economically
significant. In our experimental setting, profit is about 32% of total revenue, but does
not account for a variety of miscellaneous costs (salaries, buildings, marketing, admin-
istration, and so forth). In fact, net profit in the retail food sector is of the order of 2%
of revenue; see Euro Bank [2009]; NAICS [2012]; FMI [2014]. This means that, under
our assumptions, miscellaneous costs would account for about 30% of total revenue.
The corresponding breakdown of the revenue is depicted in Figure 3.3.

61%

7%

30%

2%

Acquisition costs

Routing costs

Miscellaneous costs

Net profit

Figure 3.3: Breakdown of the revenue.

Our experimental results show an average improvement of 0.6% in profit when we
exploit DI as compared to DE while setting an appropriate cost-to-serve (0.3% for
L = 2 with Fd , 0.5% for L = 3 with Fd , and 1.0% for L = 4 with Fr). This translates
into 0.19% of the revenue (= 0.6% of 32%), meaning about 10% of the net profit of a
typical retail chain. This is certainly economically significant.

Impact of store capacity. Intuitively, one might expect that the smaller Fti, the
more frequently store i is visited. However, our experimental results show that the
frequency of visits is relatively insensitive to Fti, provided that Fti is strictly positive.
Therefore, selecting the value of the cost-to-serve cannot be regarded as a lever to
adjust the frequency of visits and the freshness of products. On the other hand, the
store capacity clearly has an effect on these performance indicators.

Table 3.7 shows the expected profit obtained by DId over T = 30 periods, as well
as freshness and service level, when considering a limited store capacity C. We see
that the service level is only slightly influenced by C. The changes in profit and fresh-
ness, however, are significant. The results suggest that providing extra store capacity
beyond (L−1)E(D)+0.5E(D) does not have any major impact on profit. Observe that
(L−1)E(D) can be viewed as the expected required capacity between two consecutive
visits (during L− 1 periods) when the visits are maximally spread, while the quantity
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0.5E(D) acts as buffer inventory to respect the target service level during L− 1 peri-
ods on average. The last column of Table 3.7 indicates the similarity values calculated
by Equation (3.42). The values show that DI estimates reasonably well the expected
routes in period t +1.

Table 3.7: Comparing the impact of different capacities on profit, freshness, and service
level

L C Profit by DId φs φc ξs ξ f Similarity

2 30 75375 1.7 1.6 97% 99% 70%
≥40 75394 1.7 1.6 97% 99% 71%

3

30 76216 2.7 2.5 98% 99% 69%
40 76997 2.5 2.1 99% 99% 50%
50 78613 2.4 2.0 99% 99% 53%
≥60 78628 2.4 2.0 99% 99% 53%

4

30 76216 3.7 3.5 98% 99% 69%
40 77130 3.5 3.1 99% 99% 50%
50 79790 3.3 2.9 99% 99% 53%
60 80108 3.2 2.8 99% 99% 72%
70 80368 3.2 2.7 99% 99% 70%
≥80 80368 3.2 2.7 99% 99% 70%

Impact of shelf life. Figure 3.4 shows the profits (in absolute value) obtained by
DId for L = 2,3 and by DIr for L = 4. The numbers indicate a 2.5% decrease in profit
when shelf life decreases from 4 to 3. Some further 4.3% loss in profit is incurred
when moving from shelf life 3 to 2. These values can be interpreted as the cost of
perishability. Recall that these decreases translate into 2.5×16= 40.7% and 4.3×16=
68.6% decreases in the net profit, which are extremely significant.
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Figure 3.4: The best profit obtained by DI for different shelf lives.

Translating DE into an (R,s,S) policy. Interestingly, as illustrated by Figure 3.2,
the simple algorithm ULL−1 is a strong competitor for DE when L ≥ 3, regardless of
the value of the cost-to-serve. For some cost-to-serve values, ULL−1 even dominates
DE. However, when ULL−1 outperforms DE, DI is able to improve the initial solution
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provided by DE so that the final solution is better than ULL−1. In our instances, the
inventory level triggering a delivery in ULL−1 is sUL = 1.25E(D) for any L (see Equa-
tion (3.4)), and the up-to-level point is SUL = 1.3E(D) (resp., 2.4E(D), 3.45E(D)) for
L = 2 (resp., 3, 4); see Equation (3.5). Our computational experiments reveal that the
inventory level triggering a delivery in method DE is sDE = 1.25E(D) for any L, inde-
pendently of the value of Xti, the state of the system in period t in store i. On the other
hand, the delivery quantities prescribed by DE do depend on Xti, but mostly through
the value of the total inventory level Iti = ∑

L−1
k=1 (xk)ti.

When T SL is high, the up-to-level point in DE, i.e., SDE = (Iti + y∗ti|Xti), is quite
close to that in ULL−1, i.e., SUL = (Iti + y∗ti|Iti), especially when L is large. The up-
to-level point in DE slightly increases when setting a higher cost-to-serve. Figure 3.5
shows the normalized frequency (over all possible states Xti) of values of the up-to-level
point, SDE , when DEd is applied.
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Figure 3.5: The normalized frequency of up-to-level points in DEd for different shelf
lives.

According to the figure, for all states of the system, the up-to-level point determined
by DEd is very likely to be 1.4E(D) (resp., 2.5E(D), 3.4E(D)) for L = 2 (resp., 3, 4).
For example, when L = 3 and the inventory level does not satisfy T SL in the current
period, DE prescribes SDE = 2.5E(D) as the up-to-level point in 88% of the states,
whatever the breakdown of Xti is. This implies that all complex SDP Relations (3.8)
can be developed once offline and be translated into a simple and easy-to-interpret
(R,s,S) policy, where R = 1, s = y(1)ti , and S = 1.4E(D) (resp., 2.5E(D), 3.4E(D)) for
L = 2 (resp., 3, 4), without any major impact on the performance of DE.

3.11.5 The main messages
All solution methods discussed in this chapter have their advantages and limitations,
and each proves to perform well under different conditions. The main features of EV ,
ULL−1, DE, and DI are summarized in Table 3.8.
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Table 3.8: Features of different solution methods

Method Feature

EV

Extremely simple
Does not take the stochasticity of demands into consideration
Leads to the lowest profit, service level, and freshness
Leads to the highest waste cost and to the highest number of vehicles
Can be regarded as a base case

ULL−1

Extremely simple
Its special case, UL1, provides freshest products
Useless when T SL is not defined or is low
A strong competitor for DE, especially when T SL is high
Applicable to multiple products

DE
F > 0 reflects some aspects of routing when deciding about delivery quantities
Fd performs best if n̄≥ 2; otherwise Fr performs better
Performs similarly to the deliver-up-to-level policy

DI

Builds upon DE
Fd delivers the best results provided that n̄≥ 3
Decreases the routing costs in the current period, as expected
Superior to DE statistically and economically, in terms of profit and number of vehicles
Superiority over DE applies for a range of values of store capacity and different Fti
Slightly higher freshness but the same actual service level compared to DE
Superior to ULL−1 even when ULL−1 dominates DE

The main messages we can draw from Table 3.8 are as follows:

• ULL−1 has a very good performance on various criteria, but DI significantly
improves the expected profit and performs well on other criteria;

• superiority of DI to the other solution methods in terms of profit applies for a
range of values of C and is statistically valid and economically significant;

• the superiority of DI applies for different estimates of the cost-to-serve values.

3.11.6 Extensions
All the solution methods but FI can be extended to account for inventory holding costs
or for decaying products, i.e., products which lose their quality gradually over their
shelf life. This is straighforward for methods EV and UL, but less so for DE and DI.
Let us define h as the inventory holding cost per unit per period. Moreover, let us
assume that the value of each unit of the product decreases by h

′
monetary units in each

period. The parameter h
′
can alternatively be considered as a self-imposed penalty with

the objective to increase freshness when modeling perishable products. In other words,
even if the selling price is actually constant during the shelf life (perishable products),
the retail chain may assume that the value of the product decreases linearly over time
(decaying products) in order to enforce higher freshness. In order to incorporate these
elements in DE and DI, we can add the term eti defined by Equation (3.44) hereunder
to the profit function given in Equation (3.8):

eti =−(h+h
′
)Iti +h

′
(L−1)

xt1−1

∑
d=0

Pr(Dti = d)(xt1−d). (3.44)

The first term in (3.44) charges the total inventory at the beginning of period t with
costs h and h

′
, since this inventory is carried from the previous period. The second term
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cancels out the charged costs h
′
during L−1 periods for the units which are completely

deteriorated at the end of period t.

3.12 Conclusions
By considering uncertainty and combining inventory with routing decisions for per-
ishable products, retail chains can obtain a significant increase in their net profit. We
have shown how such benefit can be gained and we have quantified it. The expected
value method, where only the expected demands are taken into consideration in re-
tail chain’s decisions, serves as a benchmark. We then show how the knowledge of
the demand distribution can add to the profit. To this end, we first propose a simple
up-to-level method which explicitly takes the target service level into account. Our
numerical results show that this naive policy performs reasonably well when the target
service level is high. Next, a decomposition method is applied to determine delivery
quantity to each store independently. Assigning virtual costs-to-serve to stores when-
ever they are visited accounts for some aspects of routing in the method. This leads to
a significant increase in profit. Finally, we integrate the decisions independently made
by each store, and we slightly divert from the latter delivery quantities with the aim
to decrease the routing costs. Though the routing costs only comprise a small portion
of the total costs, we showed that the final improvement in total profit is statistically
and economically significant. Our approach considers the real (expected) routes for
only two periods ahead in the decomposition-integration method. This is justifiable
when routing decisions cannot be made for a large number of periods and deliveries
cannot be synchronized to be carried out in the same periods. This is the case when
(1) demands are highly stochastic, and (2) shelf life is short or store capacity is limited
for long-term deliveries. At last, we show how further profit improvement is possible
when accessing full information about the future demands.
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Chapter 4

A two-period vehicle routing
problem with full delivery shifts

4.1 Introduction
Consider a logistics service provider (LSP) supplying units of a single product from a
central warehouse to a number of geographically dispersed stores. The LSP has access
to an unlimited supply of the product. Independently of other stores, each store places
its orders for two successive periods, say, day t + 1 and day t + 2. The LSP may de-
cide to postpone a delivery requested for period t +1 and to deliver instead a (possibly
different) quantity in period t + 2, while paying a financial penalty. In a similar way,
advancing a delivery from period t +2 to period t +1 could be acceptable for a store,
but the LSP is charged a penalty for it. In our terminology, advancements and post-
ponements are referred to as shifts of deliveries. Each store specifies whether shifts
are allowed and, if so, specifies the alternative delivery quantities and the associated
penalties. In fact, we may assume that shifts are always allowed for all stores but that
the associated penalties for some stores may be so high that they effectively deter the
LSP from performing the shifts. The LSP’s objective is to minimize the sum of the
routing costs in two periods and of the penalties for the shifted deliveries. Compared
to solving two independent VRPs, solving this two-period VRP is beneficial for both
sides, i.e., the LSP and the stores. Obviously, the solution of the two-period VRP is
advantageous for the LSP, as it provides more flexibility to coordinate the routing costs
of two periods and consequently, to decrease their total cost. On the other hand, the
stores can choose a penalty that is high enough to compensate the costs incurred by
their inventory systems when deliveries are shifted.

4.1.1 Motivation 1: from the SIRP to the two-period VRP
In Section 3.8, we discussed a Matheuristic algorithm to solve Problem (3.21) based
on local search. Here, we show that Problem (3.21) can be solved as a two-period VRP
with delivery shifts. Assume that in the SIRP, (y∗t1, . . . ,y

∗
tN) is the vector of delivery

quantities to the stores in period t calculated based on Equation (3.7). Moreover, as-
sume that ((ỹt+1,1|y∗t1), . . . ,(ỹt+1,N |y∗tN)) is the vector of the expected delivery quantities
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calculated based on Equation (3.20). Problem (3.21) can be rewritten as:

max
(yt1,...,ytN)

N

∑
i=1
{ fti((x1,x2, . . . ,xL−1)ti,yti)+Fti ·1(yti > 0)+Ft+1,i ·1((ỹt+1,i|yti)> 0)}

−
N

∑
i=1
{ fti((x1,x2, . . . ,xL−1)ti,y∗ti)+Fti ·1(y∗ti > 0)+Ft+1,i ·1((ỹt+1,i|y∗ti)> 0)}

−R(yt1, . . . ,ytN)−R((ỹt+1,1|yt1), . . . ,(ỹt+1,N |ytN))

subject to y(1)ti ≤ yti ≤Ci− Iti, i = 1, . . . ,N.
(4.1)

Problems (3.21) and (4.1) are equivalent, as we have deducted a constant term from
the former problem to reach to the latter one. Let us define:

g(yti) = fti((x1,x2, . . . ,xL−1)ti,y∗ti)+Fti · (1(y∗ti > 0)+Ft+1,i ·1((ỹt+1,i|y∗ti)> 0)
− fti((x1,x2, . . . ,xL−1)ti,yti)−Fti ·1(yti > 0)−Ft+1,i ·1((ỹt+1,i|yti)> 0)

(4.2)
Then, optimizing Problem (4.1) is equivalent to optimizing Problem (4.3) formu-

lated as follows:

min
(yt1,...,ytN)

R(yt1, . . . ,ytN)+R((ỹt+1,1|yt1), . . . ,(ỹt+1,N |ytN))+
N

∑
i=1

g(yit)

subject to y(1)ti ≤ yti ≤Ci− Iti, i = 1, . . . ,N.

(4.3)

In this chapter, we are going to regard (y∗t1, . . . ,y
∗
tN) and ((ỹt+1,1|y∗t1), . . . ,(ỹt+1,N |y∗tN))

as the initial orders placed by the stores for periods t and t +1, respectively. Interpret
g(yti) as a penalty if quantities yti and (ỹt+1,i|yti) are delivered to store i in periods 1 and
2, respectively, rather than the initial orders of y∗ti and (ỹt+1,i|y∗ti). Note that g(y∗ti) = 0,
which implies that there is no penalty if the initial orders are delivered. Problem (4.3)
is indeed a two-period VRP with penalized delivery shifts.

In this chapter, we discuss the two-period VRP with full delivery shifts. We have al-
ready shown that the two-period VRP provides a model with an exact solution method,
under some restrictive conditions, to solve Problem (3.21). In the sequel, we introduce
the two-period VRP and motivate it as an independent problem to model and solve to
optimality a DMPVRP with a rolling horizon of two periods.

4.1.2 Motivation 2: from the DMPVRP to the two-period VRP
Our two-period VRP may be regarded as a chunk of a DMPVRP with a finite/infinite
horizon. Consider the planning process presented in Figure 4.1 where each store
records stochastic demands from its own customers during period t. Every store i
has its own inventory control system whereby, at the end of period t, it individually
calculates the optimal orders to be placed for periods t + 1 and t + 2. Calculation of
such deterministic orders could be based on the current inventory level in store i, on
the demand distribution functions of the end customers in periods t +1 onward, and on
other relevant parameters. But it does not explicitly take into account the global routing
costs. The stores have long-term contracts with the LSP. The contracts bind the LSP to
serve each store against some pre-agreed annual payment.
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In its day-to-day operations, the LSP focuses on two periods only. At the end of
period t, the LSP receives the order sizes of the stores for periods t + 1 and t + 2,
decides about each order whether it should be satisfied or shifted, executes its decision
for period t + 1, and waits until the end of period t + 1 when orders for periods t + 2
and t + 3 are placed by the stores. In other words, a rolling horizon of two periods is
considered where the decision for period t + 1 is executed but the decision for period
t + 2 may still undergo changes. The reason to consider such a short rolling horizon
is that demand from the end customers to the stores is stochastic. As a consequence,
the ”optimal” order quantities computed by each store for periods t + 2 and beyond
may be poorly estimated in period t, especially when the variance of demand is very
high. Note that, from a store’s point of view, advancement is tantamount to holding
unnecessary inventory, and postponement potentially yields lost sales and low service
levels. Therefore, shifting by no more than one period is justified when the holding
costs are significant, and when the stores are committed to providing very high service
levels to their customers.

A typical application with the aforementioned characteristics is inventory control
of fresh products in supermarkets, where the products rapidly lose their quality and the
stores aim at providing a very high service level. As a result, shifting deliveries by more
than one day is undesirable from the stores’ point of view. Van Donselaar et al. [2006]
and Van Donselaar et al. [2010] conducted an analysis of two Dutch supermarket chains
and reported that the average delivery frequency of fresh products to each store is 1.2
days. This is consistent with the results of our interview with the supply chain manager
of a Belgian supermarket chain, who confirmed that most of the stores require to be
served every day or every other day. Furthermore, the numerical results by Wen et
al. [2010] show that, when solving a DMPVRP, considering a rolling horizon of two
periods may yield better costs compared to a rolling horizon of either one period or
an infinite number of periods. Coelho et al. [2012c] analyze the impact of increasing
the length of planning horizon from 3 periods to 6 periods in a dynamic and stochastic
inventory routing problem. The results show that solution quality deteriorates with a
longer horizon.

By confining ourselves to two periods, the planning process presented in Figure
4.1 can be decomposed into n independent inventory control problems on the left side
and a two-period VRP on the right side. This chapter is only dedicated to modeling
and to solving the latter problem. Hence, we consider the deterministic orders placed
by each store for periods t + 1 and t + 2 (or, for simplicity, periods 1 and 2), and we
build our model from the LSP’s perspective. Although our two-period model focuses
on one aspect of the broader DMPVRP, it can be exploited to solve the DMPVRP over
a rolling horizon.

4.1.3 Additional discussion
To put our problem in a more formal framework, consider a two-period VRP where
deterministic orders of stores are known for two periods. Unlimited supply of the
product exists in a warehouse (depot) where the LSP can load an unlimited number of
homogeneous capacitated vehicles in each period before delivering the orders to the
stores. If the LSP has to satisfy each order in its associated period, then the two-period
VRP simplifies into two independent VRPs. But, as we stated before, the LSP may
decide to postpone (advance) deliveries for period 1 (period 2), so as to benefit from a
decrease in the total routing costs.
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We assume that, for each store order in period p (p = 1 or 2), either the order is
fully delivered in period p, or no delivery takes place in period p and a delivery must
be performed in the other (next or previous) period. (We do not discuss partial shifts,
although this may be regarded as a natural variant of our problem.) A crucial feature
of our model is that the size of an order can change when its delivery is shifted from
one period to another one. To explain this feature, let us assume that the order sizes in
periods 1 and 2 for some store i are equal to 4 units and 0 unit, respectively. Depending
on its inventory control system, in case its initial order size for period 1 is postponed,
store i may choose to receive an order size different from 4 units in period 2, e.g., 2
units or 5 units. This may be justified, in particular, if the demand of period 1 cannot
be backlogged.

There is an a priori defined penalty associated with each shift of deliveries, which
may depend on the magnitude of the order. Figure 4.2 shows a solution of the two-
period VRP where orders of the stores are satisfied in their associated periods, i.e.,
neither postponements nor advancements take place. In this figure, each store is rep-
resented by a circle, and the depot is depicted by a triangle. The quantity above each
vertex (store) represents its initial order, and the capacity of each vehicle is taken to be
10 units.
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Figure 4.2: Optimal routes when shifts are not allowed

Assume that when shifting deliveries, the shifted quantity requested by store 5 in
period 2 is 2 units, and the shifted quantity requested by store 7 in period 1 is 4 units.
Visually, it is easy to imagine that, in Figure 4.2, we can decrease the routing costs in
period 1 by postponing the delivery to store 5, while just slightly adding to the routing
costs in period 2 by inserting store 5 into route 0−8−9−0. Simultaneously, we can
further decrease the routing costs in period 2 by advancing the delivery to store 7 and
by inserting it into route 0−1−2−0 in period 1. The new solution where demands of
store 5 and store 7 are postponed and advanced, respectively, is shown in Figure 4.3.
In this figure, we have to take into consideration two penalties, namely, the penalty
of postponing the order of store 5 and the penalty of advancing the order of store 7.
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Whether the new solution in Figure 4.3 is better than the solution in Figure 4.2 depends
on how much the LSP saves in the routing costs and how much it has to pay for the
penalties.
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Figure 4.3: Optimal routes when shifts are allowed

4.1.4 Scientific contributions
The main contributions of this chapter can be summarized as follows:

• We formulate the two-period VRP as an Integer Linear Programming (ILP) prob-
lem. Unlike the existing deterministic models in the multi-period VRP literature
(see Section 4.1.5), our model can deal with the case where the sum of the orders
of a store for two periods is not a fixed quantity.

• We solve the model to optimality by a branch-and-price algorithm. We introduce
two new acceleration techniques derived from the structure of our problem to
improve the speed of the label-setting algorithm. The techniques have proved
efficient in our experiments.

• We draw algorithmic insights by solving an ILP model with a restricted number
of generated columns in each node, and we analyze the trade-off between the
computational time and the optimality gap.

• We draw managerial insights on cost improvements based on the results ob-
tained from the test instances. In particular, we underline the benefits obtained
by solving the integrated two-period VRP model, rather than two independent
VRP models.

4.1.5 Related works
Our two-period VRP shares similarities with the PVRP, the MPVRP, and the IRP, but
also has some differences. In the PVRP, a total demand of Wi units must be delivered to
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customer iduring the planning horizon. One of the feasible delivery schedules must be
assigned to each customer. Our two-period VRP looks like a PVRP with two periods,
where there are two or three delivery schedules for each customer. However, in a PVRP
delivery quantities are fixed while in our problem the delivery quantities for different
schedules (with the same delivery frequency) of a customer can be different.

The IRP models a centralized decision-making system where a common vendor is
responsible for replenishing a set of stores so that the stores do not run out of stock.
In the IRP, the required delivery quantities can be delivered in advance but cannot be
postponed, whereas in the two-period VRP we have defined they can be advanced,
postponed, and change in quantity.

In an MPVRP, a single order is placed by each store which must be served within
a period window, i.e., a set of consecutive periods in the planning horizon (see, e.g.,
Archetti et al. 2015a). In other words, each order has a release date and a due date,
which represent, respectively, the earliest period and the latest period in which the
order can be delivered. An LSP decides on the delivery period of each order and the
delivery routes in each period, but the delivery quantities are fixed and cannot be split.
The two-period VRP we have defined is not an MPVRP, as it contains stores with more
than one requested delivery over the planning horizon. If our problem did not contain
any customers with positive demands in both periods and delivery quantities did not
change when shifting, it would be an MPVRP where release date is 1 and due date is
2 for all customers, holding cost is positive for customers with a positive demand only
for period 1, and is negative for customers with a positive demand only for period 2.

Archetti et al. [2015a] investigate a more general MPVRP, where the formulation
includes not only regular stores with due dates within the planning horizon, but also
a set of stores with due dates beyond it. The model allows for postponing deliveries
to the latter stores until some (undetermined) period beyond the planning horizon, at a
cost (this amounts to skipping deliveries to these stores). The LSP incurs an inventory
holding cost for the orders which are delivered after their release dates. This holding
cost behaves like a postponement penalty for each period of delay after the release date.
The assumption of having the stores which may completely be skipped at a penalty can
easily be included in our model. [Archetti et al., 2015a] propose that multiple orders of
the same customer can be modeled through different co-located customers. However,
in this way of modeling, the orders from co-located customers are not necessarily de-
livered by the same vehicle, i.e., the assumption of at most one visit to each customer
in each period is not guaranteed.

Albareda-Sambola et al. [2014] consider a DMPVRP, where at the end of each
period, exact information about the orders placed in that period and earlier periods is
available, and partial information about the orders upcoming in subsequent periods is
gradually revealed. Albareda-Sambola et al. [2014] develop a formula to measure the
approximate profit of serving each store in the current period. In order to decide which
stores should be served in the current period, they formulate a VRP where the objective
function accounts for profit collection and routing costs.

Angelelli et al. [2007a,b] handle a DMPVRP with a single uncapacitated vehicle
where, in each period, a set of orders appear. The release date for orders is 1 and the
due date is either 1 or 2. The orders with a due date in period 2 can be delivered in any
period (say, “advanced” to period 1 or “postponed” to period 2) without penalty. The
authors consider a planning horizon of two periods and they analyze the competitive
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ratios of three simple heuristics to determine which orders should be delivered in period
1. The heuristics are: (a) deliver orders with due date 1, (b) deliver orders with due
date 1 or 2, and (c) deliver orders with due date 1 and a subset of orders with due date 2
which are located close to the orders with due date 1. Angelelli et al. [2009] analyze
a similar problem and develop a variable neighborhood search heuristic to solve it.
Contrary to Angelelli et al. [2007a,b] where the planning horizon is restricted to two
periods, Angelelli et al. [2009] consider a longer planning horizon and analyze the
impact of short term strategies on the average daily operational costs.

To the best of our knowledge, the two-period VRP model with penalized shifts,
as we define it in this chapter, has not been previously examined in the literature. In
the planning process represented in Figure 4.1, we assume an RMI-like system where
each store has its own inventory control system and determines its orders based on
the demand from its end-customers. Thus, we consider a DMPVRP from the LSP’s
perspective. We model and solve only a fragment of this problem, that is, a two-period
VRP. In this sense, our problem is a special MPVRP with deterministic orders placed
for two periods and a planning horizon of two periods. However, we assume that the
LSP has flexibility to choose the delivery periods, i.e., deliveries can be advanced or
postponed by one period but are penalized. By contrast, whereas the existing models on
the MPVRP consider a single fixed order for each store for the entire planning horizon,
in our model each store is allowed to place orders for two periods and the sum of the
orders for two periods is not necessarily a fixed quantity. Indeed, when a delivery is
shifted, the corresponding store may require a different delivery quantity. In any case,
the quantity of a shifted delivery is determined by the corresponding store and not by
the LSP.

The remainder of chapter is organized as follows. The problem statement is pre-
sented in Section 4.2. The column generation process, including the label-setting al-
gorithm for the solution of two pricing sub-problems, is discussed in Section 4.3. We
deal with details of implementation issues in Section 4.4. Computational results in-
cluding algorithmic and managerial insights are presented in Section 4.5, and finally,
conclusions are drawn in Section 4.6.

4.2 Problem statement
We use the notations in Tables 4.1-4.3. For the sake of convenience, we will redefine
some of them in the course of our discussion.

Consider a graph G = (V 0,A) where vertices represent the depot (denoted by 0)
and the stores, and arcs represent transportation links. The travel times ti j satisfy the
triangle inequalities. Products are picked up from the depot and delivered to the stores
within given time windows. Each route starts and ends at the depot. The total trans-
portation costs over two periods, including the penalties, should be minimized. The
LSP has access to an unlimited homogeneous fleet with the same capacity Q for each
vehicle. A variable cost equal to ci j is incurred when arc (i, j) is traversed. Each vehi-
cle can perform at most one single route per period. Split deliveries within a period are
not allowed, that is, each store is served by at most one vehicle in each period.

For the sake of simplicity in our notations, we denote the current period t by 0.
Define di1 and di2 as the orders of store i for periods 1 and 2, respectively. Without loss
of generality, we assume that each store has a positive order in at least one period.
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Table 4.1: Indices and sets

i, j indices for vertices (stores)
r index for routes
V+0 set of stores with a positive order for period 1 and no order for period 2
V0+ set of stores with no order for period 1 and a positive order for period 2
V++ set of stores with positive orders for both periods
V ′++ set of virtual stores associated with the real stores in V++

V V+0∪V0+∪V++∪V ′++

V 0 V ∪{0} where vertex 0 denotes the depot
A set of arcs
R1 set of feasible routes in period 1
R2 set of feasible routes in period 2

As in Figure 4.2, we can distinguish three classes of stores. Any store i in class V+0
has a positive order di1 for period 1 but no order for period 2. If the LSP decides not
to deliver to store i in period 1 (postponing), then it is required to deliver d′i2 units in
period 2, where the quantity d′i2 is set by store i (d′i2 might be smaller than, equal to, or
greater than di1). However, the LSP is charged a penalty pi for making this alternative
decision (postponing). Similarly, a store i in class V0+ has no order for period 1 but a
positive order di2 for period 2. The alternative decision (advancing) for the LSP is to
deliver d′i1 units in period 1 and zero units in period 2. Here again, d′i1 is set by the
store and might be different from di2. The LSP is charged a penalty ai for advancing
the order. Finally, class V++ includes stores with positive orders di1 and di2 for both
periods. In this class, two alternative decisions can be made for each store. The first
alternative decision (postponing) is to deliver zero unit in period 1 and d′i2 units in
period 2. The second alternative decision (advancing) is to deliver d′i1 in period 1 and
zero unit in period 2. Neither d′i1 nor d′i2 need to be equal to di1 +di2. Penalties pi and
ai are incurred for postponing and advancing, respectively. Table 4.3 summarizes all
possible decisions regarding delivery quantities for the three classes. If either pi or ai
is infinite, we say that the corresponding shift is forbidden.

The two-period VRP is obviously NP-hard since it generalizes the classical VRP.
An integer linear programming (ILP) formulation of the two-period VRP can be ob-
tained, as for the VRP, by introducing decision variables corresponding to the selection
of feasible routes in each period; see Table 4.4, where R1 and R2 denote the sets of
feasible routes in periods 1 and 2, respectively.

However, in this formulation, a difficulty arises with the interpretation of the deliv-
eries. To understand this difficulty, note first that, when some store i ∈ V+0 is visited
by a route in period 1, it means that the initial orders are delivered to this store in pe-
riods 1 and 2 (namely, di1 and zero units, respectively). On the other hand, if the LSP
decides to serve store i ∈ V+0 in period 2, then it has necessarily made the alternative
decision with delivery quantities zero and d′i2 in periods 1 and 2, respectively. A similar
reasoning applies for stores i ∈V0+.

On the other hand, this reasoning fails for a store i ∈V++. Indeed, if store i ∈V++

is visited in period 1 (i.e., ur1 = 1 for some route r containing i), then the size of the
delivery quantities to this store in period 1 and in period 2 is not immediately known.
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Table 4.2: Parameters

di1 order of store i for period 1
di2 order of store i for period 2
d′i1 order of store i ∈V0+∪V++ for period 1 if it is not served in period 2
d′i2 order of store i ∈V+0∪V++ for period 2 if it is not served in period 1
pi postponement penalty imposed by store i
ai advancement penalty imposed by store i
n1 number of stores in set V+0
n2 number of stores in set V0+
n3 number of stores in set V++

n total number of stores including virtual stores (n = n1 +n2 +2n3)
ci j cost of using arc (i, j)
Q capacity of each vehicle
ti j travel time to traverse arc (i, j)
si service time at store i
(ei, li) time window for the arrival of a vehicle at vertex i
αir 1 if store i belongs to route r; 0 otherwise.

Table 4.3: Three classes of stores: feasible decisions, delivery quantities, and associ-
ated penalties

Initial decision Alt. decision 1 Alt. decision 2
Class del.1 del.2 pe. del.1 del.2 pe. del.1 del.2 pe.
V+0 di1 0 0 0 d′i2 pi — — —
V0+ 0 di2 0 d′i1 0 ai — — —
V++ di1 di2 0 0 d′i2 pi d′i1 0 ai

It only appears, from Table 4.3, that the LSP has made either the initial decision with
delivery quantities di1 and di2 in periods 1 and 2, or the second alternative decision with
delivery quantities d′i1 and zero in periods 1 and 2. Similarly, if some store i ∈ V++ is
served in period 2, then it implies that the LSP has made either the initial decision with
delivery quantities di1 and di2 in periods 1 and 2, or the first alternative decision with
delivery quantities zero and d′i2 in periods 1 and 2, respectively.

To resolve this ambiguity, we assume from now on that if store i∈V++ is visited by
some route r in period 1 (respectively, period 2), then the delivery quantity in period 1
(respectively, period 2) is di1 (respectively, di2). Furthermore, we define a virtual store
i+n3 ∈ V ′++ corresponding to store i ∈ V++ with orders (d′i1−di1) and (d′i2−di2) for
periods 1 and 2, respectively; these quantities could be negative.

The cost of traveling to or from a virtual store i + n3 is set in such a way that
i+ n3 can be visited only if the associated real store i is visited in the same period
and on the same route, immediately before i+ n3. In this way, visiting i and i+ n3
on the same route in period 1 (respectively, 2) means that the alternative decision 2
(respectively, 1) has been made for store i ∈V++. If the virtual store i+n3 is visited in
neither period, our interpretation is that the LSP delivers the initial orders di1 and di2
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Table 4.4: Decision variables

ur1 = 1 if route r ∈ R1 is used in period 1; 0 otherwise.
ur2 = 1 if route r ∈ R2 is used in period 2; 0 otherwise.

to store i. This information is summarized in Table 4.5, where deli1 and deli2 denote
the nonzero delivery quantities to store i when this store is visited in period 1 and in
period 2, respectively.

Table 4.5: Delivery quantities to store i in period 1 and in period 2

Class deli1 deli2
i ∈V+0 di1 d′i2
i ∈V0+ d′i1 di2
i ∈V++ di1 di2
i ∈V ′++ (d′i−n3,1−di−n3,1) (d′i−n3,2−di−n3,2)

More specifically, the cost of traveling from real stores to virtual stores is expressed
by Equation (4.4). The cost of traveling from virtual stores to real stores is given by
Equation (4.5).

ci j =

{
0 j ∈V ′++, j = i+n3,
∞ j ∈V ′++, j 6= i+n3,

(4.4)

ci j = ci−n3, j i ∈V ′++, j ∈V+0∪V0+∪V++. (4.5)

4.3 Column generation
This section discusses an Integer Linear Programming (ILP) formulation of the two-
period VRP. We develop a column generation algorithm to solve the LP-relaxation of
the ILP, and we describe in detail a label-setting algorithm to solve the pricing problem
raised from the LP-relaxation. We formulate two pricing subproblems that generate
feasible routes in each period. The pricing problems are Elementary Shortest Path
Problems with Resource Constraints (ESPPRC). We explain in Sections 4.3.4-4.3.6
how they can be solved efficiently.

4.3.1 An integer linear programming formulation
A route is feasible if (1) the total delivery quantity in it does not exceed the vehicle
capacity, (2) it respects the time windows, (3) it starts and ends at the depot and visits
each vertex at most once (elementarity), (4) it does not include forbidden shifts. Note
that if a route includes any virtual vertices, they will immediately succeed their cor-
responding real vertices due to Equation (4.4). We can now formulate the two-period
VRP as an ILP problem, as follows.
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min ∑
r∈R1

∑
(i, j)∈r

ci jur1 + ∑
r∈R2

∑
(i, j)∈r

ci jur2

+ ∑
i∈V+0

pi( ∑
r∈R2

αirur2)+ ∑
i∈V0+

ai( ∑
r∈R1

αirur1)

+ ∑
i∈V++

pi( ∑
r∈R2

αi+n3,rur2)+ ∑
i∈V++

ai( ∑
r∈R1

αi+n3,rur1)

subject to

(4.6)

∑
r∈R1

αirur1 + ∑
r∈R2

αirur2 = 1; ∀i ∈V+0, (dual variables: βi) (4.7)

∑
r∈R1

αirur1 + ∑
r∈R2

αirur2 = 1; ∀i ∈V0+, (dual variables: γi) (4.8)

∑
r∈R1

αirur1 + ∑
r∈R2

αi+n3,rur2 = 1; ∀i ∈V++, (dual variables: λi) (4.9)

∑
r∈R1

αi+n3,rur1 + ∑
r∈R2

αirur2 = 1; ∀i ∈V++, (dual variables: µi) (4.10)

ur1 ∈ {0,1}; ∀r ∈ R1 (4.11)

ur2 ∈ {0,1}; ∀r ∈ R2 (4.12)

The objective function (4.6) consists of variable costs of each route in both periods,
postponement penalty for any store in class V+0 if it is included in a route selected in
period 2, advancement penalty for any store in class V0+ if it is included in a route se-
lected in period 1, postponement penalty for any store in class V++ if its corresponding
virtual store is included in any route selected in period 2, and advancement penalty for
any store in class V++ if its corresponding virtual store is included in a route selected
in period 1. Constraints (4.7) and (4.8) guarantee that every store in V+0∪V0+ is served
either in period 1 or in period 2. Constraints (4.9) impose that if any store in class V++

is served in period 1, then its associated virtual store is not served in period 2 (no post-
ponement of delivery), and conversely. Constraints (4.10) are interpreted similarly: if
a store in V++ is served in period 2, then its associated virtual store is not served in
period 1 (no advancement of delivery), and conversely.

4.3.2 Master problem
The LP-relaxation of problem (4.6)-(4.12) is viewed as a master problem that can be
solved by column generation [Lübbecke and Desrosiers, 2005; Dabia et al., 2013].
This approach allows us to deal implicitly with various constraints of the problem, like
time windows or vehicle capacity constraints, which are not explicitly mentioned in
the formulation (4.6)-(4.12). We could similarly handle additional side constraints,
like forbidding delivery shifts for certain stores or the position of virtual stores in the
routes. Note that all these constraints are already included in the definition of a feasible
route.
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4.3.3 Pricing problems
In order to solve the master problem by column generation, we formulate a pricing
problem for each period as an ESPPRC [Irnich and Desaulniers, 2005]. Each feasible
solution of the ESPPRC is a route which starts and ends at the depot while including
a subset of the vertices and respecting the side constraints related to the vehicle load,
time windows, and permissible shifts. The settings are done in such a way that the cost
of a route (solution) in the ESPPRC is equal to the reduced cost of the same route in
the master problem.

More precisely, based on the dual prices obtained in the optimal solution of the
restricted master problem, the reduced cost of a route r in period 1 is calculated as
∑(i, j)∈r c̄i j, where the cost coefficients c̄i j’s for period 1 are defined by Equation (4.13),
where we define β0 = 0 by convention:

c̄i j =


ci j−β j; ∀i ∈V 0, j ∈V 0

+0\{i}
ci j +a j− γ j; ∀i ∈V 0, j ∈V0+\{i}
ci j−λ j; ∀i ∈V 0, j ∈V++\{i}
ci j +a j−n3 −µ j−n3 ; ∀i ∈V 0, j ∈V ′++\{i}

(4.13)

The reduced cost of a route in period 2 is similarly calculated, with the cost co-
efficients c̄i j’s for period 2 defined by Equation (4.14), with p0 = 0 and β0 = 0 by
convention:

c̄i j =


ci j + p j−β j; ∀i ∈V 0, j ∈V 0

+0\{i}
ci j− γ j; ∀i ∈V 0, j ∈V0+\{i}
ci j−µ j; ∀i ∈V 0, j ∈V++\{i}
ci j + p j−n3 −λ j−n3 ; ∀i ∈V 0, j ∈V ′++\{i}

(4.14)

For each period 1 and 2, we set up a distinct network on the vertex set V 0, where the
cost c̄i j of each arc (i, j) is given either by (4.13) or by (4.14), depending on the period.
Other parameters of the network are listed in Table 4.2. In each network, we seek the
feasible routes with negative cost, i.e., the feasible routes with negative reduced cost
in the master problem. Feasibility of a route in the ESPPRC implies that it is feasible
in the master problem, too. As long as min∑(i, j)∈r c̄i j in either period is negative there
exists a route which is potentially able to improve the objective function of the master
problem. More generally, any solution of the ESPPRC in period 1 or 2 with a negative
cost (not necessarily the optimal solution) can be introduced in the master problem in
the next iteration. Column generation stops when neither the ESPPRC in period 1 nor
the ESPPRC in period 2 is able to identify a route with negative cost.

4.3.4 The label-setting algorithm
A label-setting algorithm is used to solve the pricing problems (ESPPRC). In this algo-
rithm, a multi-dimensional label Li is associated with each path from the depot to an end
vertex i. In expanded form, the components of label Li are (Lcost

i ,Lload
i ,Ltime

i ,(Lk
i )k∈V ),

where each component indicates the consumption of a limited resource along the path
with which Li is associated. The path under consideration is feasible if all components
of Li respect the limits on available resources.

The first component Lcost
i denotes the sum of c̄i j’s over the arcs (i, j) covered by the

path, and there is no resource constraint on it. The second component Lload
i is the sum
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of the delivery quantities to all vertices visited by the path, including vertex i. When
generating a path, the load on the corresponding vehicle should not exceed the vehicle
capacity Q, that is,

0≤ Lload
i ≤ Q. (4.15)

The third component Ltime
i shows the time when store i is visited and the service

starts at this store. It must respect the time window for store i, that is,

ei ≤ Ltime
i ≤ li. (4.16)

Finally, Lk
i indicates the number of times store k is visited by path Li. Each path

must be elementary, meaning that a path cannot visit any store k more than once:

0≤ Lk
i ≤ 1 for all k ∈V. (4.17)

The label-setting algorithm starts from the initial label L0 = (0,0,e0,(0)k∈V ), asso-
ciated with the depot, and generates new labels using extension functions. A label Li is
extended along all arcs (i, j) ∈ A and new labels L j = (Lcost

j ,Lload
j ,Ltime

j ,(Lk
j)k∈V ) are

created, where:

Lcost
j = Lcost

i + c̄i j,
Lload

j = Lload
i + del jt (where t is the period under consideration and del jt is as in Ta-

ble 4.5),
Ltime

j = max{e j,Ltime
i + si + ti j},

Lk
j =

{
Lk

j +1 if k = j
Lk

j otherwise.

A label L j is discarded if at least one of its resource components exceeds the corre-
sponding limits in inequalities (4.15)-(4.17). A feasible route is constructed by extend-
ing a feasible path to the depot, provided that the extended label to the depot remains
feasible.

To avoid enumerating all feasible paths, a dominance rule is applied to elimi-
nate labels that are not Pareto optimal and, therefore, cannot yield an optimal path
[Gutierrez-Jarpa et al., 2010]. Given two labels (L j)1 = (Lcost

j ,Lload
j ,Ltime

j ,(Lk
j)k∈V )1

and (L j)2 = (Lcost
j ,Lload

j ,Ltime
j ,(Lk

j)k∈V )2 ending at the same vertex j, this rule stipu-
lates that (L j)1 dominates (L j)2 if (L j)1 ≤ (L j)2 component-wise and the inequality is
strict for at least one component.

The basic version of the label-setting algorithm is not very efficient [Irnich and
Desaulniers, 2005], but various techniques can be used to speed it up. We use three
classical acceleration techniques from the literature. Moreover, we introduce two new
techniques derived from the structure of our problem which have proved efficient in
our experiments.

4.3.5 Classical acceleration techniques
4.3.5.1 Bidirectional search.

Righini and Salani [2006] have proposed a bounded bi-directional search algorithm,
where labels are extended from the depot to other vertices not only forwardly but also
backwardly. In the first step, as in the mono-directional algorithm, labels are extended
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forwardly from the depot as long as the time component Ltime
i does not exceed half of

the available driving time of each vehicle; that is, as long as Ltime
i < 0.5(l0− e0). The

second step deals with extending labels backwardly from the depot using backward
extension functions. Denote by Γ j = (Γcost

j ,Γload
j ,Γtime

j ,(Γk
j)k∈V ) a backward label as-

sociated with a partial path ( j, . . . ,0). The time component in this backward label is
denoted as Γtime

i ; it indicates the latest time at which a vehicle can reach store i.

The backward labeling step starts with an initial label Γ0 = (0,0, l0,(0)k∈V ). Each
non-dominated label Γ j is extended backwardly along all arcs (i, j) ∈ A using the fol-
lowing resource extension functions, as long as Γtime

i > 0.5(l0− e0):

Γcost
i = Γcost

j + c̄i j,
Γload

i = Γload
j + delit (where t is the period under consideration and delit is as in Ta-

ble 4.5),
Γtime

i = min{li,Γtime
j − ti j− si},

Γk
i =

{
Γk

i +1 if k = i
Γk

i otherwise.

The label created at vertex i is discarded if Γtime
i ≤ 0.5(l0− e0), or Γload

i > Q, or
Γtime

i < ei, or Γk
i > 1 for at least one k. The dominance rule is adapted as follows.

Let (Γi)1 = (Γcost
i ,Γload

i ,Γtime
i ,(Γk

i )k∈V )1 and (Γi)2 = (Γcost
i ,Γload

i ,Γtime
i ,(Γk

i )k∈V )2 be
two labels representing partial paths starting at the same vertex i. Then, (Γi)1 domi-
nates (Γi)2 if (Γi)1 ≤ (Γi)2 for all components except the time component, (Γtime

i )1 ≥
(Γtime

i )2, and the inequality is strict for at least one component.

Finally, in a third step, pairs of forward and backward labels associated with the
same vertex are joined together in order to build complete routes starting and ending
at the depot: If Li is a forward label associated with a path (0, . . . , i) ending at vertex i,
and Γ j is a backward label associated with a path ( j, . . . ,0) starting from vertex j, then
concatenating the two paths yields a complete route (0, . . . ,0) with cost Lcost

i +Γcost
j +

c̄i j. The route is feasible if the following conditions hold:

Lload
i +Γload

j ≤ Q,
Ltime

i + si + ti j ≤ Γtime
j ,

Lk
i +Γk

j ≤ 1 for all k ∈V .

4.3.5.2 Inaccessible vertices.

This technique was proposed by Feillet et al. [2004]. It suggests to set the value of
Lk

i (resp., Γk
j) to 1 not only when store k has been visited along the path associated

with Li (resp., Γ j) but also when store k cannot be visited anymore because of the time
window constraints. In other words, Lk

i is set to 1 when store k is visited along the path
or when max{ek,Ltime

i + si + tik} > min{0.5(l0− e0), lk}. For the backward labels, Γk
j

is set to 1 when store k is visited along the path or when min{lk,Γtime
j − tk j − sk} <

max{0.5(l0− e0),ek}.

4.3.5.3 Relaxed dominance rule.

When comparing two forward labels (Li)1 and (Li)2 ending at vertex i, determining
whether (Lk

i )1 ≤ (Lk
i )2 for all k ∈V can be quite time consuming [Jepsen et al., 2008].

Therefore, we consider the following relaxed version of the dominance rule: we say
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that (Li)1 dominates (Li)2 if (Li)1 ≤ (Li)2 for all components but Lk
i (k ∈ V ), and if

∑k(Lk
i )1 ≤ ∑k(Lk

i )2. When the latter condition holds, it means that (Li)1 has visited
fewer stores than (Li)2, although the set of stores visited by (Li)1 is not necessarily a
subset of the stores visited by (Li)2. Such a relaxation increases the number of dom-
inated labels but may lead to discarding some routes with negative cost even though
such routes are actually not dominated. Hence, in each iteration of solving the ESP-
PRC, we first apply the relaxed dominance rule. If no route with a negative cost is
found, we solve again the ESPPRC, this time with the non-relaxed (exact) dominance
rule. We apply a similar technique for backward labels.

4.3.6 New acceleration techniques
4.3.6.1 Initial elimination.

Under some circumstances, when the saving in routing costs obtained by postponing
a delivery to a store is smaller than the penalty incurred for postponing, we can safely
assume that the delivery will take place in period 1, and we can eliminate the (virtual)
store from the network in period 2 without losing the optimal solution. A similar
conclusion applies for advancing deliveries. Proposition 1 states these observations in
a more formal way.

Proposition 1. For a store i ∈ V+0 ∪V++, if f + c0i + ci0 ≤ pi and di2 ≤ d′i2, then
there is an optimal solution of the two-period VRP where the delivery to store i is
not postponed, and the (virtual) store can be eliminated from the network in period 2.
Similarly, if f + c0i + ci0 ≤ ai and di1 ≤ d′i1 for a store i ∈ V0+∪V++, then there is an
optimal solution where the delivery to store i is not advanced and the (virtual) store
can be eliminated from the network in period 1.

Proof. We only handle the case of postponement; the other case is analogous. Consider
a store i ∈ V+0∪V++ and consider any feasible solution where no delivery is made to
the store in period 1 and d′i2 units are delivered in period 2 (see Table 4.3). Another
solution can be obtained by using a single truck to deliver the quantity di1 to store i in
period 1, and by delivering di2 units to store i in period 2 without modifying the other
routes (if di2 = 0, store i should simply be skipped in period 2). The new solution is
feasible since di2 ≤ d′i2. As compared to the original solution, it implies an additional
routing cost of f + c0i + ci0 in period 1, but it does not incur the penalty pi. Therefore,
if f +c0i +ci0 ≤ pi, then the total cost of the new solution is not larger than the cost of
the original one. This establishes the claim.

Note that the condition di2 ≤ d′i2 certainly holds when i ∈V+0, since di2 = 0 in that
case. In general, Proposition 1 can be used to reduce the size of the ESPPRC networks
to be considered, and this results in significant gains in computing time.

4.3.6.2 Dynamic elimination.

Proposition 2 states that, depending on the dual values λi, µi which enter the definition
of the ESPPRC, some virtual vertices can be eliminated from the current pricing prob-
lem without losing its optimal solution. (Note that these virtual vertices may need to be
considered again in the next column generation step, depending on the updated values
of the dual variables.)
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Proposition 2. Let µi and λi be the dual variables associated with store i ∈V++ after
solving the LP-relaxation of the master problem. In the pricing problem for period 2
(respectively, period 1), virtual vertex i+n3 can be eliminated if di2 ≤ d′i2 and λi ≤ pi
(respectively, if di1 ≤ d′i1 and µi ≤ ai).

Proof. Here we prove the case of period 2; the other case is analogous. Consider first
any finite forward label at vertex i+ n3, say, Li+n3 . In view of Equation (4.4), it is
clear that Li+n3 must have been obtained by extending a forward label Li computed at
vertex i. Let us show that, under the assumptions of the proposition, label Li dominates
Li+n3 , i.e., Li ≤ Li+n3 . Observe that Li+n3 includes the same sequence of stores as Li,
plus store i+n3. Therefore,

Lcost
i ≤ Lcost

i+n3
since c̄i,i+n3 = pi−λi ≥ 0 by assumption,

Lload
i ≤ Lload

i+n3
since d′i2−di2 ≥ 0 by assumption,

Ltime
i = Ltime

i+n3
,

Lk
i ≤ Lk

i+n3
for all stores k.

Now, the usual dominance rules do not directly allow us to eliminate Li+n3 , because
the paths associated with Li and Li+n3 end at different stores. Assume, however, that
we attempt to extend label Li+n3 forward to any vertex j, thus producing a new label L′j.
In view of Equation (4.5) and of Equation (4.14), it should be clear that label Li can
also be extended to vertex j and will give rise to another label L j such that L j ≤ L′j, so
that L′j can be eliminated. Thus, it is not worth extending Li+n3 forward, and this label
may as well be eliminated immediately.

The proof for backward labels is similar. Consider any backward label Γ j at vertex
j. Assume that Γi and Γi+n3 are two labels derived from Γ j when extending it back-
wardly to vertices i and i+ n3, respectively. Label Γi+n3 cannot be finitely extended
backward to any vertex but i, in view of Equation (4.4) (by construction, a virtual ver-
tex can only be preceded by its associated real vertex). Let Γi→i+n3 denote the backward
label obtained by extending Γi+n3 to vertex i. Observe that the paths associated with
Γi and Γi→i+n3 include the same sequence of stores after i and i+n3, respectively. Un-
der the assumptions of the proposition, label Γi dominates Γi→i+n3 , i.e., Γi ≤ Γi→i+n3 .
Indeed,

Γcost
i ≤ Γcost

i→i+n3
since c̄i,i+n3 = pi−λi ≥ 0 by assumption, and c̄i+n3, j = c̄i j in view of

Equation (4.5),
Γload

i ≤ Γload
i→i+n3

since d′i2−di2 ≥ 0 by assumption,
Γtime

i = Γtime
i→i+n3

,
Γk

i ≤ Γk
i→i+n3

for all stores k.

4.4 Implementation
In order to obtain an efficient branch-and-price algorithm, we have implemented a
number of different techniques. These techniques are partly associated with the column
generation steps and partly related to the branch-and-bound process. They are briefly
discussed in this section.
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4.4.1 Lower bounding and upper bounding
In the course of branch-and-price we need to solve an LP relaxation via column gener-
ation in each node. In the root node we solve the LP relaxation of Problem (4.6)-(4.12)
to obtain an initial Global Lower Bound (GLB), which is progressively updated by set-
ting it equal to the lowest LP relaxation value among all nodes which are not pruned
yet. In addition to this GLB, we consider a Local Lower Bound (LLB) in each node.
By a node’s LLB we mean a lower bound on the LP relaxation value (and hence, on
the IP value) in that node. The LLB in each node is initially set to the optimal value of
its parent node’s LP relaxation. We exploit the LLBs in the following way. When the
LP relaxation is solved in a specific node through column generation, it may happen
that, due to degeneracy, new routes with negative reduced costs can still be found even
though the optimal value of the LP has been reached. The LLBs help us to avoid such
degenerate iterations in the nodes where the optimal value of the LP relaxation is equal
to the initial LLB. It turns out that such nodes are abundant.

We also need a Global Upper Bound (GUB) during the branching procedure in
order to fathom any node in which the associated LP relaxation value exceeds the
GUB. Beside the classic way to improve the GUB (when a better integer solution is
found at the end of column generation in any node), we have tested two additional
ideas. First, we consider the formulation of the master problem obtained at the end of
column generation at the root node, and we solve this formulation as an ILP problem,
using CPLEX. Since this ILP problem only contains a restricted subset of routes, its
optimal solution provides a heuristic solution (and hence, an initial upper bound) for
the complete Formulation (4.6)-(4.12). This is computationally time consuming, but
provides a feasible solution to the ILP immediately at the root node. Hence, it may
yield a tight upper bound and decrease the total computation time by fathoming more
nodes. Second, we record the objective function value for any integer solution we
may find during the course of column generation, and we use it to improve the current
GUB when possible. Note that even though the optimal solution of the LP relaxation
in a node might not be integer, we may encounter some integer solutions during the
course of column generation which are better than the GUB at hand. Investigating
every solution to check whether it is integer takes some time, but it may also improve
the GUB. We will describe the results of these tests in Section 4.5.

4.4.2 Branching
As suggested in the literature [Gutierrez-Jarpa et al., 2010], we branch on arcs even
though decision variables in the master problem are routes. Indeed, if we branched
on routes, fixing a route variable to zero would complicate the solution process. As
proposed by many authors, based on the values of route variables in the master problem
the value of arc (i, j) is calculated as follows:

x(1)i j = ∑
r∈R1:(i, j)∈r

ur1 (4.18)

x(2)i j = ∑
r∈R2:(i, j)∈r

ur2 (4.19)

When the optimal solution of the LP relaxation in some node is not integral we
calculate x(1)i j and x(2)i j using Equations (4.18) and (4.19). Then, among all values

x(1)i j , i, j ∈V , and x(2)i j , i, j ∈V , we branch on the variable with value closest to 0.5.
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When setting an arc (i, j) to 0 in period 1 or 2 we eliminate any route in this period
that includes arc (i, j). However, setting an arc to 1 needs more work. Indeed, when we
set arc (i, j) to 1, many other arcs can be set to 0 as a direct consequence. Depending
on the class to which stores i and j belong we can specify the arcs to be set to 0. Let us
succinctly discuss through an example the relation between the arcs we have already
branched on and the routes we should keep in the master problem.

Example. Consider the two-period VRP depicted in Figure 4.2, where 3 ∈ V+0 and
9 ∈ V++. If somewhere in the branching tree we branch on arc (3,9) in period 1 and
set x(1)39 = 1, then, we can conclude that:

• x(1)93 = 0 as we cannot simultaneously use arcs (3,9) and (9,3) in the same period
in a solution;

• x(1)3 j = 0, ∀ j ∈ V 0\{9} as the outgoing flow in period 1 from store 3 must be
towards store 9;

• x(1)i9 = 0, ∀i ∈ V 0\{3} as the ingoing flow in period 1 to store 9 must be from
store 3;

• x(2)3 j = 0, ∀ j ∈V 0 and x(2)i3 = 0, ∀i ∈V 0 as store 3 ∈V+0 and when it is served in
period 1, it cannot be served in period 2;

• x(2)9,10 = 0 and x(2)10, j = 0, ∀ j∈V 0 as store 9∈V++ and when it is served in period 1,
the corresponding virtual store 10 cannot be served in period 2 (no postponing).

We have tested breadth-first, depth-first, and lowest-lower-bound-first strategies to
explore the nodes of the branching tree. As the initial ILP solution has a very low
optimality gap, improving the lower bound rather than the upper bound proves to have
the best efficiency in our test instances. Our computational results are accordingly
based on the lowest-lower-bound-first strategy.

4.4.3 Route generation
In each node, a set of initial routes should be introduced in the master problem to
guarantee feasibility of the corresponding LP relaxation problem. We always include in
this initial set all compatible routes of the father node. Then, new routes are introduced
in the master problem by the column generation procedure until we reach optimality
of the LP relaxation. These new routes must again be compatible with the status of the
node in terms of the earlier branching decisions, where the status of a node consists of
a set of arcs with value fixed to 1 and a set of arcs with value fixed to 0 for each period.

Compatibility in a given period means that neither the initial routes nor those gen-
erated during the course of column generation can include any of the arcs whose value
is fixed to 0 in that period. Moreover, every arc whose value if fixed to 1 must be part
of at least one of the routes in that period, in every iteration of column generation.

4.4.4 Column management
Classically, in each iteration of column generation we should independently solve a
pricing problem for period 1 and a pricing problem for period 2. In each pricing prob-
lem the label-setting algorithm is used to find a route or a set of routes with negative
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reduced cost(s). In each period, we may stop expanding the routes in the algorithm
once we obtain a route with a negative reduced cost. Alternatively, we could stop when
we obtain a pre-specified number of routes with negative reduced costs or we could
capture all of them. In our experiments, the column generation algorithm performs
best when we simultaneously introduce around 100 routes with negative reduced costs
in each iteration. Besides adding new routes to the master problem, some authors con-
sider deleting inefficient routes, i.e., routes that do not appear in the optimal solution of
the master problem during some consecutive iterations, or that have a very big positive
reduced cost [Dell’Amico et al., 2006]. This did not prove useful in our experiments.
So, we do not delete any route except for the sake of guaranteeing compatibility and
feasibility.

4.4.5 Stabilization
Degeneracy is a very common phenomenon when we apply column generation [Lübbecke
and Desrosiers, 2005]. Stabilization techniques can be used to decrease the number of
degenerate solutions. To our knowledge, no absolute superiority of any stabilization
technique over others has been reported yet [Lübbecke and Desrosiers, 2005]. We have
implemented the stabilization technique introduced by Du Merle et al. [1999]. Our test
results demonstrate that the efficiency of this technique highly depends on the num-
ber of routes introduced in the master problem in each iteration of column generation
(the “bunch size”). When only a small number of routes are introduced in the master
problem in each iteration, the stabilization technique helps in terms of decreasing the
number of degenerate solutions, and hence the total computation time. On the other
hand, if we introduce many routes in the master problem in each iteration of column
generation, we are more likely to capture a new solution and so to avoid degeneracy.
Following our discussion of column management in the previous subsection, we add
up to 100 routes with negative reduced costs in the master problem in each period, and
stabilization did not prove useful in this framework.

4.5 Computational results
The branch-and-price algorithm was coded in Java and the instances were run on an
Intel i7 processor with 1.8GHz CPU and 8GB RAM. We used ILOG CPLEX 12.4 to
solve the restricted master problems. A time limit of 600 seconds was set for each
instance.

4.5.1 Instances
The 100-series instances created by Solomon [1987] were considered for the test prob-
lems. These include clustered stores (C101-C109), randomly distributed stores (R101-
R112), and randomly-clustered stores (RC101-RC108). As in the original instances,
time windows and service times are considered, the capacity of each truck is Q = 200,
and the cost ci j of traveling from store i to store j is equal to the Euclidean distance
from i to j. Demands for the two periods are set as follows. Denote by di the demand
of store i in a Solomon instance. In the two-period VRP, we let di1 = d′i2 = di for stores
in V+0, d′i1 = di2 = di for stores in V0+, and di1 = di2 = di, d′i1 = d′i2 = 2di for stores in
V++. The advancement penalty per unit is equal to 0.2 (respectively, 2 and 1) for class
C (respectively, R and RC) instances. The postponement penalty is equal to twice the
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advancement penalty in all cases. This implies that for clustered instances, for exam-
ple, ai = 0.2di and pi = 0.4di. (These values have been adjusted in such a way that
only 10-20% of orders are eventually shifted in all instances C, R, and RC.)

We consider 29 medium-size and 29 large instances. The medium-size instances
consist of 50 stores; they include 20 stores in each of the classes V0+ and V0+, and 10
stores in class V++. This implies that when dealing with the two-period VRP, we are
essentially dealing with two interdependent VRPs, each involving 50 real stores and 10
virtual stores. Our large instances contain 70 stores, with 25, 25, and 20 stores in each
class, respectively. So, when shifts are allowed, the two-period VRP consists of two
interdependent VRPs, each with 70 real stores and 20 virtual ones.

Since all Solomon instances of each class (C, R, and RC) consider the same loca-
tions for all stores (e.g., the coordinates of store 1 are the same in all instances R101-
R112), we further diversified our instances, as follows. Each of our instances can be
described by the notation Aα-β , where A denotes one of the Solomon classes C, R,
or RC; α denotes an instance identifier in {101,. . . ,112}; and β is a store identifier
in {01,. . . ,91}. The instance Aα-β involves the set of stores {β , . . . ,β +N} from the
Solomon instance Aα , where N = n1 + n2 + n3 is either 50 or 70, depending on the
instance size. Thus, for example, our medium-size instance R102-21 contains stores
21-70 from Solomon instance R102, with stores 21-40 in V+0, stores 41-60 in V0+, and
stores 61-70 in V++. The complete list of all instances that we have considered can be
read from Tables 4.6-4.7.

4.5.2 Presentation of results
The numerical results are presented in Tables 4.6-4.7. The column header A0P0 refers
to the solution of the problem where neither advancing nor postponing is allowed (or
equivalently, the solution of two independent VRP problems), and the header A1P1
refers to the two-period VRP problem, where both advancing and postponing are al-
lowed. The column labeled “Gap” shows a bound on the optimality gap of the best
integer solution we find in the branching tree within the time limit; more precisely,
Gap = (UB - LB)/UB, where UB and LB are, respectively, the best available upper
bound and lower bound on the total cost. The next columns, respectively labeled “Z”,
“#Veh.”, and “Time”, display the total cost over both periods, the total number of ve-
hicles used in both periods, and the total solution time (in seconds). A dash sign (-)
indicates instances for which we could not even solve the LP relaxation in the root node
within the time limit. Column “%Z Imp.” displays the percentage improvement of the
total cost obtained for A1P1 with respect to the best cost obtained for A0P0. Finally,
“#Adv.” and “#Pos.” indicate the number of advancements and postponements in the
best solution of A1P1, respectively.

4.5.3 Difficulty of the instances
Tables 4.6-4.7 show that, within 600 seconds, our algorithm has solved 46 out of 58
instances of A0P0 to optimality, and 56 out of 58 instances of A0P0 within 5% of op-
timality. The total number of instances of A1P1 solved to optimality within the same
time limit is 33, and 53 instances of A1P1 have been solved within 7% of optimality.
Restricting our attention to those 33 instances which are solved to optimality in both
A0P0 and A1P1, we see that when delivery shifts are allowed (A1P1), the average
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Table 4.6: Medium-size instances 20-20-10

A0P0 A1P1
Instance Gap Z #Veh. Time Gap %Z Imp. #Veh. #Adv. #Pos. Time

C
101-11 0 594.9 7 4 0 6.1 7 0 2 5
102-21 0 630.8 7 2 0 18.4 6 4 3 48
103-31 0 684.6 7 198 - - - - - 600
104-41 - - - 600 - - - - - 600
105-51 0 750 7 2 0 11.9 7 3 2 371
106-61 0 556.9 7 75 0 14.5 6 2 0 233
107-71 0 679.9 9 1 0 8.1 7 2 4 33
108-81 0 510.4 6 63 .06 0 6 0 0 600
109-91 .03 621.6 8 600 .04 10.8 7 4 1 600

R
101-11 0 1373.1 19 0 0 5.9 17 6 0 0
102-21 0 1579.1 19 0 0 5.7 16 10 0 0
103-31 0 1119.3 13 1 0 3.7 12 3 1 15
104-41 0 912 9 140 0 4 8 3 0 272
105-51 0 1027.1 12 1 0 4.3 11 2 1 3
106-61 0 939.6 11 2 0 1.1 11 2 0 22
107-71 0 827.7 9 61 0 3.7 8 3 0 115
108-81 0 764.5 7 206 .02 0 7 0 0 600
109-91 0 1048.1 11 23 0 4 10 3 0 8
110-01 0 1009.8 10 14 0 1.8 10 0 2 281
111-11 0 888.5 10 4 0 1.7 10 3 0 33
112-21 0 976.4 9 102 0 1.7 8 2 1 580

RC
101-11 0 1539.6 15 131 0 17.3 10 12 1 61
102-21 0 1232 13 7 .01 6.3 10 4 2 600
103-31 0 1225.4 11 280 0 12 9 5 2 251
104-41 0 976 8 64 .01 3.2 7 4 2 600
105-51 0 1048 11 0 0 3.4 11 4 2 11
106-61 0 1026.6 11 14 0 3 10 6 0 97
107-71 .01 1037.8 12 600 .02 2.7 11 1 2 600
108-81 0 893.6 9 16 0 5.1 8 5 1 410

computation time to solve an instance to optimality increases by a factor of 20 as com-
pared to solving two independent VRPs (A0P0). Thus, the two-period VRP appears to
be considerably harder than the classical VRP.

On the other hand, comparing the number of clustered instances (C) solved to opti-
mality with the number of random instances (R) solved to optimality demonstrates that
the former ones are more difficult in the two-period VRP context. This is contrary to
what we usually observe for the Solomon instances in the classical VRP case. A closer
look reveals that, when only one period is considered, the structure of the VRP optimal
solution in the vast majority of clustered instances is such that each cluster is served by
only one vehicle, and each vehicle serves only one cluster. This very simple structure
results in small enumeration trees and in low computation times. However, the solu-
tions of the two-period VRP do not display the same structure. In our C-instances of
A1P1, it frequently happens that some vehicle serves stores in two or even three clus-
ters, and some clusters are served by more than one vehicle. As a consequence, even
solving the LP relaxations of the clustered instances is very difficult. Besides, integer
solutions are rarely obtained at the root node as the result of solving the restricted mas-
ter problem, unlike the VRP case where the clustered instances are frequently solved
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Table 4.7: Large instances 25-25-20

A0P0 A1P1
Instance Gap Z #Veh. Time Gap %Z Imp. #Veh. #Adv. #Pos. Time

C
101-11 0 924.1 11 2 .07 8.3 10 8 0 600
102-21 0 880.6 11 7 .07 5.6 9 9 8 600
103-31 0 934 10 310 - - - - - 600
104-41 - - - 600 - - - - - 600
105-51 0 954.7 11 130 .04 11 10 10 1 600
106-61 0 814.4 11 4 0 9.8 9 8 2 390
107-71 0 930.5 12 5 0 9.9 10 8 1 375
108-81 0 792.5 10 84 .06 0.3 10 11 0 600
109-91 .01 808 10 600 - - - - - 600

R
101-11 0 1986 24 0 0 4.9 23 3 1 1
102-21 0 1809.2 25 1 0 8.3 20 6 1 1
103-31 0 1302.3 15 26 0 2.9 14 5 0 41
104-41 .01 1089.2 13 600 .01 2 12 4 1 600
105-51 0 1387.6 18 125 .01 2.2 16 7 0 600
106-61 0 1347.7 15 7 0 2.2 14 5 0 30
107-71 0 1210.2 13 51 0 4.5 11 6 1 309
108-81 .03 1115.4 11 600 .02 3.3 10 3 1 600
109-91 0 1261.3 15 7 0 2.5 14 5 2 377
110-01 0 1313.7 13 276 0 2.1 12 5 0 321
111-11 0 1304.8 13 272 0 3.5 12 6 0 200
112-21 .01 1118.3 11 600 .04 0.1 11 1 0 600

RC
101-11 0 1968.1 20 22 0 11.7 15 12 3 574
102-21 .01 1796.5 17 600 .04 7.4 15 13 1 600
103-31 .02 1331.4 12 600 .03 3.5 11 3 3 600
104-41 .03 1173.2 11 600 .02 2 10 4 0 600
105-51 0 1607.4 17 4 0 5.4 15 5 1 58
106-61 0 1460 13 71 .02 0 13 7 0 600
107-71 0 1375.5 14 592 .03 0 14 0 0 600
108-81 .05 1222 12 600 .01 5.9 11 1 0 600

to optimality at the root node (see also Section 4.5.4). So, branching is necessary in
most instances of A1P1.

4.5.4 Algorithmic insights
As explained in Section 4.4.1, CPLEX is used to solve the ILP defined by the current
formulation of the master problem at the root node (with the limited number of routes
obtained at the end of column generation). This process already delivers an integer fea-
sible solution of the two-period VRP at the root node, before any branching. Figure 4.4
shows the gap between the value of this feasible solution and the optimal value of the
two-period VRP for all 33 instances of A1P1 solved to optimality within the time limit.
The average optimality gap of the ILP solution at the root node is only 0.6% for these
instances. Figure 4.5 compares the computation times required, respectively, to obtain
the ILP solution at the root node and to complete the branch-and-price procedure for
the same instances. The average computation time for the ILP solution is 25% of the
time required to perform the branch-and-price process to optimality. (We obtain similar
figures if we extend the analysis to include all A0P0 instances solved to optimality.)
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Figure 4.5: ILP time at root node and total solving time for the instances solved to
optimality.

So, Figures 4.4-4.5 show that by spending less than one fourth of the time required
to complete the branch-and-price process, we can obtain a very good solution with
optimality gap smaller than 1%. Besides, the availability of this good initial solution
also suggests that an efficient strategy to bridge the optimality gap is to improve the
global lower bound. In other words, exploring the nodes with the lowest lower bounds
first is likely to be the best node exploration strategy, and this is indeed confirmed by
our experiments.

In contrast with the previous observations, solving an ILP formulation in every
node of the branch-and-price tree does not significantly improve the upper bound and
does not reduce the total solution time. Similarly, the second algorithmic idea men-
tioned in Section 4.4.1 (i.e., to record the integer solutions obtained by chance during
the course of column generation) did not prove very useful, because such integer solu-
tions rarely occur in practice.
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As expected from the VRP literature, all three acceleration techniques mentioned in
Section 4.3.5 significantly enhance the efficiency of the label-setting procedure. More
interestingly, perhaps, the results presented in Section 4.3.6 also prove quite useful to
solve the two-period VRP. Indeed, over all medium and large instances of A1P1 (except
C103, C104 and C109-large, whose LP relaxations could not be solved within the time
limit), the computation time to solve the LP relaxation in the root node decreases,
on average, by 34% when using Proposition 1 and Proposition 2, as opposed to not
using them. The gain is of 3% for C-instances, 49% for R-instances, and 38% for RC-
instances. (Recall that the shifting penalty per unit is equal to 0.2, 2, and 1, respectively,
for instances of type C, R, and RC, and observe that the propositions are more likely to
be effective when the penalties get larger.)

Finally, regarding the branching process, let us simply mention that considering all
compatible routes of a father node when we start solving the LP relaxation in a child
node, as explained in Section 4.4.3, greatly increases the speed of our branch-and-price
algorithm.

4.5.5 Managerial insights
Here, we analyze the main benefits of allowing deliveries to be shifted. We also briefly
discuss how we can identify the deliveries which are very unlikely to be shifted in an
optimal solution.

4.5.5.1 Benefits of allowing shifts.

By allowing deliveries to be shifted, the two-period VRP model logically yields lower
total transportation costs over two periods than two independent VRP models. Com-
paring model A1P1 against the basic model A0P0 provides an estimate of the improve-
ment. Tables 4.6-4.7 indicate that the average cost reduction over all instances is 5.3%;
it is 6.2% over all instances of A1P1 solved to optimality. In both cases, the gain is
economically significant.

More generally, Table 4.8 synthesizes the results obtained when positive shifting
penalties are applied as in A1P1, whereas Table 4.9 shows the results when shifts are
allowed without any penalty, i.e., pi = ai = 0 for all stores. The latter case indicates
the maximum savings we may reap in the two-period model, under the most favorable
circumstances. Table 4.8 contains results for the 33 instances of A1P1 solved to opti-
mality. When no penalties are applied, 18 instances of A1P1 are solved to optimality
based on which the results are reported in Table 4.9. The value “%Shift” shows the
average percentage of the number of orders advanced or postponed, out of the number
of orders which could be shifted, namely, n1 + n2 + n3. The value “%Z Imp.” shows
the average percentage of reduction in transportation costs in both periods, with respect
to A0P0. The values “%Occ.” and “%Veh.” show the average percentage of improve-
ment in the occupation of the vehicles and in the number of vehicles used, respectively,
compared to the basic model A0P0.

We observe that the average cost improvement when penalties are zero is 26.6%.
Furthermore, the total number of vehicles decreases by 26.2% on average under the
same assumption and, as a direct consequence, the vehicle occupation rate increases
by 38.6%. Of course, such spectacular improvements may not be feasible in practice,
since the negative impact of shifting deliveries cannot be totally disregarded by the
stores. But these figures provide an indirect estimate of the cost of not allowing any
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Table 4.8: Average improvements with respect to model A0P0 for different penalties
(instances of A1P1 solved to optimality)

Instances Penalty %Shift %Z Imp. %Occ. %Veh.
C 0.2 10.2 11.2 14.7 -12.2
R 2 7.9 3.6 9.6 -8.4

RC 1 15.1 8.3 20 -15.5
Weighted average 9.9 6.2 12.9 -10.7

Table 4.9: Average improvements with respect to model A0P0 for different penalties
(instances of A1P1 solved to optimality)

Instances %Shift %Z Imp. %Occ. %Veh.
C 49.6 18.3 12.1 -10.2
R 62.3 30.3 49.4 -32.5

RC 60.1 27.0 45.3 -31.1
Weighted average 58.5 26.6 38.6 -26.2

shifts; and they may be used by the managers of the system to evaluate the potential
benefits that can be reaped from more flexible inventory control policies.

4.5.5.2 Identifying unpromising shifts.

It may also be interesting for managers to understand the circumstances under which
it is profitable to shift deliveries from one period to another one. More precisely, we
are going to show that it may be possible to identify ex ante unpromising shifts, that is,
deliveries which are very unlikely to be shifted in the optimal solution.

Intuitively, shifting the delivery to store i is unpromising if the shifting penalty is
relatively large with respect to the potential saving in routing costs that can be achieved
by the shift. The value (pi or ai) of the penalty is known exactly, but the value of
the saving depends on routing decisions and can only be roughly estimated. For this
purpose, let us introduce the following notations. For a store i ∈ V+0 ∪V++, we let
J1(i) ⊆ V+0 ∪V++ be a subset of stores which are accessible neighbors of i, in the
sense that for any store j ∈ J1(i), the distance from i to j is small (in our experiments,
we include the five nearest stores to i), and the time windows do not prevent deliveries
to both i and j on the same route in period 1. We similarly define J2(i) ⊆ V0+ ∪V++

for a store i ∈V0+∪V++.

We denote by c̃iJ1(i) (respectively, c̃iJ2(i)) the average distance between store i and its
accessible neighbors in period 1 (respectively, period 2). Then, we estimate the saving
in routing costs resulting from postponing the delivery to store i as c̃iJ1(i)− c̃iJ2(i) when
i ∈ V+0, and c̃iJ1(i) when i ∈ V++. The saving obtained by advancing a delivery from
period 2 to period 1 is similarly estimated as c̃iJ2(i)− c̃iJ1(i) when i ∈ V0+, and c̃iJ2(i)
when i ∈V++.

Now, we regard a postponement of the delivery to store i ∈V+0∪V++ as unpromis-
ing if conditions (4.20) hold, and an advancement of the delivery to store i∈V0+∪V++

as unpromising if conditions (4.21) hold.
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{
pi > c̃iJ1(i)− c̃iJ2(i) ∀i ∈V+0
pi > c̃iJ1(i) ∀i ∈V++

(4.20)

{
ai > c̃iJ2(i)− c̃iJ1(i) ∀i ∈V0+
ai > c̃iJ2(i) ∀i ∈V++

(4.21)

The accuracy of the above criteria can be measured by the percentage of unpromis-
ing stores whose demand is actually shifted in the optimal solution of any instance.
This percentage, say α , can be interpreted similarly to a type I error in statistics, since
identifying a shift as “unpromising” may lead the manager to reject shifts that are po-
tentially profitable. In our computational experiments (on 33 instances of A1P1 solved
to optimality), α = 4%, which suggests that the impact of forbidding shifts of deliv-
eries to unpromising stores should be limited. In fact, a more precise estimate of this
economic impact can be obtained as follows: when we forbid shifts to unpromising
stores and solve the resulting model to optimality, the total cost increases, on average,
by only 2.3% over the same 33 instances.

These observations may also prove useful in a computational framework. Indeed,
we have already observed that the two-period VRP tends to be much harder than a clas-
sical VRP. Therefore, it may be worth devising heuristic approaches for the solution of
very large scale instances. If we use conditions (4.20)-(4.21) to identify unpromising
shifts and we accordingly exclude the corresponding stores from consideration in pe-
riod 1 or 2, the number of nodes of the networks decreases by 45% on average. Such
a huge decrease of the network size might be very helpful when dealing with large
instances in a heuristic fashion.

4.5.5.3 Proposing shifting penalties to the stores.

When a zero penalty is considered, the maximum saving in routing costs is attained.
The saving is the difference between the sum of the optimal objective values of two
independent VRPs and the optimal objective value of the two-period VRP. This saving
can be regarded as the maximum penalty that can be paid to the whole network by the
LSP. However, a rational way is that both sides (the LSP and the retail chain) share
this saving. A caveat is that when a zero penalty is considered to solve the two-period
VRP, there are often multiple optimal solutions. It makes sense to pick up the optimal
solution with the least number of delivery shifts. To this end, we can consider a very
small shifting penalty for each store when solving the two-period VRP.

When stores’ benefits are independent of each other, it is up to the LSP proposing a
shifting penalty to each store. One simple way is to share (part of) the saving with the
stores by allocating to each store a penalty proportionate to the quantity of its shifted
delivery. Note that this strategy works if all stores with shifted deliveries in the optimal
solution of the two-period VRP accept the shift. Otherwise, even if one store does not
accept the shift proposed by the optimal solution, the whole saving may ruin.

When it is difficult or unlikely to get an affirmative response from all stores with
shifted deliveries, we may follow a sequential strategy which may often result in a
smaller saving value. To this end, first we solve two independent VRPs in periods 1
and 2 without any shift. Let Z0 denote the sum of the objective values of these base
VRP models in periods 1 and 2. Let Z j denote the sum of the objective values of the
VRP models where the delivery to only store j is fully shifted to period 1. The value
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of (Z0−Z j)
+ shows the maximum penalty that can be paid to store j for advancing its

delivery. Similarly, advancing and postponing penalties for all stores can be calculated.
Then, the LSP may propose (a percentage of) the biggest penalty to the associated
store. If the store accepts the penalty, its initial delivery period is shifted and fixed;
otherwise, the store with the next biggest penalty is chosen. This procedure continues
by solving the new VRP models in periods 1 and 2, where the stores which have already
accepted the penalties and so the shift proposals are repositioned to receive service in
the corresponding period. The search stops when all non-fixed stores reject the shifting
proposals. Obviously, the total saving that the LSP may gain in this strategy is less than
the total attainable saving through solving the two-period VRP with zero penalties, as
the former strategy is a greedy local search.

4.6 Conclusions
We have introduced a two-period VRP where orders of each period can be shifted
to the other period and change in quantity. An efficient branch-and-price algorithm
based on classical techniques from the VRP literature (column generation, label-setting
algorithm, branching process, etc.) has been implemented to solve this model. Two
new acceleration techniques that exploit the specific features of our model have also
been developed; they significantly increase the efficiency of the label-setting algorithm.
We have investigated the quality of the solution obtained by solving an ILP at the end of
the column generation phase at the root node. Our experimental results show that this
heuristic solution provides a very tight initial upper bound. As a consequence, and even
though the two-period VRP turns out to be considerably harder than the classical VRP,
our algorithms yield provably good solutions for many instances of the problem. In
terms of managerial impact, the experiments demonstrate that the routing costs and the
number of vehicles can decrease significantly when orders are allowed to be shifted.
In other words, there is potential value in handling the 2-VRP model, as opposed to
solving two independent VRP models. The results also suggest that, if one wants
to avoid the computational burden of solving large two-period VRPs to optimality,
identifying unpromising shifts may reduce the size of the instances to be solved while
still producing economies in transportation costs.
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Chapter 5

A two-period vehicle routing
problem with partial delivery
shifts

5.1 Introduction
Consider the two-period VRP discussed in Chapter 4. Assume that the sum of delivery
quantities in two periods requested by each store is a fixed quantity. While delivering
such a quantity in two periods is a hard constraint to be respected, the LSP is free to
deliver any quantity in each period. However, any diversion from the initial orders
placed by each store is penalized. In other words, the LSP may decide to postpone
part of a delivery requested for period 1 and to deliver it in period 2 along with the
initial delivery requested for period 2. In this case, the LSP is charged a financial
penalty per unit. Similarly, advancing part of the initial delivery requested for period 2
to period 1 could be acceptable for a store, but the LSP has to pay a penalty for it. We
assume linear penalties for shifts based on the quantity shifted, though advancements
and postponements may impose different penalties. If advancement or postponement
is not allowed by a store, the associated penalties may be considered as so high that
they effectively deter the LSP from performing the shifts. The LSP’s objective is to
minimize the sum of the routing costs in two periods and of the penalties for the shifted
deliveries.

In this chapter, we present two as an mixed integer linear programming (MILP)
formulations of the two-period VRP with partial delivery shifts. We describe a column-
and-row generation algorithm to solve the LP-relaxation of the first MILP formulation.
A difficulty with this approach is that, whenever a new column is introduced in the
model, a new capacity constraint must be taken into account as well. We explain how
the column-generation procedure can be tailored to circumvent this difficulty. We also
develop a column generation algorithm to solve the LP-relaxation of the second MILP.
Computational experiments will be required, in future work, to determine the perfor-
mance of each approach.
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5.1.1 Motivation
Consider the two-period VRP with full delivery shifts discussed in Chapter 4. Provided
that the sum of the delivery quantities in two periods is a fix quantity and the delivery
quantities are continuous, the two-period VRP with partial delivery shifts is a more
general model than the one with full delivery shifts. Therefore, the optimal solution of
the two-period VRP with partial delivery shifts provides a better value for the objective
function, consisting of routing and penalty costs, as compared to the two-period VRP
with full delivery shifts.

5.1.2 Scientific contributions
The main contributions of this chapter can be summarized as follows.

• We formulate the two-period VRP as a MILP problem in two different ways,
and we establish a one to one relation between feasible solutions of the two
formulations.

• We develop a column-row generation algorithm to solve the LP-relaxation of
the first MILP formulation and a column generation algorithm to solve the LP-
relaxation of the second MILP formulation.

• Label-setting algorithms are described to solve the pricing problem raised in each
formulation.

This chapter is organized as follows. A full description of the problem, including
the required notations, is provided in Section 5.2. The first MILP formulation is pre-
sented in Section 5.3, where we also analyze the master problem and its dual problem
to draw a criterion on detecting new promising routes to be introduced to the master
problem. Section 5.4 presents the second MILP formulation and a column genera-
tion algorithm to solve its LP-relaxation. Finally, concluding remarks are provided in
Section 5.6.

5.2 Problem statement
In the two-period VRP defined in Section 5.1, assume that: (1) the delivery quantities
are continuous, (2) the sum of the delivery quantities in two periods is a fixed value
for each store, and (3) advancing and postponing penalties are per proportional to the
quantity shifted. We use the notations in Tables 5.1-5.3. For the sake of convenience,
we will redefine some of them in the course of our discussion.

Define di1 and di2 as the orders of store i for periods 1 and 2, respectively. Each
vehicle can perform at most one single route per period. Split deliveries within a period
are not allowed, that is, each store is served by at most one vehicle in each period. We
distinguish three classes of stores, i.e., V+0, V0+, and V++ as defined in Chapter 4. For
stores in class V+0, if the LSP decides to shift part of the order to period 2, it is charged a
penalty pi for each unit of the postponed delivery. Similarly, for stores in class V0+, the
LSP can deliver a positive quantity in period 1 , but is charged a penalty ai for each unit
of the advanced delivery. Finally, for stores in class V++, either part of the initial order
di1 can be postponed or part of the initial order di2 can be advanced. For each case,
per unit penalties pi and ai are incurred for postponing and advancing, respectively. If
either pi or ai is infinite, we say that the corresponding shift is forbidden.
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Table 5.1: Indices and sets

i, j indices for vertices (stores)
r index for routes
V+0 set of stores with a positive order for period 1 and no order for period 2
V0+ set of stores with no order for period 1 and a positive order for period 2
V++ set of stores with positive orders for both periods
V V+0∪V0+∪V++

V 0 V ∪{0} where vertex 0 denotes the depot
A set of arcs
A(r) set of arcs in route r
Rt set of feasible routes in period t

Table 5.2: Parameters

dit order of store i for period t t = 1,2
di order of store i for two periods (di = di1 +di2)
pi per unit postponement penalty imposed by store i
ai per unit advancement penalty imposed by store i
n1 number of stores in set V+0
n2 number of stores in set V0+
n3 number of stores in set V++

n total number of stores (n = n1 +n2 +2n3)
ci j cost of using arc (i, j)
Q capacity of each vehicle
ti j travel time to traverse arc (i, j)
si service time at store i
(ei, li) time window for the arrival of a vehicle at vertex i
αir 1 if store i belongs to route r; 0 otherwise.

5.3 Column-row generation
In this section, we present a formulation of the two-period VRP with partial deliv-
ery shifts. We will also develop a column-row generation algorithm to solve its LP-
relaxation, where the pricing problem is an ESPPRC.

5.3.1 A mixed integer linear programming formulation
A MILP formulation of the two-period VRP can be obtained, as for the VRP, by in-
troducing decision variables corresponding to the selection of feasible routes in each
period; see Table 5.3, where Rt denotes the set of feasible routes in period t. A route
is feasible if (1) it starts and ends at the depot and visits each vertex at most once (ele-
mentarity) and (2) if a store is visited, the visit is within its time window. Contrary to
the usual definition of a feasible route in VRP context, respecting vehicle capacity is
not considered in the definition of a feasible route, but rather it will be included in our
ILP formulation as a constraint; see problem formulation in Section 5.3.1.
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Table 5.3: Decision variables

urt if route r ∈ Rt is used in period t; 0 otherwise
yirt delivery quantity to store i by route r in period t
wit excess delivery quantity to store i ∈V++ in period t

The two-period VRP with partial delivery shifts can be formulated as the following
MILP problem, where cr = ∑(i, j)∈A(r) ci j.

min ∑
r∈R1

crur1 + ∑
r∈R2

crur2

+ ∑
r∈R2

∑
i∈(r∩V+0)

piyir2 + ∑
r∈R1

∑
i∈(r∩V0+)

aiyir1

+ ∑
i∈V++

(aiwi1 + piwi2)

subject to

(5.1)

∑
r∈R1

αirur1 ≤ 1; ∀i ∈V (5.2)

∑
r∈R2

αirur2 ≤ 1; ∀i ∈V (5.3)

∑
r∈R1

yir1 + ∑
r∈R2

yir2 = di; ∀i ∈V (5.4)

∑
r∈R1

yir1−wi1 ≤ di1; ∀i ∈V++ (5.5)

∑
r∈R2

yir2−wi2 ≤ di2; ∀i ∈V++ (5.6)

∑
i∈r

yir1−Qur1 ≤ 0; ∀r ∈ R1 (5.7)

∑
i∈r

yir2−Qur2 ≤ 0; ∀r ∈ R2 (5.8)

urt ∈ {0,1}; ∀r ∈ Rt , t = 1,2 (5.9)

yirt ≥ 0; ∀i ∈V, r ∈ Rt , t = 1,2 (5.10)

wit ≥ 0; ∀i ∈V++, t = 1,2 (5.11)

The objective function (5.1) consists of fixed and variable costs of each route in
both periods. It also encompasses postponement penalty for any store in class V+0
if it is included in a route selected in period 2, advancement penalty for any store in
class V0+ if it is included in a route selected in period 1, postponement penalty for any
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store in class V++ if extra quantity is delivered to the store in period 2, and advance-
ment penalty for any store in class V++ if extra quantity is delivered to the store in
period 1. Constraints (5.2) and (5.3) guarantee that every store is served at most once
in each period. Constraints (5.4) guarantee that a total required demand for two peri-
ods is actually delivered to each store. Before explaining the next constraints, note that
wit = (∑r∈Rt yirt −dit)

+ shows the excess delivery quantity to store i in period t. This
nonlinear equality can be expressed by the linear constraints (5.5), (5.6), and (5.11).
This is due to the positive coefficient of wit in the objective function of the minimiza-
tion problem. Constraints (5.7) and (5.8) guarantee feasibility of each route in terms
of vehicle capacity in periods 1 and 2, respectively. Finally, constraints (5.9)–(5.11)
impose integrality and nonnegativity of the decision variables. Note that constraints
(5.4) can be replaced by constraints (5.12) without impacting the optimal solution.

∑
r∈R1

yir1 + ∑
r∈R2

yir2 ≥ di; ∀i ∈V (5.12)

This is due to the positive coefficient of variables yirt in the objective function.
Moreover, the following inequalities are also valid for Problem (5.1)–(5.11),

yirt ≤ diurt ; ∀i ∈V, r ∈ Rt , t = 1,2 (5.13)

∑
r∈R1

αirur1 + ∑
r∈R2

αirur2 ≥ 1; ∀i ∈V (5.14)

Problem (5.1)–(5.11) cannot be solved by a classical column generation algorithm
since it contains a constraint for each route. Consider the LP-relaxation of Problem
(5.1)-(5.11) where Constraints (5.4) are replaced by Constraints (5.12) and other con-
straints are transformed into the form of ≥ so that all the corresponding dual variables
are non-negative. The resultant problem is called the master problem. Consider a par-
ticular route r and a particular period t. By column set (r, t), we mean columns of
technological coefficients of decision variables urt and yirt for every i ∈ r. If only a
limited number of column sets and all variables wit are taken into account in the master
problem, the problem is called the restricted master problem.

The master problem defined contains too many column sets. One way to solve this
is by considering a restricted master problem and solving it to optimality. Then, new
promising column sets are identified and added to the restricted master problem and
it is solved again. This procedure continues until no further improvement is possible,
i.e., until no new column set is able to improve the objective value.

In the following two subsections, we look into the master problem from two differ-
ent angles in order to identify new promising column sets. Nevertheless, we will see
that both ways lead to the same criterion to identify new promising column sets.

5.3.2 Analysis of the primal master problem
Consider a Restricted Master Problem (RMP) solved to optimality by taking into ac-
count decision variables wit for every i∈V++ and t = 1,2, and a limited pool of column
sets associated with routes in Rt for t = 1,2. From now on, with some small abuse of
notations, by Rt we mean a subset of (and not all) feasible routes in period t in terms
of elementarity and time windows. We may assume that indeed all column sets ex-
isted in the pool, but they have been completely neglected when optimizing the master

109



problem. Now, we look at a generic column set in one of the periods, say column set
(r′, t = 1).

When activating column set (r′,1), variables ur′1 and yir′1 for every i ∈ r′ should be
regarded in the model. Moreover, a constraint imposing feasibility of route r′ in terms
of the vehicle capacity is activated and added to the constraints. The RMP containing
these additional variables is written as follows.

min ∑
r∈R1

crur1 + ∑
r∈R2

crur2

+ ∑
r∈R2

∑
i∈(r∩V+0)

piyir2 + ∑
r∈R1

∑
i∈(r∩V0+)

aiyir1

+ ∑
i∈V++

(aiwi1 + piwi2)

+ cr′ur′1 + ∑
i∈(r′∩V0+)

aiyir′1

subject to

(5.15)

− ∑
r∈R1

αirur1−αir′ur′1 ≥−1; ∀i ∈V, (dual variables: βi) (5.16)

− ∑
r∈R2

αirur2 ≥−1; ∀i ∈V, (dual variables: γi) (5.17)

∑
r∈R1

yir1 + ∑
r∈R2

yir2 + yir′1 ≥ di; ∀i ∈V, (dual variables: δi) (5.18)

− ∑
r∈R1

yir1 +wi1− yir′1 ≥−di1; ∀i ∈V++, (dual variables: ρi) (5.19)

− ∑
r∈R2

yir2 +wi2 ≥−di2; ∀i ∈V++, (dual variables: ηi) (5.20)

−∑
i∈r

yir1 +Qur1 ≥ 0; ∀r ∈ R1, (dual variables: θr) (5.21)

−∑
i∈r

yir2 +Qur2 ≥ 0; ∀r ∈ R2, (dual variables: πr) (5.22)

−∑
i∈r′

yir′1 +Qur′1 ≥ 0; (dual variable: θr′) (5.23)

urt , yirt , wit , ur′1, yir′1 ≥ 0 (5.24)

The criterion to identify a new promising column set to add to the master problem
is stated in Proposition 5. However, we need Propositions (3) and (4) in order to prove
Proposition 5.

110



Proposition 3. Consider a square invertible matrix B of size m×m, and an extended
matrix A of size (m+1)× (m+1):

A =

[
Bm×m hm×1
01×m q1×1

]
where, q 6= 0. The inverse of matrix A is calculated as follows:

A−1 =

[
B−1 − 1

q B−1h
0 1

q

]
Proof. It suffices to check that:

A ·A−1 =

[
Im×m 0m×1
01×m 11×1

]

In Proposition (4), we show how the value of the dual variable associated with a
new constraint is calculated before actually adding the constraint to the master problem.
Based on the result of this proposition, we will calculate the reduced cost of each
variable in a generic column set (r, t).

Proposition 4. Assume that column set (r′,1) is added to the master problem along
with the associated vehicle capacity Constraint (5.23). The value of the dual variable
of Constraint (5.23) in the current solution is calculated as θr′ =

1
Q (cr′ +∑ j∈r′ β j).

Proof. Let αr′ denote transpose of vector (α1r′ , · · · ,αnr′), where αir′ is defined as in
Table 5.2. The vector of technological coefficients for ur′1 is:

[
hur′1
Q

]
=



−αr′

0n×1
0n×1
0n3×1
0n3×1
0|R1|×1
0|R2|×1
Q


Assuming that ur′1 is added to the basis, the matrix of technological coefficients for

basic variables has the form:

A =

[
Bm×m hur′1
01×m Q

]
,

where the first n columns of A are associated with the variables in the optimal basis of
the restricted master problem.

According to Proposition 3, the inverse of matrix A is calculated as:

A−1 =

[
B−1 − 1

Q B−1hur′1
0 1

Q

]
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Then, the dual variables for all constraints, including the new constraint (5.23) to
impose feasibility of route r′, are determined by:

(β ,γ,δ ,ρ,η ,θ ,π,θr′) = (cB, cr′) ·

[
B−1 − 1

Q B−1hur′1
0 1

Q

]
As expected, the dual variables corresponding to the existing constraints do not

change and are determined by:

(β ,γ,δ ,ρ,η ,θ ,π) = cBB−1.

The dual variable of the new constraint is determined as:

θr′ =
1
Q (cr′ − cBB−1hur′ ) =

1
Q (cr′ +∑ j∈r′ β j).

By extending the inverse matrix with column ur′1, we can compute the reduced
costs of variables yir′1 in column set (r′,1). Let ε i

n×1 denote an (n×1)-unit vector with
value 1 in position i. The vector of technological coefficients for variable yir′1 when
i ∈ r′∩ (V+0∪V0+) is:

[
hyir′1
−1

]
=



0n×1
0n×1
ε i

n×1
0n3×1
0n3×1
0|R1|×1
0|R2|×1
−1


So, the reduced cost of variable yir′1 for i ∈ r′∩V+0 is calculated as:

RCyir′1 = 0− cAA−1
[

hyir′1
−1

]
=−(β ,γ,δ ,ρ,η ,θ ,π,θr′) ·

[
hyir′1
−1

]
=−δi +θr′

=−δi +
1
Q
(∑

j∈r′
β j + cr′)

And, the reduced cost of variable yir′1 for i ∈ r′∩V0+ is calculated as:

RCyir′1 = ai− cAA−1
[

hyir′1
−1

]
= ai− (β ,γ,δ ,ρ,η ,θ ,π,θr′) ·

[
hyir′1
−1

]
= ai−δi +θr′ = ai−δi +

1
Q
(∑

j∈r′
β j + cr′)
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Similarly, the vector of technological coefficients for variable yir′1 when i∈ r′∩V++ is:

[
hyir′1
−1

]
=



0n×1
0n×1
ε i

n×1
−ε i

n3×1
0n3×1
0|R1|×1
0|R2|×1
−1


Hence, the reduced cost of variable yir′1 for i ∈ r′∩V++ is calculated as:

RCyir′1 = 0− cAA−1
[

hyir′1
−1

]
=−(β ,γ,δ ,ρ,η ,θ ,π,θr′) ·

[
hyir′1
−1

]
=−δi +ρi +θr′ =−δi +ρi +

1
Q
(∑

j∈r′
β j + cr′).

Proposition 5. Adding column set (r′,1) to the master problem may improve the ob-
jective function if:
cr′+∑ j∈r′ β j−Qmax{maxi∈(r′∩V+0){δi},maxi∈(r′∩V0+){δi−ai},maxi∈(r′∩V++){δi−ρi}}<
0.

Similarly, adding column set (r′,2) to the master problem may improve the objec-
tive function if:
cr′+∑i∈r γi−Qmax{maxi∈(r∩V+0){δi− pi},maxi∈(r∩V0+){δi},maxi∈(r∩V++){δi−ηi}}<
0.

Proof. We prove the proposition for column set (r′,1). It is similar for column set
(r′,2). Assume that we add route r′ to the master problem in iteration k of the Simplex
algorithm. If in this iteration, RCyir′1 < 0 for at least some i ∈ r′, then having r′ added
to the master problem in iteration k may result in improving the objective value after
yir′1 is added to the master problem. This implies that:

∃i ∈ (r′∩V+0) | cr′ +∑ j∈r′ β j−Q(δi)< 0,
or ∃i ∈ (r′∩V0+) | cr′ +∑ j∈r′ β j−Q(δi−ai)< 0,
or ∃i ∈ (r′∩V++) | cr′ +∑ j∈r′ β j−Q(δi−ρi)< 0.

The variable yir′1 most likely to have a negative reduced cost is the one with the
largest value of δi (resp., δi−ai, δi−ρi), for i ∈V+0 (resp., i ∈V0+, i ∈V++). Hence,
the condition becomes:
cr′+∑ j∈r′ β j−Qmax{maxi∈(r′∩V+0){δi},maxi∈(r′∩V0+){δi−ai},maxi∈(r′∩V++){δi−ρi}}<
0

5.3.3 Analysis of the dual master problem
We take another look at the previous reasoning, by analyzing the dual master problem.
This approach is inspired from Le et al. [2013]. We know that if a solution is not opti-
mal for the primal problem, then the associated dual solution is infeasible for the dual
problem. More specifically, if there exists a variable in the primal minimization prob-
lem whose reduced cost is negative, then its associated constraint in the dual problem
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is violated. Route r in period t is associated with the column set (r, t), i.e., columns of
technological coefficients of variables urt and yirt , ∀i ∈ r. Therefore, adding column
set (r, t) to the primal master problem may improve the objective function if any of
the dual constraints associated with urt or yirt ’s are not respected. In order to see such
dual constraints, hereunder we provide an explicit formulation of the dual of the master
problem.

max −∑
i∈V

βi−∑
i∈V

γi + ∑
i∈V

diδi− ∑
i∈V++

(di1ρi +di2ηi)

subject to
(5.25)

−∑
i∈r

βi +Qθr ≤ cr; ∀r ∈ R1, (primal variables: ur1) (5.26)

−∑
i∈r

γi +Qπr ≤ cr; ∀r ∈ R2, (primal variables: ur2) (5.27)

δi−θr ≤ 0; ∀r ∈ R1, i ∈ (r∩V+0) (primal variables: yir1) (5.28)

δi−θr ≤ ai; ∀r ∈ R1, i ∈ (r∩V0+) (primal variables: yir1) (5.29)

δi−ρi−θr ≤ 0; ∀r ∈ R1, i ∈ (r∩V++) (primal variables: yir1) (5.30)

δi−πr ≤ pi; ∀r ∈ R2, i ∈ (r∩V+0) (primal variables: yir2) (5.31)

δi−πr ≤ 0; ∀r ∈ R2, i ∈ (r∩V0+) (primal variables: yir2) (5.32)

δi−ηi−πr ≤ 0; ∀r ∈ R2, i ∈ (r∩V++) (primal variables: yir2) (5.33)

ρi ≤ ai; ∀i ∈V++ (primal variables: wi1) (5.34)

ηi ≤ pi; ∀i ∈V++ (primal variables: wi2) (5.35)

βi, γi, δi, ρi, ηi, θr, πr ≥ 0 (5.36)

For any column set (r,1), the corresponding constraints in the dual problem are:
θr ≤

cr+∑ j∈r β j
Q

δi ≤ θr ∀i ∈ r∩V+0
δi−ai ≤ θr ∀i ∈ r∩V0+
δi−ρi ≤ θr ∀i ∈ r∩V++.

(5.37)

Applying Fourier-Motzkin elimination on the set of Inequalities (5.37) results in:
δi ≤

cr+∑ j∈r β j
Q ∀i ∈ r∩V+0

δi−ai ≤
cr+∑ j∈r β j

Q ∀i ∈ r∩V0+

δi−ρi ≤
cr+∑ j∈r β j

Q ∀i ∈ r∩V++.

(5.38)

114



We can say that at least one of the feasibility Inequalities (5.37) for the dual prob-
lem is violated if there exists an i ∈ r such that:

cr +∑ j∈r β j−Qδi < 0 i ∈ r∩V+0
cr +∑ j∈r β j−Q(δi−ai)< 0 i ∈ r∩V0+
cr +∑ j∈r β j−Q(δi−ρi)< 0 i ∈ r∩V++.

(5.39)

This is equivalent to saying that:

cr +∑
j∈r

β j−Qmax{ max
i∈(r∩V+0)

{δi}, max
i∈(r∩V0+)

{δi−ai}, max
i∈(r∩V++)

{δi−ρi}}< 0 (5.40)

By following the same calculations, one can say that column set (r,2) may improve
the objective function of the primal problem if:

cr +∑
i∈r

γi−Qmax{ max
i∈(r∩V+0)

{δi− pi}, max
i∈(r∩V0+)

{δi}, max
i∈(r∩V++)

{δi−ηi}}< 0 (5.41)

We observe that Inequalities (5.40)–(5.41) are exactly the same criteria we obtained
in Section 5.3.2 to identify the promising column sets to improve the objective function
of the primal problem. The left hand side of Inequalities (5.40)–(5.41) can be regarded
as two pricing problems to be minimized independently. If the optimal solution of both
pricing problems result in nonnegative values for the objective functions (left hand
sides), then the current solution of the master problem is optimal. Otherwise, we add
to the master problem a set of column sets which result in a negative value for the
objective function of the pricing problem. The next two sections illustrate how the
pricing problems can be solved.

5.3.4 Pricing problems
We formulate a pricing problem for each period as an ESPPRC [Irnich and Desaulniers,
2005]. Each feasible solution of the ESPPRC is a route which starts and ends at the
depot while including a subset of the vertices and respecting the side constraints related
to elementarity and time windows. The settings are done in such a way that the cost
of a route (solution) in the ESPPRC is equal to the objective function of the pricing
problem, i.e., left hand side of Inequality (5.40) or (5.41). The objective function of
the pricing problem in period 1 is written as:

∑
(i, j)∈A(r)

c̄i j−Qmax{ max
i∈(r∩V+0)

{δi}, max
i∈(r∩V0+)

{δi−ai}, max
i∈(r∩V++)

{δi−ρi}}, (5.42)

where the cost coefficients c̄i j’s are defined by Equation (5.43) and by convention β0 =
0.

c̄i j = ci j +β j (5.43)

Similarly, the objective function of the pricing problem in period 2 is written as:

∑
(i, j)∈A(r)

c̄i j−Qmax{ max
i∈(r∩V+0)

{δi− pi}, max
i∈(r∩V0+)

{δi}, max
i∈(r∩V++)

{δi−ηi}}, (5.44)

where the cost coefficients c̄i j’s are defined by Equation (5.45) and by convention p0 =
0 and β0 = 0.
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c̄i j = ci j + γ j (5.45)

For each period 1 and 2, we set up a distinct network on the vertex set V 0, where
the cost c̄i j of each arc (i, j) is given either by (5.43) or by (5.45), depending on the
period. Other parameters of the network are listed in Table 5.2.

5.3.5 The label-setting algorithm
A label-setting algorithm is used to solve the pricing problems (ESPPRC). In this algo-
rithm, a multi-dimensional label Li is associated with each path from the depot to an end
vertex i. In expanded form, the components of label Li are (Lcost

i ,Ldual
i ,Ltime

i ,(Lk
i )k∈V ),

where each component indicates the consumption of a limited resource along the path
with which Li is associated. The path under consideration is feasible if all components
of Li respect the limits on available resources.

The first component Lcost
i denotes the sum of c̄i j’s over the arcs (i, j) covered by

the path, where c̄i j is calculated by Equations (5.43) and (5.45) for periods 1 and 2,
respectively, and there is no resource constraint on it. The second component Ldual

i is a
term we need to keep track of the coefficient of Q in Equations (5.42) and (5.44), and
there is no resource constraint on it. The third component Ltime

i shows the time when
store i is visited and the service starts at this store. It must respect the time window for
store i, that is,

ei ≤ Ltime
i ≤ li. (5.46)

Finally, Lk
i indicates the number of times store k is visited by path Li. Each path

must be elementary, meaning that in each period a path cannot visit any store k more
than once:

0≤ Lk
i ≤ 1 for all k ∈V. (5.47)

The label-setting algorithm starts from the initial label L0 = (0,0,e0,(0)k∈V ), asso-
ciated with the depot, and generates new labels using extension functions. A label Li is
extended along all arcs (i, j) ∈ A and new labels L j = (Lcost

j ,Ldual
j ,Ltime

j ,(Lk
j)k∈V ) are

created. Define δ̄i for periods 1 and 2 by Equations (5.48) and (5.49), respectively.

δ̄i =

 δ j j ∈V+0
δ j−a j j ∈V0+
δ j−ρ j j ∈V++

(5.48)

δ̄i =

 δ j− pi j ∈V+0
δ j j ∈V0+
δ j−η j j ∈V++

(5.49)

Then, the functions extending label Li to label L j along arc (i, j) are as follows:

Lcost
j = Lcost

i + c̄i j,
Ldual

j = max{Ldual
i , δ̄ j},

Ltime
j = max{e j,Ltime

i + si + ti j},

Lk
j =

{
Lk

j +1 if k = j
Lk

j otherwise.
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A label L j is discarded if at least one of its resource components exceeds the corre-
sponding limits in inequalities (5.46)-(5.47). A feasible route is constructed by extend-
ing a feasible path to the depot, provided that the extended label to the depot remains
feasible.

To avoid enumerating all feasible paths, a dominance rule is applied to elimi-
nate labels that are not Pareto optimal and, therefore, cannot yield an optimal path
[Gutierrez-Jarpa et al., 2010]. Given two labels (L j)1 = (Lcost

j ,Ldual
j ,Ltime

j ,(Lk
j)k∈V )1

and (L j)2 = (Lcost
j ,Ldual

j ,Ltime
j ,(Lk

j)k∈V )2 ending at the same vertex j, this rule stipu-
lates that (L j)1 dominates (L j)2 if we have: (Ltime

j )1 ≤ (Ltime
j )2, (Lk

j)1 ≤ (Lk
j)2 ∀k ∈V ,

(Lcost
j −QLdual

j )1 ≤ (Lcost
j −QLdual

j )2, and the inequality is strict for at least one com-
ponent.

Proposition 6. If RCyirt > 0 in path r in period t, then RCyir′1 > 0 in all extended paths
r′ from r in period t.

Proof. We have RCyirt = −δ̄i +
1
Q ∑(k, j)∈A(r) c̄k j, where ¯ck j and δ̄i are calculated by

Equations (5.43) and (5.48) when t = 1 and by Equations (5.45) and (5.49) when t = 2.
Assume that path r ending at store j is extended to another path r′ including a new
store j′. We obtain:

RCyir′t =−δ̄i +
1
Q ∑(k, j)∈r c̄k j +

1
Q c̄ j j′ >−δ̄i +

1
Q ∑(k, j)∈r c̄k j = RCyirt > 0

Proposition 7. The current solution of the master problem is optimal if the following
two conditions hold simultaneously:
1) c0i + ci0 +βi−Qδ̄i ≥ 0, ∀i ∈V , where δ̄i is determined by Equation (5.48),
2) c0i + ci0 + γi−Qδ̄i ≥ 0, ∀i ∈V , where δ̄i is determined by Equation (5.49).

Proof. Consider an arbitrary route r in period 1 which includes store i along with a set
of other stores. We have RCyir1 = cr +βi−Qδ̄i ≥ c0i+ci0+βi−Qδ̄i ≥ 0. Similarly, for
any arbitrary route in period 2 which includes store i we have RCyir2 = cr + γi−Qδ̄i ≥
c0i + ci0 + γi−Qδ̄i ≥ 0.

This implies that if c0i+ci0+βi−Qδ̄i ≥ 0, then RCyir1 ≥ 0 in any arbitrary route in
period 1. Similarly, if c0i + ci0 + γi−Qδ̄i ≥ 0, then RCyir2 ≥ 0 in any arbitrary route in
period 2. When these two conditions hold for all stores, it implies that for any arbitrary
route in period 1 or 2, RCyirt ≥ 0 for every i ∈V . So, the current optimal solution to the
restricted master problem is optimal to the master problem.

The same acceleration techniques discussed in Section 4.3.5 are applicable here,
i.e., bidirectional search, inaccessible vertices, and relaxed dominance rule. The last
two techniques are exactly the same as we described in Section 4.3.5. However, apply-
ing the bidirectional search needs a bit more attention.

If Li is a forward label associated with a path (0, . . . , i) ending at vertex i, and
Γ j is a backward label associated with a path ( j, . . . ,0) starting from vertex j, then
concatenating the two paths yields a complete route (0, . . . ,0) with cost Lcost

i +Γcost
j +

c̄i j−Q ·max{Ldual
i ,Γdual

j }. The route is feasible if the following conditions hold:
Ltime

i + si + ti j ≤ Γtime
j ,

Lk
i +Γk

j ≤ 1 for all k ∈V .
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5.4 Column generation
In this section, a different formulation is proposed for the two-period VRP with partial
delivery shifts. This formulation is inspired by the work of Desaulniers [2010] on VRP
with split deliveries. As opposed to model (5.1)-(5.11), the variables in this model
simultaneously represent decisions about the choice of routes and about quantities to
be delivered along these routes. We will also sketch a column generation algorithm
which can be used to solve its LP-relaxation. The pricing problem is an ESPPRC
combined with the linear relaxation of a bounded knapsack problem.

5.4.1 A mixed integer linear programming formulation
Let us consider an arbitrary elementary route r that respects time windows at all stores
and at the depot. We define the set of feasible delivery pattern for route r as the bounded
polyhedron

Ωr = {y = (yi)i∈r|∑
i∈r

yi ≤ Q, 0≤ yi ≤ di for all i ∈ r}.

Since Ωr is a bounded knapsack polyhedron, its extreme points are exactly the
vectors y ∈ Ωr such that yi ∈ {0,di} for all stores i ∈ r, except possibly one store j
for which 0 < y j < d j. We denote these extreme delivery patterns as yk

r , k ∈ Kr. All
feasible delivery patterns in Ωr are convex combinations of the extreme ones, that is, a
vector y is in Ωr if and only if there exist nonnegative multipliers uk, k ∈ Kr, such that
y = ∑k∈Kr yk

ruk and ∑k∈Kr uk = 1.

The new formulation accordingly rests on decision variables uk
rt , k ∈ Kr, which can

be intuitively interpreted as the fraction of route r ∈Rt used in period t with the extreme
delivery pattern k (see Table 5.4).

Table 5.4: Sets, parameters, and decision variables

Kr set of feasible extreme delivery patterns of route r
yk

ir delivery quantity to store i in period t based on extreme delivery pattern k
uk

rt fraction of route r ∈ Rt used in period t with extreme delivery pattern k ∈ Kr

Consider now the integer linear programming problem (5.50)-(5.56) hereunder:

min ∑
r∈R1

∑
k∈Kr

cruk
r1 + ∑

r∈R2

∑
k∈Kr

cruk
r2

+ ∑
r∈R2

∑
i∈(r∩V+0)

pi ∑
k∈Kr

yk
iru

k
r2 + ∑

r∈R1

∑
i∈(r∩V0+)

ai ∑
k∈Kr

yk
iru

k
r1

+ ∑
i∈V++

(aiwi1 + piwi2)

subject to

(5.50)

∑
r∈R1

∑
k∈Kr

αiruk
r1 ≤ 1 ∀i ∈V (5.51)
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∑
r∈R2

∑
k∈Kr

αiruk
r2 ≤ 1 ∀i ∈V (5.52)

∑
r∈R1

∑
k∈Kr

yk
iru

k
r1 + ∑

r∈R2

∑
k∈Kr

yk
iru

k
r2 = di ∀i ∈V (5.53)

∑
r∈R1

∑
k∈Kr

yk
iru

k
r1−wi1 ≤ di1 ∀i ∈V++ (5.54)

∑
r∈R2

∑
k∈Kr

yk
iru

k
r2−wi2 ≤ di2 ∀i ∈V++ (5.55)

uk
rt , wit ≥ 0 (5.56)

∑
k∈Kr

uk
rt ∈ {0,1} ∀r ∈ Rt and for t = 1,2 (5.57)

In order to argue that (5.50)-(5.57) provides a correct formulation of the two-period
VRP with partial delivery shifts, let us consider an arbitrary feasible solution of this
model, say, (uk

rt ,wit) (t = 1,2; r ∈ Rt ; k ∈ Kr; i ∈ r), and let us introduce the following
auxiliary quantities which can be compared with those defined in Table 5.3. First, for
all r ∈ Rt and for t = 1,2, let

urt = ∑
k∈Kr

uk
rt . (5.58)

Note that this is a binary variable by virtue of constraint (5.57). As in Table 5.3, our
interpretation is that urt = 1 if route r is used in period t. Next, for i ∈ r, let us interpret

yirt = ∑
k∈Kr

yk
iru

k
rt (5.59)

as the quantity delivered to store i along route r in period t.

We claim that (urt ,yirt ,wit) defines a feasible solution of model (5.1)-(5.11) with the
same cost as (uk

rt ,wit) for model (5.50)-(5.57). Indeed, substituting (5.58) and (5.59)
in the objective function (5.50) and in the constraints (5.51)-(5.57), it is obvious that
the solution (urt ,yirt ,wit) yields the same value of (5.1) as (5.50), and that it satisfies
(5.2)-(5.6), (5.9)-(5.11). Moreover, constraints (5.7)-(5.8) are also satisfied since, for
every route r and for t = 1,2,

∑
i∈r

yirt = ∑
i∈r

∑
k∈Kr

yk
iru

k
rt ≤ Q ∑

k∈Kr

uk
rt = Qurt ,

where the inequality holds because yk
r ∈Ωr.

So, we have shown that, for every feasible solution (uk
rt ,wit) of model (5.51)-(5.57),

there exists a feasible solution (urt ,yirt ,wit) of (5.2)-(5.11) with the same cost.

Conversely, consider now an arbitrary feasible solution of (5.2)-(5.11), say (urt ,yirt ,wit).
For each t and r ∈ Rt , the vector yrt = (yirt)i∈r is in Ωr. If urt = 0 then we let uk

rt = 0
for all k ∈ Kr. Otherwise, urt = 1 and we write yrt as a convex combination of extreme
patterns, say yrt = ∑k∈Kr yk

ruk
rt with ∑k∈Kr uk

rt = 1.

With these definitions, equations (5.58) and (5.59) hold, and it is easy to check that
(uk

rt ,wit) is a feasible solution of model (5.51)-(5.56), with the same cost as (urt ,yirt ,wit).
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So, we conclude that the solutions of (5.2)-(5.11) and of (5.51)-(5.57) are in one-
to-one relation through a cost-preserving mapping. This implies, in particular, that
(5.50)-(5.57) is a valid formulation of the two-period VRP with partial delivery shifts.
Note that constraints (5.53) can be replaced by constraints (5.60) without impacting the
optimal solution.

∑
r∈R1

∑
k∈Kr

yk
iru

k
r1 + ∑

r∈R2

∑
k∈Kr

yk
iru

k
r2 ≥ di; ∀i ∈V (5.60)

5.4.2 Master problem
Consider the LP-relaxation of Problem (5.50)-(5.57) where Constraints (5.53) are re-
placed by Constraints (5.60), Constraints (5.57) are eliminated, as they are satisfied by
Constraints (5.51)-(5.52), and other constraints are transformed into the form of ≥ so
that all the corresponding dual variables are non-negative. Problem (5.61)-(5.67) is the
resultant master problem.

min ∑
r∈R1

∑
k∈Kr

cruk
r1 + ∑

r∈R2

∑
k∈Kr

cruk
r2

+ ∑
r∈R2

∑
i∈(r∩V+0)

pi ∑
k∈Kr

yk
iru

k
r2 + ∑

r∈R1

∑
i∈(r∩V0+)

ai ∑
k∈Kr

yk
iru

k
r1

+ ∑
i∈V++

(aiwi1 + piwi2)

subject to

(5.61)

− ∑
r∈R1

∑
k∈Kr

αiruk
r1 ≥−1 ∀i ∈V (dual variables: βi) (5.62)

− ∑
r∈R2

∑
k∈Kr

αiruk
r2 ≥−1 ∀i ∈V (dual variables: γi) (5.63)

∑
r∈R1

∑
k∈Kr

yk
iru

k
r1 + ∑

r∈R2

∑
k∈Kr

yk
iru

k
r2 ≥ di ∀i ∈V (dual variables: δi) (5.64)

− ∑
r∈R1

∑
k∈Kr

yk
iru

k
r1 +wi1 ≥−di1 ∀i ∈V++ (dual variables: ρi) (5.65)

− ∑
r∈R2

∑
k∈Kr

yk
iru

k
r2 +wi2 ≥−di2 ∀i ∈V++ (dual variables: ηi) (5.66)

uk
rt , wit ≥ 0 (5.67)

Note that in the LP-relaxation of model (5.50)-(5.57) there is no need to keep
constraints (5.57) anymore. Indeed, constraints (5.51)-(5.52) imply that ∑k∈Kr uk

rt ≤ 1
holds for all r ∈ Rt and for t = 1,2.
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Although ILP models (5.1)-(5.11) and (5.50)-(5.57) are equivalent, their linear re-
laxations (5.15)-(5.24) and (5.61)-(5.67) are not. Actually, consider first a feasible
solution (uk

rt ,wit) of the linear relaxation (5.62)-(5.67). The same reasoning as in Sec-
tion 5.4.1 shows that the solution (urt ,yirt ,wit) defined by (5.58)-(5.59) is feasible for
(5.16)-(5.24), with the same cost. This shows that the lower bound obtained by solving
the linear relaxation of (5.1)-(5.11) is at least as large as the lower bound obtained from
the linear relaxation of (5.50)-(5.57). But the converse relation does not hold anymore,
as evidenced by the following example.

Example. Assume there is a single store 1 (hence, a single route r) with demand
d11 = 3 in period 1 and no demand in period 2. The cost of visiting the store is cr =
7. The vehicle capacity is Q = 10. Assume also that the postponement penalties are
large, so that the store is necessarily visited in period 1 in any optimal solution. The
linear relaxation of the first model has the optimal solution y1 = 3, and ur = 0.3 with
cost 2.1. For the second model, Ωr is the interval [0,3] with extreme points y1

r = 0 and
y2

r = 3. The linear relaxation of this model has the optimal solution (u1
r ,u

2
r ) = (0,1),

with cost 7.

5.4.3 Pricing problems
Consider a new extreme delivery pattern k of (new) route r in period 1. The reduced
cost of variable uk

r1 is determined as:

cr + ∑
i∈(r∩V0+)

aiyk
ir−

(
−∑

i∈r
βi +∑

i∈r
yk

irδi− ∑
i∈(r∩V++)

yk
irρi

)
= ∑

(i, j)∈r
ci j

+ ∑
i∈(r∩V+0)

(βi−δiyk
ir)+ ∑

i∈(r∩V0+)

(βi +aiyk
ir−δiyk

ir)+ ∑
i∈(r∩V++)

(βi +ρiyk
ir−δiyk

ir)

(5.68)

Let us define c̄i j and δ̄ j as follows:

c̄i j = ci j +β j (5.69)

δ̄ j =

 δ j j ∈V+0
δ j−a j j ∈V0+
δ j−ρ j j ∈V++

(5.70)

The reduced cost of variable uk
r1 in Equation (5.68) can be rewritten as:

∑
(i, j)∈r

c̄i j−∑
i∈r

yk
irδ̄i (5.71)

Following the same calculations for a new pattern of a (new) route in period 2 leads
to the same formula as Equation (5.71), where δ̄ j is determined by:

δ̄ j =

 δ j− pi j ∈V+0
δ j j ∈V0+
δ j−η j j ∈V++

(5.72)

In order to find a new extreme delivery pattern k for a (new) route with the lowest
reduced cost in period t, we need to solve the following problem:
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min ∑
(i, j)∈r

c̄i j−∑
i∈r

yk
irδ̄i

subject to

(5.73)

∑
i∈r

yk
ir ≤ Q (5.74)

0≤ yk
ir ≤ di; ∀i ∈ r (5.75)

r : is elementary and respects time windows (5.76)

5.4.4 The label-setting algorithm
As in Desaulniers [2010], a label-setting algorithm can be used to solve problem (5.73)-
(5.76). For each path, we define a label Li whose components in the expanded form
are (Lcost

i ,Ltime
i ,Lload

i ,(Lk
i )k∈V ,L

partial
i ,Lmax

i ,Ldual
i ), where each component is defined

as follows:

• Lcost
i : The value of the objective function (5.73), where the store with a partial de-

livery is neglected in the second term, i.e., Lcost
i =∑(i, j)∈r c̄i j−∑i∈r|yk

ir∈{0,di} yk
irδ̄i.

There is no resource constraint on the cost component.

• Ltime
i : The time when store i is visited and the service starts at this store. It must

respect the time window for store i, i.e., ei ≤ Ltime
i ≤ li.

• Lload
i : The load on the vehicle, where the partial delivery is neglected, i.e.,

Lload
i = ∑i∈r|yk

ir∈{0,di} yk
ir.

• Lk
i : The number of times store k is visited by the path corresponding to label Li.

For an elementary path, each store can be visited at most once, i.e., 0 ≤ Lk
i ≤ 1

for all k ∈V .

• Lpartial
i : The number of partial deliveries in the path. Lpartial

i ∈ {0,1} is the
resource constraint on it.

• Lmax
i : It is equal to zero if Lpartial

i = 0. Otherwise, it shows the maximum quantity
that can be delivered to the store with a partial delivery in the path. There is no
resource constraint on it.

• Ldual
i : It is equal to zero if Lpartial

i = 0. Otherwise, it gives the modified unit dual
price of the store with a partial delivery, i.e., δ̄i′ where i′ is the index of the store
with a partial delivery. There is no resource constraint on it.

The reduced cost of a path with label Li ending at store i is a linear function of
the total quantity, say q, delivered to all stores visited by the path (including the store
with a partial delivery), and can be written as: Z(q) = Lcost

i − (q−Lload
i )Ldual

i , where
q ∈ [Lload

i ,Lload
i + Lmax

i ]. In this sense, when Ldual
i ≥ 0, the best value for a partial

delivery resulting in the lowest reduced cost is Lmax
i which leads to Z(Lload

i +Lmax
i ) =

Lcost
i −Lmax

i Ldual
i . When Ldual

i < 0, the best value for the partial delivery is zero which
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leads to the lowest reduced cost as Z(Lload
i + 0) = Lcost

i . However, when store i′ is
considered to be delivered partially in a path, we only let delivering the maximum
possible quantity to i′ because a zero delivery to it is performed in other labels.

Given a feasible label Li ending at store i associated with an extreme delivery pat-
tern, the label can be extended to store j up to three times along arc (i, j); one for a
zero delivery to store j, one for a partial delivery dk

jt < d j, and one for a full delivery
d j. These three cases are discussed hereunder.

Case 1 (Zero delivery): If Ltime
i + si + ti j ≤ l j and L j

i = 0, then a zero delivery can
occur at j to create a new label L jZ . Components of the extended label are calculated
as follows:

Lcost
jZ = Lcost

i + c̄i j,
Lload

jZ = Lload
i ,

Ltime
jZ = max{Ltime

i + si + ti j,e j},

Lk
jZ =

{
Lk

i +1 if k = j
Lk

i otherwise,
Lpartial

jZ = Lpartial
i ,

Lmax
jZ = Lmax

i ,
Ldual

jZ = Ldual
i .

Case 2 (Partial delivery): If Ltime
i + si + ti j ≤ l j, L j

i = 0, and Lpartial
i = 0, then a partial

delivery can occur at j to create a new label L jP. In the extended label, components are
calculated as follows:

Lcost
jP = Lcost

i + c̄i j,
Lload

jP = Lload
i ,

Ltime
jP = max{Ltime

i + si + ti j,e j},

Lk
jP =

{
Lk

i +1 if k = j
Lk

i otherwise,
Lpartial

jP = Lpartial
i +1,

Lmax
jP = min{d j,Q−Lload

i },
Ldual

jP = δ̄ j.

Case 3 (Full delivery): If Ltime
i + si + ti j ≤ l j, L j

i = 0, and Lload
i + d j ≤ Q, then a full

delivery can occur at j to create a new label L jF . In the extended label, components are
computed as follows:

Lcost
jF = Lcost

i + c̄i j−d jδ̄ j,
Lload

jF = Lload
i +d j,

Ltime
jF = max{Ltime

i + si + ti j,e j},

Lk
jF =

{
Lk

i +1 if k = j
Lk

i otherwise,
Lpartial

jF = Lpartial
i ,

Lmax
jF = min{Lmax

i ,Q−Lload
i −d j},

Ldual
jF = Ldual

i .

A domination rule is applied based on the following proposition.
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Proposition 8. Given two labels (L j)1 and (L j)2 ending at the same vertex j, (L j)1
dominates (L j)2 if all the following criteria hold, where (x)+ = max{0,x}.

1. Lload
j1 ≤ Lload

j2 ,

2. Ltime
j1 ≤ Ltime

j2 ,

3. Lk
j1 ≤ Lk

j2 ∀k ∈V,

4. Lpartial
j1 ≤ Lpartial

j2 ,

5. Lcost
j1 −Lmax

j1 · (Ldual
j1 )+ ≤ Lcost

j2 −Lmax
j2 · (Ldual

j2 )+,

6. Lcost
j1 − (Lload

j2 −Lload
j1 ) · (Ldual

j1 )+ ≤ Lcost
j2 ,

7. Lcost
j1 − (Lload

j2 −Lload
j1 +Lmax

j2 ) · (Ldual
j1 )+ ≤ Lcost

j2 −Lmax
j2 · (Ldual

j2 )+.

Proof. Given two labels (L j)1 and (L j)2 ending at the same vertex j, (L j)1 dominates
(L j)2 if two conditions are held: (1) all feasible extensions of (L j)2 are also feasible
for (L j)1 and (2) the reduced cost of every feasible path extended from (L j)2 to an
arbitrary vertex is greater than or equal to that of a feasible path extended from (L j)1
to the same vertex.

The first condition translates into criteria 1-4. In order to analyze the second con-
dition, assume that labels L j1 and L j2 ending at the same vertex j are given and criteria
1-4 are satisfied. Assume that we extend both labels to a new vertex k. Based on the
definition of an extreme delivery pattern, the delivery quantity to store k can be zero,
partial (given that Lpartial

j1 = Lpartial
j2 = 0), or full. (L j)1 dominates (L j)2 if for any type

of delivery to the arbitrary store k the cost of a new label extending from (L j)1 to k is
less than or equal to the cost of a new label extending from (L j)2 to k given that the
delivery quantity to k is zero, partial, or full for both the extended labels. Here, we
analyze these three cases.

Proof of Case 1 (zero delivery to k): The best cost of the extended labels from (L j)1
and (L j)2 to k are compared based on Inequality (5.77), where (Lk)1 and (Lk)2 are the
new extended labels.

min
q∈[Lload

k1 ,Lload
k1 +Lmax

k1 ]
Lcost

k1 − (q−Lload
k1 ) ·Ldual

k1 ≤

min
q∈[Lload

k2 ,Lload
k2 +Lmax

k2 ]
Lcost

k2 − (q−Lload
k2 ) ·Ldual

k2

(5.77)

Since the delivery quantity is zero, we can plug in the values of (Lk)1 and (Lk)2
based on Case 1 of the label-setting algorithm, and we obtain Inequality (5.78).

min
q∈[Lload

j1 ,Lload
j1 +Lmax

j1 ]
Lcost

j1 + c̄ jk− (q−Lload
j1 ) ·Ldual

j1 ≤

min
q∈[Lload

j2 ,Lload
j2 +Lmax

j2 ]
Lcost

j2 + c̄ jk− (q−Lload
j2 ) ·Ldual

j2

(5.78)

The minimization problems on two sides of Inequality (5.78) can conveniently be
solved. Plugging in the best value of q, we obtain the following condition which is
exactly criterion 5 in Proposition 8.
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Lcost
j1 −Lmax

j1 · (Ldual
j1 )+ ≤ Lcost

j2 −Lmax
j2 · (Ldual

j2 )+ (5.79)

Proof of Case 2 (partial delivery to k): When store k receives a partial delivery, the
elements of labels (Lk)1 and (Lk)2 can be replaced in Inequality (5.77) by the values
defined in Case 2 of the label-setting algorithm. This results in the following inequality.

min
q∈[Lload

j1 ,Lload
j1 +min{dk,Q−Lload

j1 }]
Lcost

j1 + c̄ jk− (q−Lload
j1 ) · δ̄k ≤

min
q∈[Lload

j2 ,Lload
j2 +min{dk,Q−Lload

j2 }]
Lcost

j2 + c̄ jk− (q−Lload
j2 ) · δ̄k

(5.80)

The optimal values of the minimization problems in Inequality (5.80) are easily
determined and the inequality to be established is simplified as follows:

Lcost
j1 −min{dk,Q−Lload

j1 } · (δ̄k)
+ ≤ Lcost

j2 −min{dk,Q−Lload
j2 } · (δ̄k)

+ (5.81)

Now, from Lload
j1 ≤ Lload

j2 (criterion 1), it trivially follows that

min{dk,Q−Lload
j1 } ≥min{dk,Q−Lload

j2 }. (5.82)

Moreover, note that extensions with partial deliveries to k are possible only if
Lpartial

j1 = Lpartial
j2 = 0, which implies Ldual

j1 = Ldual
j2 = 0. Then, criterion 5 implies that

Lcost
j1 ≤ Lcost

j2 . From this inequality and from (5.82), we get (5.81), as required.

Proof of Case 3 (full delivery to k): When store k receives a full delivery, the elements
of labels (Lk)1 and (Lk)2 based on Case 3 of the label-setting algorithm should be
plugged in Inequality (5.77). This results in the following inequality:

min
q∈[Lload

j1 +dk,Lload
j1 +dk+min{Lmax

j1 ,Q−Lload
j1 −dk}]

Lcost
j1 + c̄ jk−dk · δ̄k− (q−Lload

j1 −dk) ·Ldual
j1 ≤

min
q∈[Lload

j2 +dk,Lload
j2 +dk+min{Lmax

j2 ,Q−Lload
j2 −dk}]

Lcost
j2 + c̄ jk−dk · δ̄k− (q−Lload

j2 −dk) ·Ldual
j2

(5.83)

The optimal values of the minimization problems in Inequality (5.83) are conve-
niently calculated and the inequality is simplified as follows:

Lcost
j1 −min{Lmax

j1 ,Q−Lload
j1 −dk} · (Ldual

j1 )+ ≤

Lcost
j2 −min{Lmax

j2 ,Q−Lload
j2 −dk} · (Ldual

j2 )+
(5.84)

Let us now consider three distinct subcases.

Subcase 3-1: Lmax
j1 ≤ Q−Lload

j1 −dk. In this case, Inequality (5.84) simplifies to

Lcost
j1 −Lmax

j1 · (Ldual
j1 )+ ≤ Lcost

j2 −min{Lmax
j2 ,Q−Lload

j2 −dk} · (Ldual
j2 )+. (5.85)

By criterion 5 of Proposition 8, we straightforwardly draw Inequality (5.85) as
follows:

Lcost
j1 −Lmax

j1 · (Ldual
j1 )+ ≤

Lcost
j2 −Lmax

j2 · (Ldual
j2 )+ ≤

Lcost
j2 −min{Lmax

j2 ,Q−Lload
j2 −dk} · (Ldual

j2 )+

(5.86)
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Subcase 3-2: Lmax
j1 ≥ Q−Lload

j1 − dk and Lmax
j2 ≤ Q−Lload

j2 − dk. In this case, Inequal-
ity (5.84) can be rewritten as

Lcost
j1 − (Q−Lload

j1 −dk) · (Ldual
j1 )+ ≤ Lcost

j2 −Lmax
j2 · (Ldual

j2 )+. (5.87)

The subcase implies that

Lload
j2 −Lload

j1 +Lmax
j2 ≤ Q−dk−Lload

j1 .

By this inequality and criterion 7 of Proposition 8, we obtain exactly the required
Inequality (5.87) as

Lcost
j1 − (Q−dk−Lload

j1 ) · (Ldual
j1 )+ ≤

Lcost
j1 − (Lload

j2 −Lload
j1 +Lmax

j2 ) · (Ldual
j1 )+ ≤

Lcost
j2 −Lmax

j2 · (Ldual
j2 )+

(5.88)

Subcase 3-3: Lmax
j1 ≥Q−Lload

j1 −dk and Lmax
j2 ≥Q−Lload

j2 −dk. Then, the inequality to
be established based on Inequality (5.84) becomes

Lcost
j1 − (Q−Lload

j1 −dk) · (Ldual
j1 )+ ≤ Lcost

j2 − (Q−Lload
j2 −dk) · (Ldual

j2 )+. (5.89)

Consider criterion 7 in the statement of Proposition 8, and rewrite it in the form

Lcost
j1 − (Lload

j2 −Lload
j1 ) · (Ldual

j1 )+ ≤ Lcost
j2 +Lmax

j2 · ((Ldual
j1 )+− (Ldual

j2 )+).

Together with criterion 6 of Proposition 8, this inequality implies that the follow-
ing inequality holds for all values of q in the interval [0,Lmax

j2 ] (because it holds at its
endpoints):

Lcost
j1 − (Lload

j2 −Lload
j1 ) · (Ldual

j1 )+ ≤ Lcost
j2 +q · ((Ldual

j1 )+− (Ldual
j2 )+).

Consider now the inequality when q = Q−Lload
j2 −dk, which is in [0,Lmax

j2 ] by hy-
pothesis. It becomes

Lcost
j1 − (Lload

j2 −Lload
j1 ) · (Ldual

j1 )+ ≤ Lcost
j2 +(Q−Lload

j2 −dk) · ((Ldual
j1 )+− (Ldual

j2 )+),

which is equivalent to (5.89) after some simplifications. This concludes the proof.

5.5 Computational experiments
Future work will be required to assess the computational performance of the approaches
described in this chapter. Numerical results can be compared with a similar model in
which only full delivery shifts are allowed.

5.6 Conclusions
We have presented two MILP formulations of a two-period VRP with partial delivery
shifts, where a linear penalty is incurred proportional to the quantity shifted. We have
developed a column-row generation algorithm to solve the LP-relaxation of the first
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formulation. Columns correspond to decision variables on routes and delivery quanti-
ties, whereas new rows are generated to guarantee that the vehicle capacity is respected
in the new routes. We have also developed a column generation algorithm to solve the
LP-relaxation of the second formulation, where only columns with extreme delivery
patterns are introduced to the master problem. All other feasible delivery patterns are
obtained as a convex combination of the extreme delivery patterns in the master prob-
lem. While the two MILP formulations are equivalent, their LP-relaxations are not.
By using a small example, we have shown that the LP-relaxation of the second MILP
is tighter than the first one. However, without computational experiments it is hard to
say which of the two MILP formulations can be solved more efficiently in terms of the
computation time. On the one hand, the column-row generation algorithm developed to
solve the LP-relaxation of the first MILP adds a new constraint to the master problem
for each new route, whereas the column generation algorithm developed to solve the
LP-relaxation of the second MILP does not. On the other hand, the label-setting algo-
rithm developed to solve the pricing problem of the column-row generation algorithm
appears to create much less labels as compared to the one in the column generation.
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Chapter 6

Conclusions and future studies

The topic examined in this thesis has been the IRP for perishables, which is a common
decision making problem in inventory control and distribution of fresh products in food
retail chains. The main decisions are: (a) how often each store should be served, (b)
how much should be delivered to each store, and (c) how the stores should be incorpo-
rated into delivery routes. While retail managers are facing the same problem on daily
basis, they do not follow a unique replenishment and distribution policy. This research
has postulated three problems to deal with a simplified version of the real problem by
emphasizing on the synchronization between replenishment and distribution decisions.

Chapter 2 has discussed several relevant topics to this thesis, namely, the VRP,
MPVRP, PVRP, and IRP. Moreover, we have reviewed inventory control of perishables
in RMI and VMI systems. We have stated the underlying assumptions, the main pa-
rameters, the decision variables, and the objective function for each problem type.

In Chapter 3, an SIRP for a single perishable product has been investigated. Profit
maximization is the main objective in this problem, while a high customer service
level is imposed as a side constraint and freshness is regarded as a consequence of
optimizing the profit. We have developed and compared variant solution methods to
solve the SIRP for perishables, and we have analyzed the results. We have shown
that by considering uncertainty and combining inventory with routing decisions for
perishable products, retail chains can observe a significant increase in their net profit.
We have also shown how such benefit can be gained and quantified. Moreover, we
have measured the value of considering uncertainty and the value of accessing full
information on future demands. Our numerical results show that a simple deliver up-to-
level policy performs almost as efficiently as other more complicated methods when the
target service level is high. In the most sophisticated and yet efficient solution method
developed for the SIRP, i.e., the decomposition-integration (DI) method, we come to an
optimization problem for which a Matheuristic algorithm has been proposed. However,
the optimization problem can also be solved to optimality given some assumptions.
Chapters 4 and 5 discuss such assumptions and the exact solution methods.

In Chapter 4, we have introduced a two-period VRP where orders of each period
can be shifted to the other period and change in quantity. Full delivery shifts, as com-
pared to partial delivery shifts, is the underlying assumption to solve the two-period
VRP. Although this problem is emanated from the DI solution method to solve the
SIRP, we bring it up as an independent problem. An efficient branch-and-price al-
gorithm based on classical and new problem-specific acceleration techniques has been
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implemented to solve this model. Even though the two-period VRP turns out to be con-
siderably harder than the classical VRP, our algorithm yields provably good solutions
for many instances of the problem in a reasonable time. The experiments demonstrate
that, compared to solving two independent VRPs, the routing costs and the number
of vehicles can decrease significantly when orders are allowed to be shifted. This im-
plies that there is potential value in handling the two-period VRP model, as opposed
to solving two independent VRP models. The results also suggest that, if one wants to
avoid the computational burden of solving large two-period VRPs to optimality, iden-
tifying unpromising shifts may reduce the size of the instances to be solved while still
producing economies in transportation costs.

In Chapter 5, the same two-period VRP is considered where the orders placed by
stores for each period can be partially shifted to the other period, given that the sum of
the delivery quantities in two periods to each customer is a fix value. The shifts are at
the cost of a penalty linearly proportional to the quantity shifted. We have represented
two MILP formulations for the problem. Moreover, we have demonstrated that these
two formulations are equivalent. A column-row generation algorithm to solve the LP-
relaxation of the first formulation has been developed. For the second formulation, we
have developed a column generation algorithm to solve it. Details of two label-setting
algorithms have been discussed; a label-setting algorithm to solve the pricing problem
raised in the column-row generation algorithm and another to solve the pricing problem
of the column generation algorithm. Numerical results can be compared with the model
with full delivery shifts.

Each of the three aforementioned problems is imposing some simplification as-
sumptions on the real IRP for perishables in food retail chains. The biggest obstacle of
implementing the first model in practice is that it considers a single product, whereas
fresh products are carried together in refrigerated vehicles. Therefore, extending the
models and adapting the solution methods to include multiple perishable products is
the most promising future research direction. However, this is not a barrier for the two-
period VRPs with full or partial delivery shifts; the models and the solution methods
are conveniently extendable to include multiple products. Another real assumption to
be considered is to let multiple routes for each vehicle, and multiple visits to each store
in each period, which can be regarded as another future research to approach the real
problem.

Applying different policies for the selling price in the SIRP for perishables in Chap-
ter 3 sounds an appealing extension of the work. Considering a and p as acquisition
and selling price of each unit of a perishable product with maximum shelf life of L, we
have tested two discounting policies; (1) a linearly decreasing selling price from s to a
during the shelf life and (2) selling price of s during the first L−1 periods and a in the
last period of shelf life. Imposing either of these policies leads to every day visits to all
stores as the best delivery frequency. This is due to the fact that in food retail chains,
transportation cost is less than 7% of the revenue, compared to acquisition cost which
is almost 60% of the revenue. However, considering lower discounts may result in less
frequent deliveries, and this can be examined in future studies.
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