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Annexe 1 

Effect of HDAC Inhibition in a Human Pancreas Cancer Model Is Significantly 

Improved by the Simultaneous Inhibition of Cyclooxygenase 2. 
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Abstract

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to
date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase
(HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and
COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or
CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential
antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic
membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The
combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely
the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either
drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the
NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant
action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective
new combinatory therapies for pancreatic ductal adenocarcinoma patients.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) lists among the most

deadly form of cancers [1]. Early-stage of the disease is clinically

silent and the diagnosis of the disease is mostly made at an

advanced stage. This late diagnosis contributes to one of the lowest

5-year survival rate (only 3%) [2]. Today PDAC are treated by

surgery and/or adjuvant therapy with gemcitabine, increasing

only slightly the median survival of the patients. There is therefore

an urgent need to develop new effective therapies for PDAC

patients.

There are abundant evidence indicating that deregulation of

histone acetylation contributes to pancreas cancer development

and progression [3]. Histone deacetylases (HDAC) represent a

family of enzymes that regulate paramount cellular activities

including epigenetic silencing of tumor suppressor genes and

modulation of protein functions. We and others have shown that

HDAC inhibition exerts both anti-cancer and anti-angiogenesis

activities [4–6]. HDAC expression is altered in PDAC, including

HDAC1, HDAC2, HDAC3 and HDAC7 [7–10]. Preclinical

studies have suggested that HDAC inhibition hold significant

potential for the development of new anticancer therapies [11].

Accordingly, several HDAC inhibitors have been recently

approved by the Food and Drug Administration for the treatment

of Cutaneous T-Cell Lymphoma while new molecules are

currently in phase III clinical trials. However, when used in

monotherapy, HDAC inhibitors showed limited efficacy in various

solid malignancies, including PDAC [3,12,13]. Indeed, LAQ824

or MS-275 have been evaluated in phase I clinical trials in solid

cancers, including PDAC, without any objective clinical response

[14,15]. Alternatively, HDAC inhibitors have been used in

combined therapy strategies [16,17], with some combinations

generating promising effects for human PDAC in vitro [18–21] or

in experimental tumors [22]. Unfortunately, these results do not

translate in clinical trials [23,24].

The lack of efficacy of HDAC inhibitors in pancreatic cancer

could be linked to the pleiotropic activities of HDACs in cell

biology [25,26] leading to undesired pro-cancer effects. For

example, a recent study demonstrated that pan-HDAC inhibitors

induce cyclooxygenase-2 (COX-2) expression in lung cancer cells,

leading to a stimulation of endothelial cell proliferation [27]. Since
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COX-2 has been also associated to pancreatic cancer cell

proliferation [28] or tumor growth [29–31], we hypothesized that

COX-2 overexpression may also be induced in PDAC when

treated with HDAC inhibitors, leading to reduced efficiency and

hence therapeutic failure.

To test the biological relevance of combining class I HDAC and

COX-2 inhibitors in vivo, we devised a refined PDAC chick

chorioallantoic membrane (CAM) model based on our previous

work [32]. The CAM model has been successfully used with

several cell lines to produce tumors [33,34]. Similarly to the

murine model, most steps of tumor progression are recapitulated

in a very short period of time [35]. Previously, BxPC-3 pancreatic

cancer cells were already demonstrated to produce vascularized

100 mm long tumor nodes on CAM [32]. However, the small size

of the nodules represented a significant limitation for structural

observation, accurate volume evaluation and study of drug

efficacy. Here, we have established and implemented a refined

BxPC-3 PDAC model featuring a dramatic increase (64-fold) in

tumor size and displaying structural architecture and protein

expression mimicking human PDAC. This model was successfully

exploited to demonstrate that the combination of class I HDAC

and COX-2 inhibitors result in a complete tumor growth

inhibition.

Materials and Methods

Cells and chemicals
BxPC-3 (ATCC CRL-1687), PANC-1 (ATCC CRL-1469) and

CFPAC-1 (ATCC CRL-1918) are human pancreatic cancer cell

lines derived respectively from PDAC [36], pancreas duct

epithelioid carcinoma [37] and PDAC liver metastasis [38].

BxPC-3 were a generous gift from Prof. Bikfalvi (Inserm u1029,

Bordeaux, France), Panc-1 were a generous gift from Prof. Muller

and Burtea (NMR Laboratory, University of Mons, Belgium).

CFPAC-1 were bought from ATCC. Celecoxib was obtained from

the University Pharmacy (Kemprotec Ltd, Middlesbrough, UK).

MS-275 and SAHA were purchased from Enzo Life Sciences

(Antwerpen, Belgium). Other chemicals were purchased from

Sigma (Bornem, Belgium).

Cell culture
BxPC-3 human pancreatic cancer cell line were maintained in

RPMI1640 medium supplemented with glucose (2.5 g/L), sodium

pyruvate (1 mM) and FBS (10%). PANC-1 were maintained in

DMEM supplemented with FBS (10%). CFPAC-1 were main-

tained in Iscove’s Modified Dulbecco’s Medium with FBS (10%).

Cells were treated with MS-275, celecoxib or combination of both

as well as with suberoylanilide hydroxamic acid (SAHA) solubi-

lized in medium with 0.1% DMSO.

Small interfering RNA transfection
HDAC-specific small interfering RNA (siRNA) were synthe-

sized by Eurogentec (Seraing, Belgium). NF-kB p65 SMARTpool

siRNA were bought from Thermo Fisher-Dharmacon (Whaltham,

MA). Lipofectamine-mediated transfections were performed at a

siRNA concentration of 40 nM following manufacturer’s recom-

mendations (Life Technologies, Carlsbad, NM). GL3 was an

irrelevant siRNA targeting luciferase. siRNA sequences were

published previously [5].

Cell growth
Equal densities of cells were seeded in complete medium and

were harvested at the indicated time-points. The cell numbers

were indirectly determined using Hoechst incorporation. Results

were expressed as DNA content.

Western-blotting
BxPC-3 cells or frozen tumors were disrupted in lysis buffer (1%

SDS, 40 mM Tris-HCl pH7.5) in the presence of protease and

phosphatase inhibitors. Proteins were separated by SDS-PAGE

(6–12.5%) then electrotransfered on nitrocellulose membranes.

Following primary antibodies were used: anti-COX-2 (Cayman

Chemicals, Ann Arbor, MI), anti-HDAC1 (Cell Signalling,

Danvers, MA), anti-HDAC2 (Santa Cruz Biotechnology, Santa

Cruz, CA), anti-HDAC3 (Cell Signalling, Danvers, MA), anti-

acetylated-Histone-3 (Millipore, Billerica, MA), anti-HDAC7

(Santa Cruz Biotechnology, Santa Cruz, CA), anti-phospho-IkBa
(Cell Signalling, Danvers, MA), anti-p65 (Cell signaling, Danvers,

MA), anti-p21 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-

p27 (BD Biosciences, Franklin Lakes, NJ), anti-pRB (BD

Biosciences, Franklin Lakes, NJ), anti-E2F1 (Santa Cruz Biotech-

nology, Santa Cruz, CA), anti-MEK2 (Cell signaling, Danvers,

MA), anti-ORC2 (Cell signaling, Danvers, MA), anti-caspase-3

(Cell Signalling, Danvers, MA) and anti-HSC70 (Santa Cruz

Biotechnology, Santa Cruz, CA). Immunodetection was per-

formed using appropriate secondary antibody conjugated with

horseradish peroxidase.

Quantitative real-time RT-PCR
Total RNA extraction and quantitative real-time RT-PCR were

performed as previously described [39]. Human COX-2 expres-

sion was detected using a commercial RT-qPCR TaqMan assay

(Hs00153133-m1; Applied Biosystems, Carlsbad, NM). Human

IL-8 expression was detected using specific forward (59-GAAG-

GAACCATCTCACTGTGTGTAA-39) and reverse (59-ATCAG-

GAAGGCTGCCAAGAG-39) primers synthesized by Eurogentec

(Seraing, Belgium).

Annexin V/propidium iodide staining
Apoptotic cells were determined by annexin V-FITC and non-

vital dye propidium iodide (PI) staining with a FITC-Annexin V

apoptosis detection kit I (BD Biosciences, Franklin Lakes, NJ)

according to the manufacturer’s instructions. Flow cytometry was

performed on a FACSCalibur IITM and samples were analyzed

using CellQuestTM software (BD Biosciences, Franklin Lakes, NJ).

Cell cycle analysis
The relative percentage of cells in each stage of the cell cycle

was analyzed as previously described [33] by flow cytometric

analysis with FACSCalibur IITM and ModFit LTTMprogram.

Tumor growth on CAM
Fertilized chicken eggs were opened as previously described

[32]. On post-fertilization day 11, CAM surface was gently

scratched with a needle and 3.56106 BxPC-3, PANC-1 or

CFPAC-1 cells in suspension with 50% matrigel in a final volume

of 100 mL were grafted on the CAM enclosed by a 6-mm plastic

ring. The implantation day was considered as day 0 of tumor

development. Drugs (celecoxib 8 mM and/or MS-275 0.2 mM in a

30 ml final volume) were applied daily directly on tumor starting at

day 2. At day 7, the tumors were excised from the CAM and

digital pictures were taken using a stereomicroscope. Tumor

volume was calculated using an ellipsoid formula: Volu-

me = (46pxZ16Z26Z3)/3 where Z123 are the main radius of

the tumor.

HDAC/COX-2 Coinhibition in a Pancreas Cancer Model
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Ethics statement
All animal experiments were approved by the Animal Welfare

Committee of the University of Liège (approval #1278).

Histology procedure
BxPC-3 tumors were washed in PBS and then fixed in 4%

paraformaldehyde for 30min at 4uC. The tumors were embedded

in paraffin and 5 mm sections were stained with Hematoxylin-

eosin or Masson’s trichrome.

Immunoperoxydase and amylase-periodic acid Schiff (PAS)

staining were performed on 5 mm sections, respectively, with the

BenchMark XT IHC/ISH automated stainer and the NexES

Special Stains (Ventana Medical Systems Inc, Tucson, AZ)

according to the manufacturer’s instructions. Following antibodies

were used: anti-cytokeratin 7 (CK7 - Dako, Glostrup, Denmark),

anti-cytokeratin 19 (CK19 - Roche Diagnostics, Vilvoorde,

Belgium), anti-cytokeratin 20 (CK20 - Dako, Glostrup, Denmark),

anti-CD56 (Novocastra, Leica Microsystem Inc, Buffalo Grove,

IL), anti-carcinoembryonic antigen (CEA - Roche Diagnostics,

Vilvoorde, Belgium), anti-Ki67 (Dako, Glostrup, Denmark), anti-

latent transforming growth factor-beta binding protein 2 (LTBP2

– Santa Cruz Biotchnology, Santa Cruz, CA), anti-transforming

growth factor beta-induced (TGFBI - Cell Signalling, Danvers,

MA), anti-myoferlin (Sigma, Bornem, Belgium) and anti-desmin

(Dako, Glostrup, Denmark) were used for the primary reaction.

Ki67 quantification was performed on randomly taken pictures

(3 pictures from each tumor, 3 tumors in each experimental

group). After channel splitting, blue channel pictures were

binarized according to the brightness. The size of the area

occupied by all cells or by Ki67-positive cells was measured using

imageJ 1.46r software.

In order to visualize the tumor vasculature, thick rehydrated

tissue sections (35 mm) were incubated for 30min in the dark with

0.05% Triton X-100 in PBS containing 5 mg/mL Sambucus nigra

agglutinin (SNA, Vector Laboratories, Burlingame, CA). The

sections were washed with 0.05% Triton X-100 in PBS and

visualized with confocal microscope (Leica SP2). Three-dimen-

sional images were reconstructed with Imaris software (Bitplane

Scientific Software, Zurich, Switzerland).

Statistical analysis
All results were reported as means with standard deviation.

Statistical analysis was performed using one-way or two-way

ANOVA depending on the number of grouping factors. Group

Figure 1. Effect of HDAC silencing or inhibition on BxPC-3 cell proliferation. (A) Time-dependent and dose-dependent effects of SAHA on
cell proliferation. (B) Time-dependent effect of class IIa HDAC7 silencing on cell proliferation. HDAC7 expression was detected by western-blot 48h
after siRNA transfection. HSC70 was used as a loading control. (C) Time-dependent effect of class I HDAC1 or –3 silencing on cell proliferation.. HDAC1
and HDAC3 expression was detected by western-blot 48h after siRNA transfection. HSC70 was used as a loading control. (D) Time-dependent and
dose-dependent effects of MS-275 on cell proliferation ***P,.001 versus DMSO or GL3 conditions. Results are expressed as mean 6 s.d., n$3 in each
condition.
doi:10.1371/journal.pone.0075102.g001
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means were compared by a Bonferroni’s post-test. P,.05 was

considered as statistically significant. All experiments were

performed as 3 independent biological replicates.

Results

Class I HDAC inhibition reduced pancreas cancer cell
growth in vitro

BxPC-3 cells have been described to express altered levels of

class I HDAC1, HDAC3 and class II HDAC7 [40,41]. To

evaluate the role of these HDAC in BxPC-3 cells, we first

examined their time-dependent and concentration-dependent

growth in presence of SAHA, a class I/II inhibitor (Figure 1A).

Our results confirmed that BxPC-3 cells were sensitive to SAHA,

with a 50% growth reduction (P,.001) observed at 5 mM. Next,

we selectively silenced HDAC1, –3 or –7 using siRNA to examine

the individual involvement of these HDAC in the SAHA-induced

growth reduction. HDAC7 silencing did not affect cell growth

(Figure 1B). However, HDAC1 and HDAC3 silencing reduced

significantly BxPC-3 cell growth by respectively 50% (P,.001) and

20% (P,.001) (Figure 1C). In order to evaluate this decrease in

cell growth with clinically compatible drug, we evaluated the time-

dependent and concentration-dependent growth of BxPC-3 cells

in presence of MS-275 (HDAC1 and HDAC3 inhibitor). MS-275

(1 mM) reduced BxPC-3 cell growth by 50% (P,.001) whereas

5 mM abolished completely the growth (P,.001) (Figure 1D).

Class I HDAC inhibition induced COX-2 expression in
vitro

The limited efficiency of HDAC inhibitors in clinical trials

including PDAC patients could be explained, at least in part, by

the potential up regulation of the expression of COX-2 in

pancreatic malignant cells. To evaluate this hypothesis, we first

analyzed COX-2 expression in BxPC-3 cells silenced for HDAC1,

HDAC2, HDAC3 or treated with MS-275. HDAC1 or HDAC3

repression induced respectively a 6.3-fold and a 4.8-fold increase

of COX-2 expression at protein level (Figure 2A) while HDAC2

silencing reduced COX-2 expression (Figure 2B). HDAC1

silencing induced an HDAC2 overexpression.

Figure 2. Effect of HDAC silencing or inhibition on COX-2 expression in BxPC-3 cells. (A) Western-blot detection of COX-2 and HDAC in
20 mg BxPC-3 proteins 48h after HDAC1 or HDAC3 siRNA transfection. (B) Western-blot detection of COX-2 and HDAC in 20 mg BxPC-3 proteins 48h
after HDAC2 siRNA transfection. (C) Dose-dependent effects of 48h MS-275 treatment on COX-2 expression. Acetylated-histone H3 was used as a
control of treatment efficacy. HSC70 was used as a loading control. (D) Time-dependent relative expression of COX-2 mRNA in BxPC-3 cells treated
with 1 mM MS-275. Results are expressed as mean 6 s.d., n = 3.
doi:10.1371/journal.pone.0075102.g002
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Treatment of BxPC-3 cells with MS-275 showed similar effects

on COX-2 accumulation in a concentration-depend manner

(Figure 2C). To determine whether COX-2 induction occurs at

transcriptional level, we analyzed COX-2 mRNA level by RT-

qPCR following 6, 12, and 24h of MS-275 treatment. We found

that COX-2 gene expression was up-regulated following the MS-

275 treatment in a time-dependent manner (Figure 2D).

To study the mechanisms by which class I HDAC inhibition

induces COX-2, we explored the known link between NF-kB and

HDAC1/3 [42,43] and tested the possibility that MS-275-induced

COX-2 expression could be NF-kB dependent. Accordingly, we

co-treated cells with MS-275 and BAY-11-7082, an IkBa kinase

(IKK) inhibitor. BAY-11-7082 reduced by 30% to 90% the COX-

2 expression following respectively 6h to 48h of MS-275 treatment

(Figure 3A), suggesting the MS-275-induced expression of COX-2

is, at least in part, NF-kB dependent. This hypothesis was

supported by p65-silencing and p65 translocation to the nucleus.

COX-2 expression was induced by a 24h treatment with MS-275

and was prevented by p65 siRNA (Figure 3B). Moreover, 24h MS-

275 treatment induced an increase by 50% of the p65 protein level

in the cytoplasm and in the chromatin fraction of BxPC-3 cells

(Figure 3C). The same MS-275 treatment induced the gene

expression of IL-8 (Figure 3D), a direct target of NF-kB.

Combined inhibition of class I HDAC and COX-2 inhibits
cell growth in vitro

In order to validate our hypothesis that class I HDAC inhibition

mediated induction of COX-2 might contribute to the low

efficiency of HDAC based therapy in PDAC patients, we have

combined the latter with celecoxib, a selective COX-2 inhibitor at

IC50 (respectively 1 mM of MS-275 and 10 mM of celecoxib). The

MS-275-induced COX-2 overexpression led to a 50% increase of

PGE2 concentration in the culture media (Figure 4A). BxPC-3 cell

treatment with celecoxib alone or in combination with MS-275

reduced significantly the PGE2 concentration in the cell media.

We then analyzed the impact of these treatments on the cell

growth. The combination of the two drugs reduced significantly

(.85%, P,.001) the BxPC-3 cell growth in comparison with using

either drug alone (Figure 4B). We next asked the question whether

this reduction is due to induction of apoptosis and performed an

annexin V/propidium iodide staining at 24, 48 and 72h (Figure

4C) following the treatment. None of the individual drugs nor their

combination were able to induce apoptosis. These results were

Figure 3. Effect of HDAC inhibition on NF-kB activation in BxPC-3 cells. (A) Effect of an IKK inhibitor (10 mM BAY-11-7082) on 1 mM MS-275-
induced COX-2 expression. Phospho-IkBa was used as a control of BAY-11-7082 treatment efficacy. HSC70 was used as a loading control.
Densitometry was expressed as a COX-2/HSC70 or IkBa/HSC70 ratio. (B) Western-blot detection of COX-2 in 20 mg BxPC-3 proteins after 1 mM MS-275
treatment and p65 siRNA transfection. HSC70 was used as a loading control. (C) Western-blot detection of p65 in 15 mg BxPC-3 cytoplasm,
nucleoplasm or chromatin-associated proteins after 1 mM MS-275 treatment. MEK2 and ORC2 were used as a loading control respectively in
cytoplasm and chromatin fractions. Densitometry was expressed as a p65/MEK2 or p65/ORC2 ratio. (D) Time-dependent relative expression of IL-8
mRNA in BxPC-3 cells treated with 1 mM MS-275, 10 mM Celecoxib or a combination of the drugs. Results are expressed as mean 6 s.d. ***P,.001,
*P,.05 versus DMSO. n$3 in each condition.
doi:10.1371/journal.pone.0075102.g003
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confirmed by western-blot, showing intact caspase-3 in all samples

(Figure 4C). To further investigate the mechanisms of the observed

cell growth arrest, we next examined the effect of MS-275/

celecoxib combination on the cell cycle (Figure 4D). MS-275

alone, but not celecoxib, increased the proportion of cell in G1 by

50% at 48h. However, MS-275/celecoxib combination decreased

significantly (P,.001) the proportion of cells in S phase at 24 (–

74%), 48 (–92%) and 72h (–82%) and increased significantly

(P,.001) the proportion in G1 phase at 24 (+48%), 48 (+119%)

and 72h (+80%). To validate these results we analyzed by western

blot the expression of cell cycle markers and found a clear

accumulation of p21WAF1 and p27Kip1, two cell cycle inhibitors, at

24h and 48h after the co-administration of MS-275 and celecoxib

(Figure 4E). Consistently, the hyperphosphorylated form of pRb

was less abundant when BxPC-3 cells were co-treated with MS-

275/celecoxib. The hypophosphorylated form of pRb appeared

with the co-inhibition of class I HDAC and COX-2. The whole

pRb protein disappeared at 48h after the cotreatment. This

disappearance was already observed by others after a p21WAF1 or

p27Kip1 accumulation [44]. The E2F1 transcription factor, a S-

phase orchestrator, became undetectable 48h after co-administra-

tion of MS-275 and celecoxib. These results show that cellular

growth inhibition is associated to a G0/G1 phase blockage.

BxPC-3 is a PDAC cell line characterized by its KRAS

wildtype, while mutations of the gene coding for this protein is the

most common genetic alteration observed in human PDAC.

However, BxPC-3 cells overexpress COX-2, a situation noted in

50% of human PDAC. We have decided to extend our

observations regarding the interest of the combined treatment in

pancreatic cancer by examining the efficiency of such combined

treatment on two human pancreas cell lines with reported KRAS

mutations. The first cell line was PANC-1 ([12 ASP]-KRAS) in

which COX-2 was undetected at the protein level [45]. The

second cell line was CFPAC-1 ([12 VAL]-KRAS) but in which

COX-2 was detected at protein level [45].

PANC-1 cell line was cultured with MS-275, celecoxib or both

drugs in combination. Celecoxib 10 mM did not alter cell growth

when MS-275 1 mM reduced significantly (p,,001) cell growth by

32%. The combination of the two drugs reduced the PANC-1 cell

growth (49%, P,.001). However, the combination-induced

growth inhibition was not significantly different from the MS-

275-induced one (Figure 5A). In this cell line, MS-275 did not

induce the expression of COX-2 (data not shown).

CFPAC-1 cell line was cultured in the same conditions.

Celecoxib 10 mM reduced cell growth by 54% (p,,001) and

MS-275 1 mM reduced cell growth by 59% (p.,001). Here, the

Figure 4. Effect of HDAC and COX-2 coinhibition in BxPC-3 cells. (A) ELISA assay of PGE2 in cell culture media 24h and 48h after 1 mM MS-275
and 10 mM celecoxib treatment. (B) Time-dependent effects of MS-275 and celecoxib on cell growth. (C) Time-dependent effects of 1 mM MS-275 and
10 mM celecoxib on apoptotic cell ratio by annexin V/PI flow cytometry and on caspase-3 cleavage. (D) Time-dependent effects of 1 mM MS-275 and
10 mM celecoxib on cell cycle by PI incorporation. (E) Western-blot detection of p21, p27, pRb ppRb and E2F1 in 20 mg BxPC-3 proteins 6 to 48h after
1 mM MS-275 and 10 mM celecoxib treatment. HSC70 was used as a loading control. Results are expressed as mean 6 s.d., ***P,.001, **P,.01,
*P,.05 versus DMSO or indicated conditions. n$3 in each condition.
doi:10.1371/journal.pone.0075102.g004
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combination of the two drugs reduced significantly (79%, P,.001)

CFPAC-1 cell growth in comparison to either drug alone (Figure

5B). We then analyzed by western blot the expression of COX-2

and cell cycle markers in CFPAC-1 cells 48h after drugs

administration. We showed an MS-275-induced accumulation of

COX-2 like in BxPC-3 cells (Figure 5C). We found also an

accumulation of p21WAF1 and p27Kip1 after the co-administration

of MS-275 and celecoxib (Figure 5C), suggesting a cell cycle arrest.

BxPC-3 CAM tumor mimics human PDAC
The evaluation of new drugs or drug combinations for pancreas

cancer will be eased by the availability of easy, ethically and

economically sustainable animal models. Thus, we have under-

taken to refine a human pancreas chorioallantoic membrane

(CAM) model based on our initial work [32]. Embedding BxPC-3

cells into matrigel prior to CAM implantation generated a major

improvement in the tumor volume. Indeed, following implanta-

tion, the tumor volume increased linearly (r2 = 0.87) until day 7

(Figure 6A). At the time of tumor collection (day 7), an average

tumor volume of 59.95615.34 mm3 (n = 10) was observed. BxPC-

3 CAM tumors grew inside the CAM connective tissue as a unique

spheric nodule. The same procedure was followed for BxPC-3,

PANC-1 and CFPAC-1 cell lines. PANC-1 did not grow on CAM

when CFPAC-1 grew as very small nodules (1 mm long).

BxPC-3 CAM tumor histology (Figure 6B) revealed large islets

of cohesive cells, some of which showed a nascent central lumen

and were isolated from each other by a collagen-containing

extracellular matrix with several sparse fibroblast-like cells

demonstrating the presence of an interstitial stroma.

To further validate our human pancreas cancer CAM model,

we compared the expression of the cytokeratin-7, -19, -20, CD56,

CEA and Ki67 using immunohistochemistry to human PDAC.

We also checked for mucin and proteoglycan production utilizing

the PAS staining. Tumoral cells from both BxPC-3 CAM tumor

and PDAC samples were strongly positive for cytokeratin-7 and -

19, CEA and Ki67 (Figure 6C) but negative for cytokeratin-20 and

CD56 (data not shown). Both tumors were positive for PAS

staining. Altogether, the data showed remarkable histology and

biomarker expression similarities between the BxPC-3 CAM

model and PDAC from human patients.

Furthermore, our recent work on targetable biomarkers in

human PDAC [46] identified several biomarker candidates among

which myoferlin, transforming growth factor beta-induced and

latent-transforming growth factor beta-binding protein 2. Immu-

nohistochemistry and western-blot confirmed the presence of these

new PDAC biomarkers in the BxPC-3 CAM tumors (Figure 7A–

B). Finally, using western blot we confirmed that HDAC1,

HDAC2, HDAC3 and COX-2 are expressed in the BxPC-3 CAM

tumor (Figure 7A).

We next demonstrated that tumors were functionally vascular-

ized. BxPC-3 CAM blood vessels were stained by FITC-

conjugated SNA and 3D reconstructed after confocal acquisition.

BxPC-3 CAM tumors displayed blood vessels around pancreatic

islets (Figure 8A). The fluorescence of tumor stroma after

Figure 5. Effect of HDAC and COX-2 coinhibition in PANC-1 and CFPAC-1 cells. (A) Time-dependent effects of MS-275 and celecoxib on
PANC-1 cell growth. (B) Time-dependent effects of MS-275 and celecoxib on CFPAC-1 cell growth. (C) Western-blot detection of Cox-2, p21, p27 in
30 mg CFPAC-1 proteins 48h after 1 mM MS-275 and 10 mM celecoxib treatment. HSC70 was used as a loading control. Results are expressed as mean
6 s.d., ***P,.001 versus DMSO or indicated conditions. n$3 in each condition.
doi:10.1371/journal.pone.0075102.g005
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fluorescent dye injection in the CAM vasculature confirms that the

vessels are functional (Figure 8B) and the detection of desmin

positive pericytes suggests vessel stabilization (Figure 8C).

Next, BxPC-3 tumors were treated beginning day 2 either with

8 mM celecoxib or 0.2 mM MS-275 or with a combination of two

drugs at their respective concentrations. MS-275 concentration

was chosen to fit with the plasmatic concentration measured in

Human in a 5 mg/m2 weekly dosing schedule [15]. While

celecoxib alone did not affect tumor growth, MS-275 alone

induced a decreased of tumor growth by 50% (P,.001) and

induced the expression of COX-2. Combination of celecoxib and

MS-275 completely abolished (P,.001) tumor growth, leading to

no change in tumor volume compared to the beginning of

treatment (Figure 9A-B). Tumors treated with MS-275 overex-

pressed COX-2 (Figure 9C). Tumors treated with combination of

celecoxib and MS-275 revealed empty spaces inside the tumor.

(Figure 9D). We then asked the question whether this reduction of

tumor volume is due to induction of apoptosis or to proliferation

arrest. Tumors treated with MS-275, celecoxib or both drugs were

submitted to a cleaved caspase-3 detection and were labeled for

Ki67. The full-length caspase-3 was detected in all samples but no

cleaved caspase-3 was observed (Figure 9E). The relative Ki67-

positive area was slightly but significantly reduced by the

combination of HDAC and COX-2 inhibitors (Figure 9F).

Discussion

The potential interest of anti-HDAC treatment strategies for

PDAC is supported by several preclinical studies [18,19,22,47–

50]. In agreement with these studies, we showed that pan-HDAC

inhibitor SAHA was able to reduce significantly pancreatic cancer

cell growth. Following the rationale that HDAC7, HDAC3 and

HDAC1 have been reported to be over-expressed in the PDAC

[8–10] we have examined their individual roles with respect to

their ability to control BxPC-3 cell growth. The results demon-

strated that HDAC7 silencing was unable to decrease the cell

growth while HDAC1 and HDAC3 inhibition or silencing

reduced significantly the BxPC-3 cell growth highlighting the

importance of these enzymes in PDAC patients. However, the

results of clinical studies where HDAC inhibitors are used show

only limited or no ability to affect tumor development [3,13]. This

is likely to be related to the pleiotropic activities of HDAC

including some that might promote tumor progression. In this line,

HDAC1, –2 and –3 may have been shown to regulate the function

of RelA/p65 subunits of NF-kB. Class I HDAC1 can indeed

interact with RelA/p65 acting as a corepressor to negatively

Figure 6. Growth curve and immunohistologic characterization of BxPC-3 tumors grown on CAM. (A) Cells were implanted on CAM at
embryonic day 11 and collected 2, 4, 5, 6 or 7 days after implantation. Macroscopic pictures were obtained at the same magnification from top,
bottom and side view. Results are expressed as mean 6 s.d., n.5 at each time-point. (B) Histologic (Haematoxylin-Eosin or Masson’s trichrome
staining) analysis of tumors collected 2, 4, 5, 6 or 7 days after implantation. (C) Immunohistology of tumors 7 days after BxPC-3 implantation on CAM
and human PDAC tumors. CK7 = Cytokeratin-7, CK19 = cytokeratin-19, CEA = Carcinoembryonic antigen, PAS = Amylase-periodic acid Schiff
staining.
doi:10.1371/journal.pone.0075102.g006
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regulate its transcriptional activity [43]. HDAC3-mediated

deacetylation of RelA/p65 promotes its binding to IKBa leading

to cytosolic sequestration [42] and NF-kB repression. In parallel,

HDAC2 was also overexpressed in PDAC and was shown to

regulate NF-kB activity without direct interaction with p65 [43].

As a consequence, class I HDAC inhibition could induce the

transcriptional activation of NF-kB-driven genes. Consistently, a

significant COX-2 induction was recently showed in lung cancer

cells following trichostatin A or SAHA treatment [27]. Here, we

showed, for the first time, that the class I HDAC chemical

inhibitor MS-275 and selective silencing of both HDAC1 and

HDAC3 are able to induce the transcription of COX-2 gene and

the accumulation of the functional enzyme independently of the

KRAS status. Conversely, HDAC2 silencing does not elicit COX-

2 accumulation but reduce its expression. COX-2 is considered to

be part of the positive feedback loop amplifying Ras activity to a

pathological level causing inflammation and cancer [51]. More-

over, COX-2 was demonstrated to confer a growth advantage to

pancreatic cancer cells [52]. These results together with our

findings suggest the potential interest in inhibiting COX-2 activity

while subjecting COX-2 positive (about 50-60% of the cases [53])

PDAC patients to anti-HDAC treatments. This can be easily

achieved because several molecules, including the celecoxib [54],

were developed in order to inhibit specifically COX-2. Celecoxib

was found to significantly decrease or delay pancreatic cancer

progression in animal model [29,55]. Keeping these findings in

mind, we combined class I HDAC and COX-2 inhibitors and test

their efficiency to control tumor growth. The co-treatment

reduced the pancreas cancer cell growth by blocking cells in

G0/G1 state. This is probably a mechanism that could explain the

effects observed in vivo, where the combination of two drugs

completely stalled the tumor growth. Importantly, the inhibition of

tumor growth was observed with drug concentrations 10-fold

lower than the concentrations needed if the drugs were used

individually [56,57]. This represents a considerable advantage for

a putative clinical use regarding the possible undesired effects.

However, the in vivo model used in this work remains very simple

compared to the complexity of the pathology in human.

Moreover, the cell line used to grow the tumor in ovo is a

limitation as it does not harbor constitutively active Kras which is

the most common genetic alteration in human PDAC. In

consequence, in vivo studies in genetically-engineered mouse

models of PDAC are more than necessary before entering

potential clinical trials with combined treatment, especially in

the case of patients harboring KRAS mutation. Several models are

now available to recapitulate the disease [58].

One additional outcome of the current study is the development

and characterization of a refined animal model of PDAC

recapitulating all the main features observed in human tumors.

We have based our development on a model we previously set-up

[32] but which did not provide with the possibility to efficiently test

experimental therapies. Following extensive method development

Figure 7. Biomarker detection in tumors 7 days after BxPC-3
implantation on CAM. (A) Western-blot detection of HDAC1, HDAC2,
HDAC3, HDAC7, COX-2, TGFBI, MYOF, LTBP2 in 20 mg PDAC-CAM or
BxPC-3 proteins. HSC70 was used as a loading control. (B) Immunoper-
oxydase labelling of MYOF, TGFBI, LTBP2, COX-2.
doi:10.1371/journal.pone.0075102.g007

Figure 8. Blood vessel detection in tumors 7 days after BxPC-3 implantation on CAM. (A) Imaris 3D reconstruction from a 35 mm stacked
image after SNA staining (green). Nuclei were counter stained with DAPI (blue). (B) Confocal image after FITC (green) injection in CAM blood vessels.
Nuclei were counter stained with TOPRO (blue) (C) Desmin immunodetection (red) in PDAC-CAM stained with SNA (green). Nuclei were counter
stained with DAPI (blue).
doi:10.1371/journal.pone.0075102.g008
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we have established means to produce larger tumors, bearing fully

functional blood vessels. The clinical relevance of this improved

model is supported by the CK7+/CK19+/CK20-/CEA+/Ki67+/

CD562 immunodetection. CK7 and CK20 expression has been

shown to be useful in the differential diagnosis of several

carcinomas of epithelial origin. According to Lee et al. [59] 95%

of PDAC are CK7+, 100% are CK19+ and 73% are CK202. In

pancreas carcinomas the proportion of cells stained for CEA and

the Ki-67 index were respectively increased 3-fold and 10-fold in

comparison with the normal tissue [60,61]. CD56 staining was

found negative in all cases of human PDAC [62]. These

biomarkers, together with the presence of mucin are the main

hallmarks of PDAC [63].

Recently, we have discovered several biomarkers of human

PDAC that bare therapeutic potential [46]. These antigens were

also present in our CAM tumor model, supporting its similarity

with human cancer and providing the research community with a

rapid and cost effective model for pancreas cancer research such as

our present demonstration of the benefit to combine COX-2 and

HDAC inhibition for optimal anti tumor activity.
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mediates therapeutic resistance of pancreatic cancer cells via the BH3-only
protein NOXA. Gut 58: 1399–1409. doi:10.1136/gut.2009.180711.

8. Lehmann A, Denkert C, Budczies J, Buckendahl AC, Darb-Esfahani S, et al.

(2009) High class I HDAC activity and expression are associated with RelA/p65
activation in pancreatic cancer in vitro and in vivo. BMC Cancer 9: 395.

doi:10.1186/1471-2407-9-395.

9. Miyake K, Yoshizumi T, Imura S, Sugimoto K, Batmunkh E, et al. (2008)
Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and

metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor

prognosis with possible regulation. Pancreas 36: e1–e9. doi:10.1097/MPA.0-
b013e31815f2c2a.

10. Ouaı̈ssi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, et al. (2008) High

histone deacetylase 7 (HDAC7) expression is significantly associated with
adenocarcinomas of the pancreas. Ann Surg Oncol 15: 2318–2328.

doi:10.1245/s10434-008-9940-z.

11. Khan O, La Thangue NB (2012) HDAC inhibitors in cancer biology: Emerging
mechanisms and clinical applications. Immunol Cell Biol 90: 85–94.

12. Kim H-J, Bae S-C (2011) Histone deacetylase inhibitors: molecular mechanisms

of action and clinical trials as anti-cancer drugs. Am J Transl Res 3: 166–179.

13. Zafar SF, Nagaraju GP, El-Rayes B (2012) Developing histone deacetylase

inhibitors in the therapeutic armamentarium of pancreatic adenocarcinoma.
Expert Opin Ther Targets 16: 707–718. doi:10.1517/14728222.2012.691473.

14. de Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, et al. (2008) Phase I

pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate
histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in

patients with advanced solid tumors. Clin Cancer Res 14: 6663–6673.
doi:10.1158/1078-0432.CCR-08-0376.

15. Gore L, Rothenberg ML, O’Bryant CL, Schultz MK, Sandler AB, et al. (2008)

A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor,

MS-275, in patients with refractory solid tumors and lymphomas. Clin Cancer
Res 14: 4517–4525. doi:10.1158/1078-0432.CCR-07-1461.

16. Ellis L, Pili R (2010) Histone deacetylase inhibitors: Advancing therapeutic

strategies in hematological and solid malignancies. Pharmaceuticals 3: 2441–
2469. doi:10.3390/ph3082441.

17. Bots M, Johnstone RW (2009) Rational combinations using HDAC inhibitors.

Clin Cancer Res 15: 3970–3977. doi:10.1158/1078-0432.CCR-08-2786.

18. Chun SG, Zhou W, Yee NS (2009) Combined targeting of histone deacetylases
and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol

Ther 8: 19–30.

19. Iwahashi S, Ishibashi H, Utsunomiya T, Morine Y, Ochir TL, et al. (2011)
Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on

pancreas cancer and cholangiocarcinoma cell lines. J Med Invest 58: 106–109.

doi:10.2152/jmi.58.106.

20. Bai J, Demirjian A, Sui J, Marasco W, Callery MP (2006) Histone deacetylase
inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce

apoptosis in pancreatic cancer cells. Biochem Biophys Res Commun 348: 1245–
1253. doi:10.1016/j.bbrc.2006.07.185.

21. Piacentini P, Donadelli M, Costanzo C, Moore PS, Palmieri M, et al. (2006)

Trichostatin A enhances the response of chemotherapeutic agents in inhibiting
pancreatic cancer cell proliferation. Virchows Arch 448: 797–804. doi:10.1007/

s00428-006-0173-x.

22. Donadelli M, Costanzo C, Beghelli S, Scupoli MT, Dandrea M, et al. (2007)

Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin
A and gemcitabine. Biochim Biophys Acta 1773: 1095–1106. doi:10.1016/

j.bbamcr.2007.05.002.

23. Richards DA, Boehm KA, Waterhouse DM, Wagener DJ, Krishnamurthi SS, et
al. (2006) Gemcitabine plus CI-994 offers no advantage over gemcitabine alone

in the treatment of patients with advanced pancreatic cancer: results of a phase
II randomized, double-blind, placebo-controlled, multicenter study. Ann Oncol

17: 1096–1102. doi:10.1093/annonc/mdl081.

24. Pili R, Salumbides B, Zhao M, Altiok S, Qian D, et al. (2012) Phase I study of

the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic

acid in patients with solid tumours. Br J Cancer 106: 77–84. doi:10.1038/

bjc.2011.527.

25. Wu S, Li RW, Li W, Li CJ (2012) Transcriptome characterization by RNA-seq
unravels the mechanisms of butyrate-induced epigenomic regulation in bovine

cells. PLoS ONE 7: e36940. doi:10.1371/journal.pone.0036940.

26. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, et al. (2003) Gene
expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining

a common gene set produced by HDAC inhibition in T24 and MDA carcinoma

cell lines. Mol Cancer Ther 2: 151–163.

27. Wang X, Li G, Wang A, Zhang Z, Merchan JR, et al. (2013) Combined histone
deacetylase and cyclooxygenase inhibition achieves enhanced antiangiogenic

effects in lung cancer cells. Mol Carcinog 52: 218–228. doi:10.1002/mc.21846.

28. Sun WH, Chen G-S, Ou XL, Yang Y, Luo C, et al. (2009) Inhibition of COX-2
and activation of peroxisome proliferator-activated receptor gamma synergisti-

cally inhibits proliferation and induces apoptosis of human pancreatic carcinoma
cells. Cancer Lett 275: 247–255. doi:10.1016/j.canlet.2008.10.023.

29. Colby JKL, Klein RD, McArthur MJ, Conti CJ, Kiguchi K, et al. (2008)

Progressive metaplastic and dysplastic changes in mouse pancreas induced by

cyclooxygenase-2 overexpression. Neoplasia 10: 782–796.

30. Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, et al. (2009)

Progression of pancreatic adenocarcinoma is significantly impeded with a

combination of vaccine and COX-2 inhibition. J Immunol 182: 216–224.

31. Hill R, Li Y, Tran LM, Dry S, Calvopina JH, et al. (2012) Cell intrinsic role of
COX-2 in pancreatic cancer development. Mol Cancer Ther 11: 2127–2137.

doi:10.1158/1535-7163.MCT-12-0342.

32. Dumartin L, Quemener C, Laklai H, Herbert J, Bicknell R, et al. (2010) Netrin-
1 mediates early events in pancreatic adenocarcinoma progression, acting on

tumor and endothelial cells. Gastroenterology 137: 1595–1606. doi:10.1053/
j.gastro.2009.12.061.

33. Peixoto P, Castronovo V, Matheus N, Polese C, Peulen OJ, et al. (2012)

HDAC5 is required for maintenance of pericentric heterochromatin, and

controls cell-cycle progression and survival of human cancer cells. Cell Death
Differ 19: 1239–1252. doi:10.1038/cdd.2012.3.

34. Lamour V, Le Mercier M, Lefranc F, Hagedorn M, Javerzat S, et al. (2010)

Selective osteopontin knockdown exerts anti-tumoral activity in a human
glioblastoma model. Int J Cancer 126: 1797–1805. doi:10.1002/ijc.24751.

35. Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic membrane

model systems to study and visualize human tumor cell metastasis. Histochem
Cell Biol 130: 1119–1130. doi:10.1007/s00418-008-0536-2.

36. Tan MH, Nowak NJ, Rueyming L (1986) Characterization of a new primary

human pancreatic tumor line. Cancer Invest 4: 15–23.

37. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975)
Establishment of a continuous tumor-cell line (PANC-1) from a human

carcinoma of the exocrine pancreas. Int J Cancer 15: 741–747. doi:10.1002/

ijc.2910150505.

38. Schoumacher RA, Ram J, Iannuzzi MC, Bradbury NA, Wallace RW, et al.

(1990) A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci

U S A 87: 4012–4016.

39. Detry C, Lamour V, Castronovo V, Bellahcène A (2008) CREB-1 and AP-1
transcription factors JunD and Fra-2 regulate bone sialoprotein gene expression

in human breast cancer cells. Bone 42: 422–431. doi:10.1016/
j.bone.2007.10.016.

40. Ouaı̈ssi M, Cabral S, Tavares J, da Silva AC, Mathieu Daude F, et al. (2008)

Histone deacetylase (HDAC) encoding gene expression in pancreatic cancer cell
lines and cell sensitivity to HDAC inhibitors. Cancer Biol Ther 7: 523–531.

41. Mehdi O, Françoise S, Sofia CL, Urs G, Kevin Z, et al. (2012) HDAC gene

expression in pancreatic tumor cell lines following treatment with the HDAC

inhibitors panobinostat (LBH589) and trichostatine (TSA). Pancreatology 12:
146–155. doi:10.1016/j.pan.2012.02.013.

42. Chen LF, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kB

action regulated by reversible acetylation. Science 293: 1653–1657.
doi:10.1126/science.1062374.

43. Ashburner BP, Westerheide SD, Baldwin AS (2001) The p65 (RelA) subunit of

NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1
and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21: 7065–

7077. doi:10.1128/MCB.21.20.7065-7077.2001.

44. Broude EV, Swift ME, Vivo C, Chang BD, Davis BM, et al. (2007) p21Waf1/
Cip1/Sdi1 mediates retinoblastoma protein degradation. Oncogene 26: 6954–

6958. doi:10.1038/sj.onc.1210516.
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HDAC5 is required for maintenance of pericentric
heterochromatin, and controls cell-cycle progression
and survival of human cancer cells

P Peixoto1,6, V Castronovo1,6, N Matheus1,6, C Polese1,6, O Peulen1,6, A Gonzalez1,6, M Boxus2, E Verdin3, M Thiry4,6, F Dequiedt5,6 and

D Mottet*,1,6

Histone deacetylases (HDACs) form a family of enzymes, which have fundamental roles in the epigenetic regulation of gene
expression and contribute to the growth, differentiation, and apoptosis of cancer cells. In this study, we further investigated the
biological function of HDAC5 in cancer cells. We found HDAC5 is associated with actively replicating pericentric heterochromatin
during late S phase. We demonstrated that specific depletion of HDAC5 by RNA interference resulted in profound changes in the
heterochromatin structure and slowed down ongoing replication forks. This defect in heterochromatin maintenance and assembly
are sensed by DNA damage checkpoint pathways, which triggered cancer cells to autophagy and apoptosis, and arrested their
growth both in vitro and in vivo. Finally, we also demonstrated that HDAC5 depletion led to enhanced sensitivity of DNA to DNA-
damaging agents, suggesting that heterochromatin de-condensation induced by histone HDAC5 silencing may enhance the efficacy
of cytotoxic agents that act by targeting DNA in vitro. Together, these results highlighted for the first time an unrecognized link
between HDAC5 and the maintenance/assembly of heterochromatin structure, and demonstrated that its specific inhibition might
contribute to increase the efficacy of DNA alteration-based cancer therapies in clinic.
Cell Death and Differentiation (2012) 19, 1239–1252; doi:10.1038/cdd.2012.3; published online 3 February 2012

Histone deacetylases (HDACs) are enzymes that modulate
the acetylation level of histones and non-histone proteins to
regulate gene expression and chromatin structure. Eighteen
human HDACs are divided into four classes: class I (HDAC1,
2, 3, 8); class II (HDAC4, 5, 6, 7, 9, 10), subdivided into class
IIa (HDAC4, 5, 7) and class IIb (HDAC6 and 10); class III, also
called sirtuin proteins (SIRT1–7); and class IV (HDAC11).1

Several compounds were identified as broad-spectrum
inhibitors of class-I and -II HDAC (HDACi).2 These HDACis
can cause cell-cycle arrest, activation of programmed cell
death (apoptosis/autophagy), or inhibition of angiogenesis.
Based on their potent anticancer effects in vitro, several
HDACis are currently being investigated in clinical trials in
cancer patients, both as single agents and in combination with
other drugs. The FDA (Food and Drug Administration)

approval of SAHA (suberoylanilide hydroxamic acid; Zolinza)
for treatment of cutaneous T-cell lymphoma3 validates the
concept of HDAC inhibition to treat cancer.

Generally, HDACis are well tolerated when compared with
most of the currently used antitumor treatments. However,
some side effects have been reported. So, by targeting
the most relevant HDAC members, it may be possible to
improve efficacy by removing undesirable toxicities. Preclini-
cal investigations by targeted knockdown of individual
HDAC members demonstrated the roles of class IIa HDACs
in tumorigenesis. Indeed, we and others have demonstrated
that silencing of HDAC4 inhibited cancer cell proliferation
in vitro and arrested tumor growth in vivo through epigenetic
regulation of p21WAF1/Cip1 gene expression.4,5 Recently,
Zhu et al.6 also demonstrated HDAC7 is a crucial player in
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cancer cell proliferation. Together, these findings would
suggest that inhibition of class IIa HDACs might be a sufficient
strategy to treat cancer. However, the contribution of HDAC5
to tumor progression is largely ignored and needs to be further
characterized to determine whether class IIa HDAC members
are the most relevant targets in cancer therapy.

The human HDAC5 gene is located on chromosome 17q21,
a region which is characterized by losses of chromosomal
material in different cancers.7 Moreover, HDAC5 expression
is frequently reduced in cancer such as colon cancer and
acute myeloid leukemia,8–10 and is associated with poor
clinical outcome of lung cancer patients.11 In contrary, an
upregulation of HDAC5 has been observed in high-risk
medulloblastoma and its expression is associated with poor
survival.12 Like for many HDACs, HDAC5 is then aberrantly
expressed in tumors, suggesting that this HDAC may have a
role in tumor progression.

Here, we investigated the function of HDAC5 in cancer
cells. We found that its sub-nuclear localization changed
during S phase progression, with HDAC5 colocalizing with
actively replicating heterochromatic regions during late S
phase. We demonstrated that its specific depletion by RNA
interference (RNAi) induced a defect in pericentric hetero-
chromatin assembly and slowed down an ongoing replication
fork, which consequently induced DNA-damage checkpoint
pathways, which leads to cell-cycle blocking, inhibition of cell
proliferation, induction of apoptosis as well as autophagy, and,
consequently, decreased tumor growth in vivo. Altogether,
these findings implicate HDAC5 in the maintenance/assembly
of pericentric heterochromatin structure and demonstrate
that class IIa HDAC5 can represent a potential target for
anticancer therapies.

Results

HDAC5 localizes to pericentromeric heterochromatin
primarily during late S phase. To explore the function of
HDAC5, we first examined its localization in HeLa cells.
Confocal microscopy showed that approximately 85% of
asynchronous cells showed a nuclear localization, with
more intense foci around the nucleolus (Figure 1A). This
localization was observed in different cell types, including
MCF-7, MDA-MB-231, endothelial cells, and fibroblasts (data
not shown). Transfection with two different efficient HDAC5
small interfering RNA (siRNA) correlated with loss of nuclear
HDAC5 foci, excluding a non-specific staining (Supple-
mentary Figures S1A, and S1B–S2). This localization was
also confirmed with a second anti-HDAC5 antibody
(Supplementary Figure S1C). To further characterize the
intra-nuclear localization of HDAC5, we performed electron
microscopy. Endogenous HDAC5 was detected as individual
foci in the nucleus and the clusters showed a preferential
colocalization of HDAC5 with pericentric (pericentromeric)
heterochromatin (Figure 1B and Supplementary Figure S3).
As fluorescence-activated cell sorting (FACS) analysis
(see Figure 2a) revealed that an asynchronous population
of HeLa cells is composed of 65–70% of cells in G1, 20–25%
of cells in S, and 5–10% of cells in G2/M phase, we
hypothesized that HDAC5 could target pericentric

heterochromatin during different phases of the cell cycle.
First, we monitored the localization and expression of
HDAC5 during S phase. In early S phase, HDAC5 shows a
diffuse nuclear staining, but in late S phase, the patterns
were strikingly different, with HDAC5 now colocalizing with
proliferating cell nuclear antigen (PCNA) to punctuate foci
that are characteristic of late-replicating pericentric hetero-
chromatin (Figure 1C). A colocalization between HDAC5 and
heterochromatin protein 1 (HP-1), a heterochromatin marker,
in late S phase confirmed that HDAC5 is localized to
heterochromatic regions (Figure 1D). The re-entry into S
phase was monitored by both FACS (see Figure 1C) and
western blotting against cyclin E and phospho-histone H3 on
Ser10, two markers of S phase progression,13,14 a period
during which the global level of HDAC5 did not change
(Figure 1E). During mitosis, HDAC5 was not detectable with
mitotic chromosome. However, we observed that HDAC5
also associated with heterochromatin in the G1 phase
(Supplementary Figure S4). Bearing in mind the importance
of HDAC for chromatin condensation, we assessed the
impact of HDAC5 depletion on the organization of pericentric
heterochromatin by electron microscopy. Electron
micrographs of GL3 siRNA/mock-transfected cells revealed
dense nucleoli and a condensed pattern of heterochromatin.
By contrast, HDAC5-depleted cells showed a reduced
number of dense heterochromatin clusters at the periphery
of the nucleolus, demonstrating failure of appropriate
assembly/maintenance of chromatin structure at pericentric
heterochromatin (Figure 1F). To determine whether HDAC5
depletion exerted a more global influence on chromatin
organization, we performed a MNaseI (micrococcal nuclease
1) assay. No defects in wrapping of DNA by the histone
octamer were observed in the absence of HDAC5
(Figure 1G), suggesting that HDAC5 did not have a role in
the assembly/maintenance of nucleosome organization.

HDAC5 depletion affects DNA replication efficiency
and cell-cycle progression. Because heterochromatin
assembly and DNA replication are tightly coupled, we
examined the consequences of HDAC5 depletion on DNA
replication and S phase progression. To identify the effect of
HDAC5 depletion on global S phase, asynchronous cells
were transfected with an HDAC5 siRNA for 24, 48, and 72 h,
and then pulsed with 5-bromo-20-deoxyuridine (BrdU) before
FACS analysis. After 24 h, the number of replicating cells
in HDAC5-depleted cells was 28.8% lower compared with
mock-transfected cells, and most of the cells were blocked
in the G1 phase (Figures 2a and b). Forty-eight hours
after transfection, the percentage of replicating cells was
significantly higher in HDAC5-depleted cells (28.23%)
compared with control conditions (Figures 2c and d). After
72 h, no significant changes were observed (Figures 2e
and f). These data show that HDAC5 siRNA-transfected cells
are first blocked in G1/S and then re-enter S phase later
despite still efficient HDAC5 inhibition (Figure 2g). However,
this reversible cell-cycle blocking was not observed in MCF-7
cells (data not shown).

To further investigate whether HDAC5 depletion altered
cell-cycle progression, HDAC5-depleted cells were treated
with the mitotic inhibitor nocodazole 24 h before harvesting
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(Figure 3a). Addition of nocodazole resulted in accumulation
of cells in M phase in mock- or GL3 siRNA-transfected cells.
By contrast, HDAC5 depletion led to a decreased number of
cells in M phase after nocodazole treatment, in favor of an

accumulation of cells in both G1 and S phase. This
demonstrated that HDAC5 depletion caused a defect in cell-
cycle progression. However, after 48 or 72 h of transfection,
HDAC5-depleted cells progressed through their cell cycle like
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control cells, suggesting that cells seem to adapt or recover
from HDAC5 loss, thus ensuring normal cell-cycle progres-
sion (Figure 3).

HDAC5 depletion inhibits replication fork
progression. The inability to remove histones in front of
the replication fork or to load nucleosomes behind the fork
can impede replication progression. To test whether HDAC5
depletion affected replication fork progression, we performed
DNA fiber assay (Figure 4a). A comparison of DNA fibers
from control- and HDAC5 siRNA-transfected cells revealed a
striking difference in the overall length of their replication
tracks (Figure 4b) and stalled replication fork were
commonly observed when HDAC5 is depleted (Supple-
mentary Figure S5). When distribution of fibers length was

quantified and plotted, the entire distribution of fiber length in
HDAC5-depleted cells shifted leftward to shorter fibers
(Figure 4c). Quantification of the doubly labeled fibers
indicated that the average rate of fork progression in
HDAC5-depleted cells was 1.26-fold slower than in control
cells, suggesting that replication forks progressed at a slower
rate in the absence of HDAC5 (Figure 4d).

DNA replication is a multi-step process, which first requires
loading of DNA replication licensing factors. The chromatin
association of ORC (origin recognition complex) and MCM
(mini-chromosome maintenance protein) subunits, and PCNA,
which are DNA replication licensing factors—was not altered in
the absence of HDAC5 (Figure 4e), suggesting that replication
factors were assembled normally and the replication defect
occurred downstream from replication factor recruitment.
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Analysis of the activities of lamin B2, an early replication
origin, and, Ors8, a late replication origin, demonstrated that
HDAC5 depletion affected the firing of origins. Indeed, firing
from both origins was reduced by approximately 40% at 24 h
after transfection, whereas it was significantly increased after
48 h of transfection (Figures 4f and g).

HDAC5 depletion induces DNA damages and activates
DNA-damage checkpoint pathways. Changes in hetero-
chromatin structure alter fork progression. DNA double-
strand breaks (DSBs) arise frequently as a consequence of
replication fork stalling. One of the first molecules to appear
following DSB formation is the phosphorylated form of H2AX
histone variant on Serine139 (g-H2AX). Inhibition of HDAC5
expression led to a significant increase in g-H2AX as early
as 24 h after transfection as shown by western blotting
and single-cell electrophoresis assay (Figures 5a and b),
suggesting that HDAC5 depletion leads to DNA damages.
A co-staining between g-H2AX and BrdU revealed that these
DNA damages occur at replication sites mainly in mid- to late
S phase (Figure 5c and Supplementary Figure S6).

DNA damages during S phase activate the intra-S phase
checkpoint and involve transducer kinases such as check-
point kinase 1 (Chk1) and/or Chk2.15,16 The active form of
Chk1 but not Chk2 was detected in HDAC5-depleted cells.
The level of p53, a downstream target of Chk1, is slightly
increased 24 h after HDAC5 depletion, but it declined
thereafter, and reached the basal level after 32 h. In
HDAC5-depleted cells, the p53 target gene p21WAF1/Cip1 also
showed a similar rise and fall, although it faded off more
slowly. Similarly, upregulation of p27kip1 and p16INK4A, two
other cyclin-dependent kinase (CDK) inhibitors (CDKi), was
transient and not sustained over time. As attempted, these
CDKis inhibit the phosphorylation of retinoblastoma protein
(pRb), thereby preventing E2F1 from transcribing genes
that are required for cell-cycle progression such as cyclin A
or E2F1 itself (Figure 5d). However, induction of these CDKis
and accumulation of hypo-phosphorylated pRB were not
maintained after 72 or 96 h (Figure 5e), showing that HDAC5
depletion caused a transient induction of CDKis that decline
slightly at basal level later.

To see whether induction of both p53 and p21WAF1/Cip1 was
similar in other cell types, we explored the consequences of
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Figure 4 (a–d) HDAC5 depletion inhibits replication forks. (a) A schematic representation showing the principle of the DNA fiber assay. (b) Representative images of
replication tracks in mock (No siRNA)- and HDAC5 siRNA-transfected cells pulse-labeled with 50 mM IdU for 20 min (green track) followed by 50mM CldU for 30 min
(red track), and then processed for DNA fiber spreads as described under Materials and Methods. Fork direction is indicated by a black arrow. All track photos are shown at
identical magnifications (original magnification: � 630; bar: 5 mm). (c) The numbers of fibers for each specified length in mock (No siRNA)-, HDAC5 siRNA-, and GL3 siRNA-
transfected cells were compared. The data were derived from one of two independent experiments in which at least 100 fibers were analyzed per experiment. Results are
expressed as a frequency distribution of fiber length. Fiber length means were compared by one-way ANOVA with a 95% interval of confidence followed by Bonferroni’s
post-test. (d) Mean fork rates (kb/min)±S.D. in each condition were calculated from the data shown in panel c, and compared by one-way ANOVA with a 95% interval of
confidence. (e) HDAC5 depletion does not alter the chromatin loading of DNA replication licensing factors. HeLa cells were mock-transfected (No siRNA) or transfected with a
siRNA directed against either HDAC5 or GL3 for 24 or 48 h. Fractions of chromatin-bound proteins were prepared as described under Materials and Methods, and the level of
different DNA replication licensing factors was assessed by western blotting. The MEK2 protein was used as a fractionation control. S2, cytoplasmic fraction; S3, nuclear
soluble proteins; P3, chromatin-enriched fraction. (f and g) HDAC5 depletion inhibits the firing of origins. Histogram plots of the lamin B2 (f) and Ors8 (g) origin activities in
mock-transfected cells or cells transfected with a siRNA directed against either HDAC5 or GL3 for 24 or 48 h as measured by nascent-strand DNA abundance. Results are
expressed as a percentage of the nascent-DNA strand abundance mean under the No siRNA condition. The values represent the mean±S.D. of two independent
experiments, each with three technical replicates. Statistical analysis was performed by two-way ANOVA with a 95% interval of confidence followed by Bonferroni’s post-test.
***Po0.001
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HDAC5 depletion in MCF-7 cells, which also harbors wild-type
p53 and pRb genes. In those cells, HDAC5 depletion
also induced activation of the p53–p21WAF1/Cip1 and pRb
pathways, but the induction was more persistent compared
with HeLa cells (Figure 5f).

HDAC5 depletion induced both apoptosis and
autophagy. HDAC5 depletion induced a DNA-damage
response, which engages both the p53–p21WAF1/Cip1 and
the p16INK4A–pRb pathways. These pathways can
establish and maintain the growth arrest that is typical
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Figure 5 HDAC5 depletion leads to DNA damages and activates the DNA-damage checkpoint pathway. (a) HeLa cells were mock-transfected (No siRNA) or transfected
with a siRNA directed against either HDAC5 or GL3 for 24 h, and western blotting was performed using anti-g-H2AX antibodies. (b) HeLa cells were mock-transfected
(No siRNA) or transfected with a siRNA directed against either HDAC5 or GL3 for 24 h, and the presence of DNA damages was assayed by the Oxiselect Comet Assay Kit
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prepared and processed for western blotting using the indicated antibodies. HSC70 was used as a loading control
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of senescence and/or induce apoptosis. Any blue
staining indicative of SA-b-gal (senescence-associated
b-galactosidase) activity, a typical marker of senescence,
was observed in both HeLa and MCF-7 cells in the absence
of HDAC5 (data not shown). However, HDAC5 depletion
drives cells into apoptosis. By 48 h after transfection, there
was a nearly two-fold increase of cells undergoing apoptosis
(Figures 6a and b). Apoptosis in both cell types
was confirmed by caspase-7 activation (Figures 6c and d,
and Supplementary Figures S7A and S7B) as well as
microscopic analysis showing typical apoptotic morphology
(Supplementary Figure S8).

As autophagy and apoptosis can share common compo-
nents and inhibitory/activating signaling pathways, we next
determined whether HDAC5 depletion could also induce
autophagy by analyzing the level of LC3, an autophagosomal
marker. LC3-II levels (compared with b-actin loading controls)
increased in both HeLa and MCF-7 cells depleted for HDAC5
(Figures 6c and d, bottom panels), suggesting concomitant
induction of apoptosis and autophagy. This amount of LC3-II
further accumulates in the presence of a lysosomal inhibitor,
indicating enhancement of the autophagic flux (Supplemen-
tary Figure S9A). To further confirm activation of autophagy,
both HeLa and MCF-7 cells were stained with an LC3 antibody
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Figure 6 HDAC5 depletion induces both apoptosis and autophagy. HeLa (a) or MCF-7 cells (b) were mock-transfected (No siRNA) or transfected with a siRNA directed
against either HDAC5 or GL3 for 24, 48, 72, and 96 h. Apoptotic cells were quantified by Annexin V staining as described under Materials and Methods. Results are presented
as a relative number of apoptotic cells arbitrarily fixed as1 under the No siRNA condition. The values represent the mean±S.D. of three independent experiments. Statistical
analysis was performed by two-way ANOVA with a 95% interval of confidence followed by Bonferroni’s post-test. ***Po0.001. HeLa (c) or MCF-7 cells (d) were mock-
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microscopy after LC3 staining. Representative cells are shown for each condition (original magnification: � 630; bar: 5mm)

HDAC5 contributes to tumor progression
P Peixoto et al

1246

Cell Death and Differentiation



and presence of autophagic vacuoles was analyzed by
confocal microscopy. Figures 6e and f showed the presence
of autophagic vacuoles in both HeLa and MCF-7 depleted for
HDAC5. This formation/accumulation of autophagic vacuoles
was confirmed by electron microscopy (Supplementary
Figure S9B).

HDAC5 depletion globally reduces cancer cell
proliferation, survival, and inhibits tumor growth
in vivo. Because HDAC5 depletion affects cell-cycle
progression, and induces both apoptosis and autophagy,
we assessed the effect of HDAC5 depletion on the global
cancer cell proliferation, survival, and tumor growth. In vitro,
HDAC5 depletion significantly decreased proliferation
(Figures 7a and b) as well as survival (Figures 7c and d) of
both HeLa and MCF-7 cells. To examine the effect of HDAC5
depletion on tumor cell growth, we used an in vivo model in
which cancer cells are engrafted onto embryonated chick
chorioallantoic membrane (CAM). Tumors formed from
HDAC5-depleted MCF-7 cells (Figures 7e–g) were smaller
than control tumors, demonstrating the relevance of inhibiting
HDAC5 in cancer cells in vivo.

HDAC5 depletion increases the efficacy of
chemotherapeutic drugs in vitro. It has become
increasingly clear that the chromatin compaction present in
heterochromatin helps to protect DNA from damaging
drugs.17 As such, knockdown of heterochromatic proteins
or induced de-condensation of chromatin sensitizes cells to
DNA damages.18 According to our data, HDAC5 depletion
could expose heterochromatic regions to DNA-damaging
drugs. Therefore, we examined whether HDAC5 depletion
could sensitize cancer cells to chemotherapeutic drugs.
MCF-7 or HeLa cells were transfected with a siRNA against
HDAC5 for 24 h, and then incubated either with doxorubicin
or cisplatin for an additional 24 h. Loss of HDAC5 caused 5–6
times more apoptosis compared with cisplatin or doxorubicin
alone in HeLa cells (Figures 8a–c). Interestingly, the combi-
nation of HDAC5 siRNA/doxorubicin or cisplatin produces
more cell death than chemotherapeutic drugs associated
with trichostatin A (TSA), a broad-spectrum HDACi
(Supplementary Figures S10A and S10B), demonstrating
that only inhibition of HDAC5 produces better cytotoxicity
than HDACi to potentiate chemotherapeutic drugs.

Using the same schedule, HDAC5 depletion in MCF-7 cells
did not potentiate the activity of chemotherapeutic drugs.
To test whether this schedule alters the effectiveness
of combination treatment, HDAC5-depleted MCF-7 cells were
exposed to DNA-damaging drugs 48 h after siRNA transfec-
tion for an additional 24 h. A better cytotoxic/apoptotic effect
was observed (Figures 8d and e, and Supplementary
Figure S10C) suggesting that appropriate sequencing and
scheduling of the combination of HDAC5 silencing with
DNA-damaging drugs is required for each cancer cell type.

Discussion

The inheritance and faithful maintenance of chromatin
organization is crucial for eukaryotic cells. To orchestrate
DNA replication in the context of chromatin, cells have

evolved efficient nucleosome dynamics involving assembly
pathways and chromatin maturation mechanisms. During
replication, modified parental histones are displaced ahead of
the replication fork and are randomly distributed between the
two daughter strands. Concomitantly, deposition of de novo-
synthesized histones H3 and H4 provides the full complement
of histones that are needed to ensure proper assembly of the
duplicated material. During its initial synthesis, histone H4 is
acetylated at lysine residues 5 and 12. These residues must
be deacetylated to form heterochromatin in late S phase, thus
ensuring secure maintenance of the under-acetylated state of
heterochromatin. This latter step is promoted through the
action of HDAC-containing complexes such as Mi-2/NuRD
(nucleosome-remodeling deacetylase complex) and/or
the Sin3/HDAC chromatin-modifying complex,19 which
have been shown to contain both HDAC1 and HDAC2,
and associate with pericentric heterochromatin during S
phase.20,21 Whereas some reports pointed to the role of
HDAC2 in the rearrangement of the nucleosomes during the
formation of heterochromatin in late S phase,22 as well as the
implication for HDAC3 in replication fork progression,23,24 we
demonstrated that HDAC5 is recruited to heterochromatin
regions, probably with members of NuRD/Sin3 chromatin
remodeling complexes as well as with other epigenetic
regulators such as DNA methyltransferase 1 (DNMT1)
or HP-1,22,25–28 to participate in the establishment of the
pericentric heterochromatin structure in late S phase. How-
ever, the mechanisms of action of HDAC5 in the assembly/
maturation of pericentric heterochromatin remain to be
identified.

The chromatin structural defect caused by HDAC5 deple-
tion results in a slow-growth phenotype, with delayed cell-
cycle progression and activation of multiple checkpoints
pathways. We indeed observed: (i) activation of the Chk1-
dependent intra-S phase checkpoint, which could survey
alterations in chromatin structure, and serves as an efficient
mechanism to slow down fork progression in the absence of
appropriate chromatin assembly and block initiation of new
replication forks in a global manner, consistent with reports
showing that origin firing is inhibited during S phase when
DNA damage or replication fork stalling activates the intra-S-
phase checkpoint kinases;29–31 and (ii) activation of a G1/S
checkpoint pathway, which prevents late-G1 cells from
entering the S period by directly or indirectly inhibiting initiation
at the earliest-firing origins, with the consequence that the
entire S period is delayed along the cell-cycle axis.29,30

In addition to cell-cycle blocking, we also observed
activation of autophagy in HDAC5-depleted cells. Numerous
studies suggest that autophagy may function in the regulation
of cell survival and have a major role in the maintenance of
genomic integrity.32 The precise role of autophagy in
response to HDAC5 depletion is not fully understood yet but
is thought to be a temporary survival mechanism, which
delays apoptosis as inhibition of HDAC5 silencing-induced
autophagy unmasks and accelerates apoptosis (data not
shown).

Activation of checkpoint pathways and consequently
cell-cycle blocking in HDAC5-depleted cells should allow time
for the chromatin defects to be resolved. Once repair is
accomplished, these checkpoint/repair pathways are usually
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silenced so that cell-cycle progression is allowed to resume.
In HDAC5-depleted HeLa cells, we noticed resumption
of normal cell-cycle progression after transient cell-cycle

blocking as demonstrated by biphasic modulation of cell-cycle
inhibitors such as p21WAF1/Cip1, p27kip1, or P-pRb, which
occurs in conjunction with release from cell-cycle blocking.

No siRNA GL3 siRNA

HeLa

0

5

10

15

20

25

30

No siRNA HDAC5 siRNA GL3 siRNA

T
um

or
 V

ol
um

e 
(m

m
3)

HSC70

HDAC5

N
o 

si
R

N
A

H
D

A
C

5 
si

R
N

A

G
L3

 s
iR

N
A

***
**

MCF-7

48H

D
N

A
 C

on
c 

(u
g/

m
l)

D
N

A
 C

on
c 

(u
g/

m
l)

0

0.5

1

1.5

2

2.5

3

0H 24H 48H 72H

No siRNA
HDAC5 siRNA
GL3 siRNA

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

0H 24H 48H 72H 

No siRNA 
HDAC5 siRNA 
GL3 siRNA 

0

20

40

60

80

100

120

24H 48H 72H 96H

No siRNA
HDAC5 siRNA
GL3 siRNA

0

20

40

60

80

100

120

24H 48H 72H 96H 

No siRNA
HDAC5 siRNA
GL3 siRNA

HeLa MCF-7

C
el

l S
ur

vi
va

l R
at

e 
(%

)

C
el

l S
ur

vi
va

l R
at

e 
(%

)

HDAC5 siRNA

Figure 7 HDAC5 depletion blocks cancer cell proliferation, decreases cell survival, and inhibits tumor growth in vivo. HeLa (a) or MCF-7 cells (b) were mock-transfected
(No siRNA) or transfected with a siRNA directed against either HDAC5 or GL3 for 24–48 and 72 h. Time-course analysis of DNA content was performed by fluorimetric DNA
titration. The values are the mean±S.D. of three replicates and are representative of three separate experiments. Both HeLa (c) and MCF-7 (d) cells were mock-transfected
(No siRNA) or transfected with a siRNA directed against either HDAC5 or GL3 for 24–48–72 and 96 h. WST-1 cell survival assay was performed as described under Materials
and Methods. The values are the mean±S.D. of three replicates and are representative of three separate experiments. (e) MCF-7 cells were mock-transfected (No siRNA) or
transfected with an HDAC5 or a GL3 siRNA, implanted on CAM 16 h later, and inoculated 7 days. A representative photograph of a ‘No siRNA’ tumor, an ‘HDAC5 siRNA’
tumor, and a ‘siRNA GL3’ tumor. The dotted lines indicate tumor boundaries at the end of the experiment. (f) In parallel, a fraction of transfected MCF-7 cells was plated and
maintained in culture during the 48 h period. Total protein extracts were prepared from those cells and processed for western blotting using anti-HDAC5 antibodies. HSC70
was used as a loading control. (g) Volume of tumors resected 7 days after inoculation was calculated. The values are the mean±S.D. of at least six tumors in each group and
are representative of two separate experiments. Statistical analysis was performed by one-way ANOVA with a 95% interval of confidence followed by Bonferroni’s post-test.
**Po0.01, ***Po0.001
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This transient cell-cycle arrest suggests that either checkpoint
recovery (fulfillment of the requirement) or checkpoint
adaptation occurs in HDAC5-depleted HeLa cells. In the light
of an yeast two-hybrid screen showing interaction between
HDAC5 and Mus81 (methyl methanesulfonate and ultraviolet-
sensitive gene clone 81), we are actually investigating
the role of this endonuclease Mus81 on cell-cycle resump-
tion. Preliminary experiments demonstrated the possible

implication of Mus81 in the checkpoint recovery/adaptation
of cells from HDAC5 depletion stress, allowing them to survive
and proliferate with apparently intact chromosomes or at the
cost of tolerating mutation. As defective DNA-damage repairs
with Mus81 mutations are often observed in breast cancer
patients,33 we hypothesized that MCF-7 cells harbor muta-
tions in gene encoding Mus81 and/or other DNA repair/check-
point proteins that impair checkpoint recovery/adaptation,
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Figure 8 HDAC5 depletion sensitizes both HeLa and MCF-7 cells to chemotherapeutic agents. (a and b) HeLa cells were mock-transfected (No siRNA) or transfected with
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cells were collected and lysed. Western blotting was performed using anti-caspase-7 and anti-LC-3 antibodies. HSC70 was used as a loading control. (d) MCF-7 cells were
mock-transfected (No siRNA) or transfected with a siRNA directed against either HDAC5 or GL3 for 24 or 48 h, and then treated with doxorubicin (2mM) for an additional 24 h.
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leading to excessive unrepaired chromatin defects
and consequently apoptosis.

After an initial attempt to recover or adapt, prolonged
HDAC5 inhibition in HeLa cells overwhelms the cells and
results in apoptosis, suggesting that either chromatin defects
are too severe or recovery/adaptation mechanisms are
followed by excessive genome instability, leading to cell death
in subsequent cell cycles for a subpopulation of cells. In
addition to activation of the apoptotic program, we noted
that autophagy is still induced at late time point in the time
course of HDAC5 depletion. Despite its initial role as a survival
pathway, progressive autophagy can result in cell death if
allowed to proceed to completion under persistent stress
and therefore, both processes would cooperate to lead to cell
death.

The role of HDAC5 in heterochromatin assembly and
maturation also has an impact in DNA alteration-based
cancer strategies. Consistent with others studies,34,35 we
reported here that HDAC5 depletion potentiates the effect of
chemotherapeutic agents that target DNA by inducing
heterochromatin de-condensation, thereby facilitating access
of drugs to DNA. Despite a more accessible chromatin in both
cell types, we found that a different sequencing and
scheduling of the combination of HDAC5 silencing with
DNA-damaging drugs is required for each cancer cell types.
Why did HDAC5-depleted MCF-7 cells show a delayed death
response to DNA-damaging drugs compared with HeLa cells?
In MCF-7 cells, several factors such as caspase-3 deficiency,
levels and activity of the Bax (Bcl-2-associated X)/Bcl-2
(B-cell lymphoma 2) proteins, or activation of phosphoinosi-
tide-3-kinase (PI3K)/Akt (protein kinase B) kinases can
contribute to refractory to apoptosis induced by DNA-
damaging drugs. Autophagy also represents a mechanism
of resistance to modalities, which affect DNA. Because
induction of autophagy delays apoptosis in the absence of
HDAC5 only, we are currently focusing our research to further
understand the impact of autophagy in the death response of
HDAC5-depleted cells treated with chemotherapeutic agents.

Altogether, our findings revealed that HDAC5 is a regulator
of pericentric heterochromatin assembly, and demonstrated
that its inhibition alone or in combination with chemother-
apeutic agents might represent a promising strategy in cancer
therapy.

Materials and Methods
Cell culture, synchronization, and treatment. HeLa cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% heat-
inactivated fetal bovine serum (FBS). MCF-7 cells were maintained in a-Modified
Eagle’s Medium (aMEM) supplemented with 10% heat-inactivated FBS.
Synchronization was achieved by treating cells with 2 mM hydroxyurea (Sigma)
and 200mg/ml nocodazole (Sigma, St. Louis, MO, USA). TSA, cisplatin and
doxorubicin were purchased from Sigma.

Antibodies. Anti-FLAG and anti-BrdU (clone BU-33) antibodies were
purchased from Sigma. Anti-BrdU (clone BU1/75), anti-ORC1, anti-ORC3,
and anti-ORC4 antibodies were from AbDSerotec (Kidlington, UK). Anti-HDAC5,
anti-p16INK4A, anti-MCM2, anti-MEK2 (MAPK/ERK kinase 2), anti-ORC2,
anti-Chk1, anti-phosphoSer317 Chk1, anti-Chk2, anti-phosphoThr68 Chk2,
and anti-caspase-3/7 antibodies were purchased from Cell Signaling (Carlsbad,
CA, USA). Anti-HDAC5, anti-histone H2AX, anti-phosphoSer139 histone H2AX and
anti-phosphoSer10 histone H3 antibodies were from Millipore (Bedford, MA,
USA). Anti-BrdU (clone B44), anti-MCM4, anti-MCM5, anti-MCM6, anti-p27,

anti-pRb, anti-cyclin E, and anti-cyclin A antibodies were purchased from BD
Biosciences (Erembodegem, Belgium). Anti-p53 antibodies were from Upstate
Biotechnology (Lake Placid, NY, USA). Anti-p21WAF1/Cip1, anti-E2F1, anti-MCM3,
anti-Cdc6, anti-PCNA (clone PC10), anti-HP-1, anti-HDAC5, and anti-HSC70 (heat-
shock cognate 70-kDa protein) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Anti-LC3 antibodies were purchased from Abgent (San
Diego, CA, USA).

siRNA transfection. siRNAs were synthesized either by Eurogentec (Liège,
Belgium) or Dharmacon (Lafayette, CO, USA). Calcium phosphate-mediated
transfections were performed as described previously.36

Immunocytochemistry. After fixation and permeabilization, cells were
incubated with primary antibodies and with corresponding Alexa dye-conjugated
secondary antibodies (Molecular Probes, Eugene, OR, USA) and mounted onto
microscope slides. For nuclear counterstaining, cells were incubated with TOPRO-3
(Molecular Probes). For g-H2AX and BrdU co-staining, cells were fixed and
permeabilized. To denature DNA, fixed cells were resuspended in 4 N HCl and
incubated for 30 min at 37 1C. After washing with borate buffer and phosphate-
buffered saline (PBS) to remove any acid traces, cells were simultaneously
incubated with a mouse anti-BrdU antibody and a rabbit anti-g-H2AX antibody.
Primary antibodies were detected with a secondary Alexa 546-conjugated goat,
anti-mouse antibody and a secondary Alexa 488-conjugated goat, anti-rabbit
antibody. Images were obtained with either a Leica TCS SP5 laser-scanning
confocal microscope (Leica, Wetzlar, Germany) or with a FluoView Olympus
laser-scanning confocal microscope (Olympus, Tokyo, Japan). Images were
transferred to Adobe Photoshop CS4 (Adobe Systems) for assembly.

Transmission electron microscopy. Immunolabeling was performed on
formaldehyde-fixed and Lowicryl-K4M-embedded cells as described previously.37 For
ultrastructure, samples were washed in Sörensen’s buffer and fixed for 1 h at 4 1C with
2.5% glutaraldehyde in Sörensen’s 0.1 M phosphate buffer (pH 7.4), and post-fixed for
30 min with 1% osmium tetroxide. After dehydration in graded ethanol, samples were
embedded in Epon. Ultrathin sections obtained with a Reichert Ultracut S
ultramicrotome were contrasted with uranyl acetate and lead citrate. Observations
were made with a Jeol 100 CX II transmission electron microscope at 60 kV.

MNaseI sensitivity assay. MCF-7 cells (1� 106) were Dounce-
homogenized in RSB buffer (10 mmol/l Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM
MgCl2, 0.5% NP-40) containing 10mg/ml aprotinin and leupeptin, 1 mM
phenylmethylsulfonyl fluoride, 1 mM Na3VO4, and 1 mM dithiothreitol (DTT), and
incubated on ice for 15 min. Samples were centrifuged at 4 1C for 5 min at 1400� g,
the medium was removed, samples were washed twice with RSB buffer, and
digested with 0.25 to 2.5 U of micrococcal nuclease in digestion buffer (15 mM Tris-
HCl (pH 7.5), 60 mM KCl, 15 mM NaCl, 1 mM CaCl2, 3 mM MgCl2, 20% glycerol,
15 mM b-mercaptoethanol) for 5 min. Digestion was stopped by adding 1 volume of
stop solution (50 mM Tris (pH 7.5), 150 mM NaCl, 50 mM EDTA, 0.3% sodium
dodecyl sulfate (SDS)). DNA was extracted using 1 volume of phenol/chloroform/
isoamyl alcohol (25 : 24 : 1) followed by 1 volume chloroform/isoamyl alcohol (24 : 1)
and precipitated with 100% ethanol. DNA was washed once with 70% ethanol,
resuspended in H2O, and 1.5mg of DNA was separated using 1.2% agarose gel.

Chromatin isolation. Chromatin fractionation was performed as described
previously.38 Three different fractions were collected: cytoplasmic fraction (S2),
nuclear soluble proteins (S3), and chromatin-enriched fraction (P3).

Western blot analysis. Adherent (and floating depending on the experiment)
cells were lysed into an SDS buffer (SDS 1%, Tris-HCl 40 mM (pH 7.5), EDTA
1 mM, protease inhibitor mixture) unless otherwise stated. Equal amounts of
proteins were resolved by SDS-PAGE. Membranes were probed with primary
antibodies, followed by horseradish peroxidase (HRP)-conjugated secondary
antibodies, and developed by chemiluminescence detection.

WST-1 cell viability. Cell survival was determined by WST-1 (2-(4-
iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt) cell viability assay according to the manufacturer’s instructions (Roche,
Basel, Switzerland).
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Cell-cycle analysis. The relative percentage of cells in each stage of the cell
cycle was analyzed according to the procedure of labeling nuclei with propidium
iodide (PI) followed by flow cytometric analysis using FACSCalibur II and the ModFit
LT program.

In vitro DNA content measurement. Fluorimetric DNA titration was
performed as described previously.39

In vivo DNA replication assay. Cells were labeled with 33mM BrdU
for 30 min, resuspended in PBSþ 10% FBS, and then fixed with 70% cold
ethanol. DNA was denatured with 4 N HClþ 0.5% Triton X-100 for 30 min at 37 1C.
After washing cells with PBS, the pellet was resuspended in PBSþ 10% FBS. An
anti-BrdU antibody (clone BU-33; Sigma) was added and cells were incubated for
1 h at room temperature. After washing, an Alexa 488-conjugated goat, anti-mouse
secondary antibody (Molecular Probes) was added for 1 h at room temperature in
dark. After washing, cells were collected, resuspended in PI solution (EDTA 3 mM
(pH 8.0), Tween 20 0.05%, PI 50mg/ml, RNAse A 50mg/ml in PBS), and analyzed
using a FACSCalibur II and the CellQuest software (BD Biosciences).

DNA fiber assay. Cells were doubly labeled by incubating with 50 mM
iododeoxyuridine (IdU) for 20 min followed by incubation with 50 mM
chlorodeoxyuridine (CldU) for 30 min. A 2-ml volume of cells, resuspended in ice-
cold PBS at 106 cells/ml, was spotted onto a silane-coated microscope slide (Sigma)
and then overlaid with 10ml of spreading buffer (SDS 0.5%, Tris-HCl 200 mM
(pH 7.4), EDTA 50 mM). After 6 min, the slides were tilted by 15 degrees to allow
lysates to slowly move down the slide. The DNA spreads were air-dried, fixed in a
3 : 1 mixture of methanol/acetic acid for 15 min at �20 1C, and stored in pre-chilled
70% ethanol at 4 1C overnight. The slides were then treated with 4 M HCl for 10 min
at room temperature followed by 30 min at 37 1C in a water bath, washed three
times in PBS, and incubated in blocking buffer (2% BSA in PBS) for 1 h at room
temperature followed by 1 h at 37 1C with a rat anti-BrdU antibody (to detect CldU)
(clone BU1/75; AbDSerotec) plus a mouse anti-BrdU (to detect IdU) (clone B44; BD
Biosciences). After rinsing three times with stringency buffer (Tris-HCl 10 mM (pH
7.5), NaCl 400 mM, Tween 20 0.1%, NP-40 0.1%) the slides were incubated for 1 h
with Alexa Fluor 488-conjugated rabbit, anti-mouse antibodies and Alexa Fluor
546-conjugated goat, anti-rat antibodies (Molecular Probes). Slides were rinsed
three times with PBS, once with H2O, and mounted in Mowiol medium. Microscopy
was performed using a FluoView Olympus laser-scanning confocal microscope
using the sequential scanning mode. A single-blind evaluation was performed to
measure the lengths of continuously double-stained tracks using the ImageJ
software (NCI/NIH, Bethesda, MD, USA) and the collected images were processed
using the Adobe Photoshop CS4 software (Adobe Systems). Pictures were taken
on the entire slide and on multiple slides, reducing the chance of over- or under-
representing certain origins or genomes of individual cells. Micrometer values were
converted into kilobase using the conversion factor 1mm¼ 2.59 kb. Measurements
were recorded from fibers in well-spread (untangled) areas of the slides to prevent
the possibility of recording labeled patches from bundles of fibers.

Isolation of nascent-strand DNA. Isolation of nascent-strand DNA was
performed as described previously.40 The primers and PCR conditions are
described by Rampakakis et al.40

Annexin V staining. Apoptotic cells were determined by Annexin V–FITC
(fluorescein isothiocyanate) and non-vital dye PI staining using an FITC–Annexin V
apoptosis detection kit I (BD Biosciences) according to the manufacturer’s
instructions. Flow cytometry was performed using a FACSCanto and samples were
analyzed using the CellQuest software (BD Biosciences). Both Annexin Vþ /PI�

cells representing early-apoptotic cells and Annexin Vþ /PIþ mostly representing
late-apoptotic/necrotic cells were considered as apoptotic cells.

CAM tumor model. A window was opened in the eggshell of a 3-day-old
embryo using scissors after puncturing the air chamber. The window was sealed
with tape and the eggs were incubated at 37 1C and 80% humidity until cell grafting.
Eight days later, a Matrigel/cell mixture (1 : 1) was grafted within a plastic ring on the
CAM surface. The window was sealed and eggs were incubated under the same
conditions for 7 days. On day 18, tumors were dissected and diameters were
measured with a caliper. Tumor volume was calculated using an ellipsoid formula:
Volume (mm3)¼ (4� p� Z1� Z2� Z3)/3, where Z1�3 are the main radii of
the tumor.

Statistical analyses. Results were reported as means with their S.D. or
S.E.M. as reported in the figure legends. Statistical analysis was performed by
one-way ANOVA or two-way ANOVA regarding the number of grouping factors.
Group means were compared by Bonferroni’s post-test. Homoscedasticity was
assayed by Levene’s test. Normality was assayed by the D’Agostino and Pearson
test. All tests were performed with a 95% interval of confidence.
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a  b  s  t  r  a  c  t

Glaucium  flavum  (G.  flavum)  is  a  plant  from  the  Papaveraceae  family  native  to Algeria where  it  is  used
in  local  traditional  medicine  to treat warts.  G. flavum  root  crude  alkaloid  extract  inhibited  breast  cancer
rowth inhibition
ell cycle arrest
poptosis

cell  proliferation  and  induced  G2/M  phase  cycle  arrest  and  apoptosis  without  affecting  normal  cells,
which  is  a highly  awaited  feature  of potential  anti-cancer  agents.  G.  flavum  significantly  reduced  growth
and  vascularization  of  human  glioma  tumors  on chicken  chorioallantoic  membrane  (CAM)  in  vivo.  The
chromatographic  profile  of the  dichloromethane  extract  of  G. flavum  root  showed  the presence  of  different
constituents  including  the  isoquinoline  alkaloid  protopine,  as  the  major  compound.  We  report  for  the
first  time  that  G. flavum  extract  may  represent  a new  promising  agent  for cancer  chemotherapy.
ntroduction

Breast cancer is one of the most prevalent malignancies in
omen in many countries worldwide (Jemal et al. 2011; Youlden

t al. 2012). After the rapid expansion of the use of monoclonal
ntibodies and various synthetic inhibitors directed against matrix
etalloproteases or protein kinases, natural products are regaining

ttention in the oncology field. Due to their wide range of biological
ctivities and low toxicity in animal models, natural products have
een used as alternative treatments for cancers including breast
ancer. An analysis of new and approved drugs for cancer by the
nited States Food and Drug Administration (FDA) over the period
981–2010 showed that more than half of cancer drugs were of
atural origin (Newman and Cragg 2012).

Cell cycle deregulation resulting in uncontrolled cell prolifer-
tion is one of the most frequent alterations that occur during
umor development. For this reason, blockade of the cell cycle is
egarded as an effective strategy for eliminating cancer (Lapenna
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tu
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.0

nd Giordano 2009; Williams and Stoeber 2012). Key regulator
roteins are cyclin-dependent kinases which activity is specifically
ontrolled by cyclins and cyclin-dependent kinase inhibitor (CDKI)
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at specific points of the cell cycle (Besson et al. 2008). The G2/M
checkpoint is the most conspicuous target for many anticancer
drugs. P21, a member of the CDKI family and cyclin B1 are the
central players of G2/M phase transition (Vermeulen et al. 2003).
There is a tight relationship between the control of cell cycle check-
points and the progression to apoptosis, a mechanism responsible
for maintaining tissue homeostasis by mediating the equilibrium
between cell proliferation and death. Defective apoptosis repre-
sents a major causative factor in the development and progression
of cancer (Cotter 2009; Ricci and Zong 2006). In cancer therapy,
induction of apoptosis cells is one of the strategies for anticancer
drug development (Alam 2003; Fischer and Schulze-Osthoff 2005;
Ocker and Hopfner 2012).

Several drugs currently used in chemotherapy were isolated
from plant species. The best known are the Vinca alkaloids, vinblas-
tine and vincristine, isolated from Catharanthus roseus,  etoposide
and teniposide, which are semi-synthetic derivatives of the natu-
ral product epipodophyllotoxin, Paclitaxel isolated from the bark
of Taxus brevifolia, the semi-synthetic derivatives of camptothecin,
irinotecan and topotecan, isolated from Camptotheca acuminata,
among several others (Cragg et al. 1993).

G. flavum belongs to the family of Papaveraceae. The
aerial part of this plant is very rich in isoquinoline alkaloids,
moral effect of Algerian Glaucium flavum roots against human cancer
07

especially in aporphine bases namely, didehydroglaucine, 6′,7-
dehydroglaucine,(+)-glaucine, (+)-isocorydine, (+)-corydine, (+)-
cataline, 1,2,9,10-tetramethoxyoxoaporphine, �-allocryptopine,
corunnine, and isoboldine (Israilov et al. 1979; Daskalova et al.
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988). The latter are known for exhibiting promising pharma-
ological activities including anti-inflammatory, analgesic and
ntipyretic (Pinto et al. 1998), hypoglycemic (Cabo et al. 2006) and
ntioxidant activity (Tawaha et al. 2007).

Interestingly, a recent study demonstrated that Sardinian G.
avum contained a homogeneous alkaloid pattern of aporphine
ype, significantly different from those reported for populations
rom other parts of Europe (Petitto et al. 2010). In this study, we
sed G. flavum collected in Algeria where the root is widely used

n local traditional medicine to treat warts and inflammatory dis-
ases. To our knowledge, the potential anticancer activities of G.
avum have never been investigated. We  decided to evaluate the
ffects of its alkaloid extract on human normal and malignant cells.

We explored the potential inhibitory growth effect of the
ichloromethane extract of G. flavum root on 3 human breast cancer
ell lines: MDA-MB-435, MDA-MB-231 and Hs578T and non malig-
ant human cells. Interestingly, G. flavum induced cell cycle arrest
nd apoptotic cell death in all breast cancer cells tested but not
n MCF10A normal mammary epithelial cells. Based on our results
n vitro, we decided to explore further the anti-tumoral effect of G.
avum extract using the in vivo tumor chorioallantoic membrane
CAM) model. We  demonstrated that G. flavum extract treatment
nduced a significant decrease in tumor growth and affected tumor
ssociated angiogenesis in vivo. The chemical characterization of
he dichloromethane extract was evaluated using HPLC analysis,
hich showed the presence of protopine as the major alkaloid.

aterials and methods

lant material extraction

The root of flowering plant G. flavum was collected in littoral
rea and far from any contact with pollution in Tichy, province of
ejaia (Algeria) according to botanists (University of Bejaia) pre-
ious identification. The alkaloids were extracted as described by
uau et al. (Suau et al. 2004). Briefly, the extraction was under-
aken with (10 g) of powdered plant material and (100 ml)  of

ethanol in a Soxhlet apparatus. The methanol was evaporated
sing a rotavapor and the residue was taken up in 2% hydrochlo-
ic acid (50 ml), neutral components being removed by filtration.
he filtrate was  adjusted to pH 8 with aqueous ammonia and
xtracted with dichloromethane (3 × 25 ml). The resulting extracts
ere dried with MgSO4 and the solvent evaporated to obtain the

rude alkaloid extract. The solid extract was reconstituted in DMSO
olvent (50 mg/ml  stock solution) and then filtered using 0.22 �m
lters before storage at −20 ◦C. During all experiments, DMSO dilu-
ions of G. flavum extract were adjusted in the culture media to
chieve the indicated final concentrations and control cells were
reated at the maximum concentration used in the experiment,
.1%.

igh performance liquid chromatography (HPLC) profiling

The HPLC of dichloromethane root extract of G. flavum (stock
olution 20 mg/50 ml)  was carried out for identification. The extract
as dissolved in methanol and filtered through Acrodisc PSF
XF/GHP 0.45 nm filter. An injection of 10 �l of this filtered
xtract was chromatographed with an Agilent 1100 HPLC with
AD (diode-array detector) detection. The working wavelength
as 290 nm.  The column was a Polaris amide C-18 column (5 �m,

50 mm × 4.6 mm)  operated at 25 ◦C. The mobile phase was  com-
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tu
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.0

osed of solution A (trifluoroacetic acid 0.05% in water) and solution
 (acetonitrile) with the following gradient: equilibration time
5 min  at 100% A and linear gradient elution: 0 min  100% A; 1 min
7% A; 45 min  60% A; 55 min  40% A; 65 min  40% A and 66 min  100%
 PRESS
ine xxx (2013) xxx– xxx

A. The flow rate was  1 ml/min. The structure of protopine was  eluci-
dated using NMR  spectroscopy (1H, 13C, COSY, HMBC, HSQC), mass
spectrometry (MS), and UV spectroscopy.

Cell culture

MCF10A cells (CRL-10317, ATCC) were cultured in
DMEM/HAM’S F-12 medium supplemented with 0.01 mg/ml
of human insulin, 2.5 �M l-glutamine, 20 ng/ml of epidermal
growth factor, 0.5 mg/ml  of hydrocortisone, 5% horse serum,
and 100 ng/ml of cholera toxin. HUVEC (Human Umbilical Vein
Endothelial) and skin fibroblast were isolated and maintained in
culture as described previously (Jaffe et al. 1973; Rittié and Fisher
2005). MDA-MB-231 (HTB-26, ATCC), MDA-MB-435 (HTB-129,
ATCC) cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM), supplemented with 10% of fetal bovine serum and 1%
l-glutamine. Hs578T cells (HTB-126, ATCC) were cultured in
DMEM supplemented with 10 �g/ml of bovine insulin, 1 mM
sodium pyruvate and 10% of fetal bovine serum. Human glioma
cells U87-MG (89081402, ATCC) were maintained in Minimum
Essential Medium with 10% FBS, 2 mM l-glutamine, 1% non essen-
tial amino acid, and 1 mM sodium pyruvate. All the cells were
cultured at 37 ◦C in a humidified atmosphere and 5% CO2.

Viability assay

Cell viability was determined using the cell proliferation reagent
WST-1 assay according to the manufacturer’s instructions (Roche,
Basel, Switzerland). All analyzed cells were seeded to obtain 50%
of confluence after 24 h of incubation in 96-well plates then
treated with serial dilutions of the plant extract (0–40 �g/ml).
Cells were incubated with the WST-1 reagent for 4 h. After this
incubation period, the formazan dye formed is quantified with
a scanning multi-well spectrophotometer at 450 nm. The mea-
sured absorbance directly correlates to the number of viable cells.
Percentages of cell survival were calculated as follows: % cell sur-
vival = (absorbance of treated cells/absorbance of cells with vehicle
solvent) × 100. The half inhibitory concentration (IC50) was cal-
culated from the dose-response curve obtained by plotting the
percentage of cell survival versus the concentration of plant extract
used.

Cell cycle analysis

Cells were seeded and incubated overnight to attach, and
exposed to DMSO (control) or desired concentrations of G. flavum
for specified time periods. Both floating and adherent cells were
collected, washed with phosphate buffered saline (PBS), and fixed
in 70% ethanol. The cells were then treated with 50 �g/ml RNase
A and 50 �g/ml propidium iodide for 30 min  and analyzed using a
FACSCalibur II and the Cell ProQuest program.

Antibodies

Anti-p21 and anti-cyclin B1 antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-beta actin
from Sigma (Saint Louis, Missouri, USA).

Immunoblotting analysis

Desired cell line was seeded in 6 well plates, allowed to attach
overnight and treated according to their respective IC50 with G.
moral effect of Algerian Glaucium flavum roots against human cancer
07

flavum extract. Both floating and attached cells were collected
and lysed into an SDS buffer (SDS 1%, Tris–HCl 40 mM (pH 7.5),
EDTA 1 mM,  protease inhibitor mixture). Protein concentration
was determined using a BCA kit according to manufacturer’s

dx.doi.org/10.1016/j.phymed.2013.06.007
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ig. 1. High-performance liquid chromatography profile of G. flavum extract at OD
ajor  peak corresponding to protopine (retention time = 24.85 min, peak 1) was  is

tructure of protopine.

nstructions (Pierce, Rockford, IL). Equal amounts of proteins
ere resolved by sodium dodecyl sulfate-polyacrylamide gel elec-

rophoresis and transferred to nitrocellulose or PVDF membrane
Invitrogen). Membranes were probed with primary antibodies,
ollowed by horseradish peroxidase (HRP)-conjugated secondary
ntibodies, and developed by chemiluminescence detection. Blots
ere stripped and re-probed with anti-actin to normalize.

canned bands were quantified using ImageJ software Version 1.43
National Institutes of Health, http://rsb.info.nih.gov/ij/).

API staining

DAPI staining method was used to observe apoptotic morpho-
ogical changes (chromatin condensation and nuclear fragmenta-
ion) in treated cells. Cancer cells were treated with G. flavum
xtract at their respective IC50 values and MCF10A breast cells was
reated at the highest IC50 observed for cancer cells (15 �g/ml) dur-
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tu
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.0

ng 24 h. Briefly, the cells were seeded in 6 well plates and treated
ith G. flavum or with nocodazole (3 �M)  used as a positive con-

rol of apoptosis inducer. Cells were fixed with paraformaldehyde
% and incubated in Vectashield solution (Vector Laboratories) for
m and major compound identification: (A) HPLC chromatogram of G. flavum, the
 and identified as described in “Materials and methods” section and (B) molecular

30 min  in the dark. Cells were then examined and photographed
using a fluorescence microscope (EVOS, AMG).

Quantitation of apoptosis by flow cytometry

Apoptotic cells were determined by Annexin V-FITC (fluorescein
isothiocyanate) and non-vital dye PI staining using an FITC-Annexin
V apoptosis detection kit I (BD Biosciences) according to the manu-
facturer’s instructions. Flow cytometry was performed using a FACS
Caliber II and samples were analyzed using the CellQuest software
(BD Biosciences).

Tumor CAM assay

The implantation of human glioblastoma U87-MG cells on the
chorio-allantoic membrane (CAM) of embryonic chicken was per-
formed as we described previously (Lamour et al. 2010). On day
13, size-matched tumors were divided into control and treat-
moral effect of Algerian Glaucium flavum roots against human cancer
07

ment groups. G. flavum extract was deposited locally at 100 �g/ml
per egg per day. Digital pictures were taken under a stereomi-
croscope (Leica). On day 17, tumor size was calculated based on
tumor volume formula: V = (d1/2) * (d2/2) * (d3/2) * 3.14 * 4/3, with

dx.doi.org/10.1016/j.phymed.2013.06.007
http://rsb.info.nih.gov/ij/
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Fig. 2. G. flavum extract inhibited the viability of malignant human breast cancer cells (MDA-MB-435, MDA-MB-231, Hs578T) in a dose-dependent manner without affecting
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ormal human cells (MCF10A human normal mammary cells, human skin fibroblas
f  G. flavum extract for 24 h. Cell viability was determined using Wst1 assay and exp
xtract were determined based on the dose-response curves shown in (A) (means ±

1, d2, d3 corresponding three measures taken on the experimen-
al tumors. Quantification of drug effects on tumor cell growth
ere determined in ten representative tumors per group. For his-

ological studies, U87-MG experimental tumors were embedded in
araffin and cut into 5 �m sections. Tissue sections were stained
ith hematoxylin and eosin (H&E). Vessels were stained using
uorescein-coupled Sambucus nigra lectin SNA-1 (FL-1301; Vec-
or Laboratories). Statistical comparison between the two  groups
as performed by using the Student’s t test. A value of p < 0.05 was

onsidered significant.

esults

hytochemical profile of G. flavum extract

The HPLC chromatogram of G. flavum root extract (Fig. 1A)
evealed several peaks with a significant peak eluting at 24.85 min
peak 1) which is the major compound of dichloromethane extract
nd was identified as protopine. Fig. 1B shows the structure of
rotopine.

. flavum extract treatment specifically decreased the viability of
uman breast cancer cells

We  first investigated the effects of G. flavum extract on MDA-
B-231, MDA-MB-435 and Hs578T human breast cancer cell lines.
ST1 viability assay was used for the determination of G. flavum

xtract IC50 values in these cells thus establishing the starting
oint for the next experiments. Cells were treated during 24 h
t the following concentrations: 0, 2.5, 5, 10, 20 and 40 �g/ml
Fig. 2A). The treatment significantly affected the viability of all
ancer cell lines tested and displayed low IC50 values (<15 �g/ml)
fter 24 h of treatment (Fig. 2B). Following the standard National
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tu
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.0

ancer Institute (NCI) criteria, an IC50 less than 30 �g/ml of crude
xtract is considered as an active compound against cancer cells
Suffness and Pezzuto 1990). Next, we tested the effect of G. flavum
xtract on non malignant human cells such as spontaneously
 HUVEC): (A) cells were treated with DMSO vehicle or the indicated concentrations
 as means ± SD of at least two separate experiments and (B) IC50 values of G. flavum

f at least two  separate experiments).

immortalized breast epithelial cells (MCF10A), human umbilical
vein endothelial cells (HUVEC) and skin fibroblasts (Fig. 2A). For
these cells, the calculated IC50 values were higher than 30 �g/ml
indicating that G. flavum extract mainly inhibited breast cancer
cell viability without affecting normal cells (Fig. 2B).

G. flavum extract treatment caused G2/M phase cell cycle arrest in
human breast cancer cells

Next, we tested whether inhibitory effect of G. flavum on
breast cancer cell viability was  due to perturbations in cell cycle
progression. Fig. 3 depicts flow cytometry histograms for cell
cycle distribution in G. flavum-treated MDA-MB-231, Hs578T and
MCF10A cells. After 24 h, G. flavum treatment (IC50) resulted in sta-
tistically significant enrichment of G2/M phase cell population in
MDA-MB-231 cells as compared with DMSO-treated control cells
(44.4% and 19.5%, respectively). In these cells, G. flavum mediated
G2/M phase cell cycle arrest accompanied by a significant decrease
in G0/G1 (from 62.8% to 26.5%) and S phase cells (from 16.5% to
12.7%). With time, a major increase from 0.6% to 16.2% in subG1
population was  observed and corresponded to cells that have lost
some of their DNA in late stages of the apoptotic process following
endonucleases activity (Fig. 3). Notably, G. flavum-treated Hs578T
cells presented with similar cell cycle pattern (Fig. 3). Consistent
with the cell viability experiment, G. flavum extract used at the
highest cancer cells IC50 value (15 �g/ml) did not affect cell cycle
distribution of MCF10A cells and stability was generally observed in
all cell cycle subpopulations after 12 and 24 h of treatment (Fig. 3).

G. flavum extract treatment altered the expression level of
proteins involved in the regulation of G2/M transition in
MDA-MB-231 cells
moral effect of Algerian Glaucium flavum roots against human cancer
07

To gain insight into the mechanism of G2/M phase cell cycle
arrest, we determined the effect of G. flavum treatment on the
expression of proteins known to be involved in the regulation of
G2/M transition. The level of p21 protein was  increased after 12 h

dx.doi.org/10.1016/j.phymed.2013.06.007
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F B-231 and Hs578T cells. Representative histograms depicting cell cycle distribution in
H  DMSO vehicle or the indicated concentrations of G. flavum extract corresponding to IC50

f A. The experiment was performed three times.
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Fig. 4. G. flavum extract induced p21 protein expression and an accumulation of
cyclin B1 in breast cancer cells. Immunoblotting for p21, cyclin B1 using lysates from
MDA-MB-231 cells treated with DMSO (−) or IC50 of G. flavum extract (+) for 12 h,
ig. 3. G. flavum extract treatment caused G2/M phase cell cycle arrest in MDA-M
s578T,  MDA-MB-231 and MCF10A cultures following 12 h and 24 h treatment with

or Hs578T, MDA-MB-231 and to the highest cancer cells IC50 (15 �g/ml) for MCF10

f treatment with G. flavum extract and was still high after 48 h.
nterestingly, G. flavum treatment caused an early increase in the
evel of cyclin B1 that was sustained after 24 h and showed a slight
ecrease at 48 h (Fig. 4).

. flavum extract treatment induces apoptosis in breast cancer
ells in vitro

Staining of cells with DAPI showed morphological features
haracteristic of apoptotic cells such as DNA fragmentation and
ondensation of chromatin in breast cancer cells treated with G.
avum extract (IC50, 24 h) that were comparable to nocodazole
reated cells used as control (Fig. 5A). Untreated breast cancer
ells and MCF10A cells treated with G. flavum extract exhibited a
ormal nuclear morphology characterized by large nuclei with dis-
inguishable nucleoli and diffused chromatin structure (Fig. 5A).
he quantification of apoptosis was next evaluated by annexin-
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tumoral effect of Algerian Glaucium flavum roots against human cancer
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.007

/propidium iodide (PI) staining. Dual staining with annexin-V and
I allowed clear discrimination between unaffected cells (annexin-

 negative and PI negative), early apoptotic cells (annexin-V
ositive and PI negative) and late apoptotic cells (annexin-V

24  h and 48 h. Changes in protein levels as determined by densitometric analysis
of  the immunoreactive bands and corrected for actin are shown. Immunoblotting
for  each protein was  performed at least three times using independently prepared
lysates.

dx.doi.org/10.1016/j.phymed.2013.06.007
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Fig. 5. G. flavum extract induced apoptotic cell death in human breast cancer (MDA-MB-231 and Hs578T) but not in normal mammary epithelial cell (MCF10A): (A)
morphological apoptosis evaluated by nuclear staining with DAPI and visualized by fluorescence microscopy in breast cancer cells after treatment with IC50 of G. flavum
extract for 24 h or nocodazole used as positive control (magnification 400×). Arrows point to typical chromatin condensation and nuclear fragmentation and (B) flow
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ytometry-based annexin V/Pi labeling of apoptotic cells. Cancer cells were treated
ell  line was  treated with MDA-MB-231 and Hs578T IC50 for 24 h and 48 h. Living 

AnnV−/Pi+ left upper) and late apoptotic (AnnV+/Pi+ right upper) are delineated.

ositive and PI positive). As shown in Fig. 5B, G. flavum extract
nduced the apparition of an apoptotic sub population in MDA-MB-
31 and Hs578T cell lines (24.3% compared to 5% in the control at
4 h and 30.8% compared to 3.4% in the control at 48 h for MDA-
B-231). In accordance with DAPI staining, only minimal cell death
as observed with MCF10A cells, even after 48 h of treatment, thus

onfirming the specific effect of G. flavum on cancer cell viability.

. flavum extract decreases glioma tumor growth in vivo

To further confirm the anti-tumoral effect of G. flavum extract
n vivo, we used a robust and highly reproducible glioma progres-
ion model where U87-MG human glioma cells that are grafted
nto the vascularized chicken CAM develop into a tumor within a
hort period of time (Hagedorn et al. 2005). Tumors were treated
aily by a local deposition of G. flavum extract (100 �g/ml) or vehi-
le from the second to the seventh day post-implantation. At the
nd of the experiment, treated tumors appeared clearly smaller and
isibly less vascularized than the control tumors (Fig. 6A). Indeed,
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tu
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.0

he volume of treated experimental glioma was reduced up to 70%
hen compared to control tumors (Fig. 6B). The hematoxylin and

osin staining of histological sections generally showed a mas-
ive necrosis and infiltration of immune cells in G. flavum treated
4 h and 48 h with DMSO (control) or with their respective G. flavum IC50. MCF10A
AnnV−/Pi− left lower), early apoptotic (AnnV+/Pi− right lower) cells, necrotic cells

tumors (Fig. 6C, see inserts). Finally, the selective lectin stain-
ing of tumoral vasculature demonstrated noticeable differences
between treated and non-treated tumors. Treated tumors con-
sistently showed smaller vessels presenting with reduced lumen
when compared with vessels in untreated tumor (Fig. 6D).

Discussion

Medicinal herbs and plants continue to play a significant
role in drug discovery and development, particularly in cancer
research. Previous phytochemical analysis of G. flavum has shown
that it is rich in several aporphine alkaloids: glaucine, isocory-
dine, protopine and isoboldine (Yakhontova et al. 1973). More
recent studies reported the presence of other minor alkaloids
such as adihydrochelirubine, dihydrosanguinarine, norsanguinar-
ine and dihydrochelerythrine. Several other plants of the genus
Papaveraceae are nowadays used to treat human tumors including
Chelidonium majus,  Sanguinaria canadensis L. and Macleaya cordata
(Ahmad et al. 2000; Chmura et al. 2000). To date no study has
moral effect of Algerian Glaucium flavum roots against human cancer
07

reported anti-neoplasic activity for G. flavum.
In this study, we present the first evidence that G. flavum alkaloid

root extract exerts a tumor cell growth inhibitory activity by using
in vitro and in vivo experimental models. We  show that G. flavum

dx.doi.org/10.1016/j.phymed.2013.06.007
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Fig. 6. G. flavum extract inhibits glioma tumor growth in vivo using CAM model: (A) representative pictures of 3 control (DMSO) and 3 G. flavum treated (100 �g/ml)
experimental glioma tumors grown on CAM (dotted line), (B) tumor volume was calculated as described in “Material and methods” section. G. flavum extract induced a
significant decrease of tumor volume compared with the controls. Results are expressed as the mean ± SD of 10 replicates of a representative experiment (n = 3). ***p < 0.001,
(C)  H&E staining of glioma tumor sections shows massive necrosis with infiltration of immune cells in G. flavum treated tumors that were not generally observed in control
t n the 
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umors,  (D) specific FITC-lectin staining was used for vizualisation of blood vessels i
n  treated tumors when compared to control tumors. Nuclei appeared blue after TO

xtract decreased the viability of all breast cancer cell lines ana-
yzed in this study in a dose specific manner, while it did not affect
uman normal cells including mammary epithelial cells, fibrob-

asts and endothelial cells. A previous study demonstrated that at
ow concentrations, sanguinarine strongly inhibited the growth of
ll tested tumor and normal cell lines. With normal human fibrob-
asts showing a similar sensitivity to that of cancer cells, and no
ifferential cytotoxicity could be observed (Debiton et al. 2003). In
ontrast, G. flavum extract exhibited a selective effect on cancer cells
uggesting that this effect could be attributed to the major alka-
oids of this plant (aporphine alkaloids) rather than to the minor
uaternary benzo[c]phenanthridine alkaloids (e.g. sanguinarine).

nterestingly, the HPLC profile revealed that the main compound
f the root of G. flavum is protopine. It has been recently reported
hat protopine exhibited an anti-proliferative effect by induction
Please cite this article in press as: Bournine, L., et al., Revealing the anti-tu
cells.  Phytomedicine (2013), http://dx.doi.org/10.1016/j.phymed.2013.06.0

f tubulin polymerization and mitotic arrest on human hormone
efractory prostate cancer cells (Chen et al. 2012). This evidence
ndicates that protopine might be responsible for the anticancer
ctivity of G. flavum dichloromethane extract reported in this study.
tumors shown in panel A. Tumor-associated vasculature was visibly less developed
 staining (magnification 100x).

Disturbance of the cancer cell cycle is one of the therapeutic
targets for development of new anticancer drugs (Carnero 2002).
We showed that G. flavum extract induces G2/M arrest on breast
cancer cells without affecting the cell cycle distribution in MCF10A
cells. We  further demonstrated that the anti-proliferative effects
of G. flavum extract are linked, at least in part, with the specific
induction of p21 expression in breast cancer cells. Cyclin B1 plays an
important role in the regulation of G2/M transition. Flow cytometry
studies performed on cycling cells reported that the level of cyclin
B1 protein accumulates substantially during G2 phase and before
cells enter mitosis, peaks during metaphase, and declines rapidly as
the cells proceed through anaphase (King et al. 1994; Widrow et al.
1997). We  observed an accumulation of cyclin B1 after 12 h while its
expression level tended to slightly decrease after 48 h of treatment.
As such, cyclin B1 accumulation is a marker of cells stopped in G2
moral effect of Algerian Glaucium flavum roots against human cancer
07

and/or M cell cycle phases.
The process of programmed cell death, or apoptosis is an impor-

tant homeostatic mechanism that balances cell division and cell
death to maintain appropriate cell number in tissues (Elmore 2007).

dx.doi.org/10.1016/j.phymed.2013.06.007


 ING Model

P

8 medic

D
c
d
s
o
p
t
r
g
s
t
c
t

h
t
g
w
p
a
i
t
o
a
o
i
l
t
a
t
a

C

r
s
w
fl
i
t
t
a
p
p

A

g
P
a
T
M
H
a
o

R

A

A

B

ARTICLEHYMED-51458; No. of Pages 8

L. Bournine et al. / Phyto

isturbance of apoptosis pathways is a common feature of can-
er cells and thus represents one of the strategies for anticancer
rug development. Our findings demonstrate that G. flavum extract
ignificantly inhibited cell viability through the specific induction
f apoptosis in breast cancer cells. An interesting finding in the
resent study is that alkaloid extract of G. flavum committed cells
o apoptosis at a concentration that was below the concentration
anges reported for other plant extracts (Cheng et al. 2005). Alto-
ether our results indicate that G. flavum treated MDA-MB-231
how an increased p21 expression, are arrested in G2/M and driven
o apoptotic death. Further experiments are needed to dissect cell
ycle events and all molecular players associated with G. flavum
reatment.

Our in vitro findings urged us to test whether G. flavum extract
as anti-tumoral effects in vivo. For this purpose, we  used a CAM
umor glioma cell model which allows the evaluation of both tumor
rowth and tumor associated-angiogenesis in vivo. Interestingly,
e observed a significant impact of G. flavum treatment on both
rocesses. Treated experimental tumors were significantly smaller
nd less vascularized, as they appeared whiter than fully vascular-
zed control tumors. These observations suggest for the first time
hat G. flavum extract possesses not only an anti-proliferative effect
n cancer cells but may  also affect endothelial cells and impede
ngiogenesis. Hematoxylin and eosin staining exhibited large zones
f necrosis that could be associated with less vascularized regions
n treated tumor sections when compared to untreated tumors. In
ight of these data, it is tempting to speculate that inhibition of
umor growth in vivo by G. flavum is associated with induction of
poptotic processes and/or limited neovessel formation inside the
umor. Ongoing and further studies will help define the potential
nti-angiogenic activity of G. flavum.

onclusion

In summary, we demonstrate for the first time that G. flavum
oot extract inhibits the growth of breast cancer cells by causing
pecific cell cycle arrest in G2/M phase and leading to apoptosis,
ithout affecting normal breast cells. These anticancer effects of G.

avum extract could be attributed to the alkaloid protopine, which
s the major compound of the root. This hypothesis remains never-
heless to be confirmed. Besides, additional studies are necessary
o identify the possible correlation between the anticancer activity
nd the major alkaloids present in G. flavum extract to ensure the
roper medicinal use of this natural wealth, which could lead to the
otential development of an effective cancer chemotherapy agent.
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