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AbstractIn this paper a typical situation arising in the assembly of printed circuit boards is investi-gated. The planning problem we face is how to assemble boards of di�erent types using a singleline of placement machines. From a practical viewpoint, the multiplicity of board types addssigni�cantly to the complexity of the problem, which is already very hard to solve in the case ofa single board type. In addition, relatively few studies deal with the multiple board type case.We propose a solution procedure based on a hierarchical decomposition of the planning problem.An important subproblem in this decomposition is the so-called feeder rack assignment problem.By taking into account as much as possible the individual board type characteristics (as well asthe machine characteristics) we heuristically solve this problem. The remaining subproblems aresolved using constructive heuristics and local search methods. The solution procedure is testedon real-life instances. It turns out that, in terms of the makespan, we can substantially improvethe current solutions.Keywords: heuristics, PCB-assembly, feeder rack assignment problem.



1 IntroductionThe assembly of printed circuit boards (PCBs) is in general a complicated task. Sophisticatedmachines must perform intricate operations, involving di�erent kinds of tools and various compo-nents, in order to assemble a board. Numerous constraints and con
icting objectives interfere tocreate a challenging planning problem. Further, the competition faced by a PCB-manufacturercauses a need for high throughput rates. In order to cope with such an environment, it isnowadays well recognized that the availability of automated planning procedures is a majorasset.In this paper we describe a typical case in PCB-assembly arising at a plant of Philips NV, amajor PCB-manufacturer. We propose a planning procedure for a situation where a family ofdi�erent board types are to be produced by a line of di�erent placement machines. This proce-dure is based on a hierarchical decomposition of the planning problem. Not surprisingly, mostsubproblems in this decomposition are already very hard in terms of computational complexity.Moreover, the size of the problems we consider prohibits the e�ective use of exact solution meth-ods. In order to obtain good solutions in a reasonable amount of time, we solve the subproblemsapproximately using heuristics and local search methods. The resulting procedure is tested onreal-life instances (made available to us by Philips), for which we are able to close about 70%of the gap between the previously best-known makespan and a (fairly) weak lower bound, thusreducing the current overall makespan by approximately 17%.Let us now give a short description of how the assembly of PCBs is organized at the Philipsplant under study. There are a number of assembly-lines, each consisting of a number of place-ment machines which place electronic components on bare boards. There are di�erent types ofboards and di�erent types of components to consider. Each board type is assigned to a lineof placement machines, that is, all boards of a type `
ow' through the machines of a speci�cline. The electronic components must be mounted at prescribed locations on a board. The set oflocations to be served on a board as well as the type of components to be placed at each locationdepends upon the board type. In other words, for each board type, a set of locations, and foreach of these locations the type of the component to be placed there, is given. Components ofeach type are delivered to the machine by means of a so-called feeder. Each placement machineis equipped with a feeder rack which holds the feeders. Further, the machine has some device- dependent upon the technology (see Section 2) - which is able to pick components from thefeeders and place these components onto the board.A production plan associated with this description should at least specify the following:(1) a partition of the set of board types into families which are to be assigned to di�erent linesof placement machines, and a sequence of the board types within each family, indicatingin which order these board types will be produced,(2) for each board type, a partition of the set of component locations on this board, that is adecision concerning which locations are going to be served by which machine,(3) for each machine, a feeder rack assignment, that is an assignment of feeders to positions inthe feeder rack,(4) for each pair consisting of a machine and a board type, a component placement sequence,that is an order in which components are placed at the locations on this board that areserved by this machine, and 1



(5) for each pair consisting of a machine and a board type, a component retrieval plan, thatis, for each component on the board, a rule indicating from which feeder this componentshould be retrieved.In this paper, we focus on problems (2)-(5), thus we deal with planning problems that arisewhen a given family of board types is assembled by a single line of placement machines. InSection 2 we give a precise description of these problems (including some of the technologicalfeatures of the placement machines used), and in Section 3 we describe our solution procedure.Section 4 is devoted to the performance of our procedure on real-life instances and Section 5contains the conclusions. The remainder of the current section is devoted to literature relatedto the assembly of PCBs.In case one strives to minimize the makespan for a single machine producing a single boardtype, the planning problem above reduces to problems (3), (4) and (5) (feeder rack assignment,component placement sequence and component retrieval plan). A number of studies focus onproblems (3) and (4) only, since problem (5) vanishes when precisely one feeder is availableper component type. In such a case, the interaction between problems (3) and (4) is of crucialimportance. This issue has been identi�ed by Drezner and Nof [16] (see also Walas and Askin [26]for a similar application in the production of metal parts). An approach based on locationtheory is reported by Foulds and Hamacher [17]. Leip�al�a and Nevalainen [20] suggest a solutionprocedure based on heuristically solving a TSP and a quadratic assignment problem in aniterative fashion. Other heuristic approaches are described in Francis, Hamacher, Lee andYeralan [18] (see also Viczi�an [24]) and Younis and Cavalier [27]. Ball and Magazine [8] showthat, when a feeder rack assignment is given, an optimal component placement sequence can, insome situations, be found in polynomial time. Bard, Clayton and Feo [10] propose a planningprocedure tailored for a speci�c placement machine, in which problem (5) is explicitly addressed.(see also Crama, Flippo, van de Klundert and Spieksma [13]). Further, Ahmadi, Grotzinger andJohnson [2] present a model which determines, among other parameters, with how many feedersof each type the placement machine should be equipped.When the planning problem is extended to a line of placement machines producing a singleboard type, problem (2) comes up. Crama, Kolen, Oerlemans and Spieksma [14] and vanLaarhoven and Zijm [19] each propose a solution procedure for a line of CSM-60 placementmachines. Lofgren, McGinnis and Tovey [21] treat a case where a board is allowed to visit amachine more than once.Relatively few published studies deal with the case where multiple boards types are to beassembled by one or more machines: we mention Carmon, Maimon and Dar-el [11], Balakrishnanand Vanderbeck [7] and Askin, Dror and Vakharia [6]. In this situation the following issues mayappear (cf. problem (1)). Since the set of component types needed to produce all board typescan be larger than the available capacity in the feeder racks, one may be forced to partitionthe set of board types into subfamilies which can be produced with a �xed feeder assignment.Thus, one may have to solve problems (2)-(5) a number of times during the planning period toproduce all board types. This problem is addressed in Tang and Denardo [22], [23] and Bard [9].A number of authors have further investigated this batch selection problem (see Crama [12]for further references). Alternatively, given a number of assembly-lines, one may try to solveproblem (1) in such a way that each family can be produced on a line (which describes thesituation at hand, see Section 2). Also, one may partly circumvent the problem by prescribingsome feeders (the `common' feeders) to be permanently assigned to certain positions in the rack,2



whereas other feeders (the `exotic' ones) are loaded as needed, see Carmon, Maimon and Dar-el [11], Balakrishnan and Vanderbeck [7] and Agnetis, Askin and Sodhi [1] for a description ofthis idea. Askin, Dror and Vakharia [6] study the assembly of multiple board types by multiplemachines in an open shop (rather than 
owshop) environment. Another issue which becomesapparent is that, when dealing with more than one board type, problem (3) becomes much morecomplicated. Indeed, most of the planning procedures described in the literature we mentionedhere, attempt to determine a feeder rack assignment for which an optimal component placementsequence can be found. However, when dealing with multiple board types, one has to �nd asingle feeder rack assignment such that a good placement sequence can be found for each boardtype (see sections 2 and 3).Finally, the technology employed by the placement machine under consideration may giverise to speci�c planning problems (see for instance Ahmadi and Kouvelis [4]). An overview ofissues which arise in the operational planning of PCB assembly can be found in Ahmadi [3],Crama, Oerlemans and Spieksma [15] and Voogt [25].2 Problem descriptionIn this section we focus on a precise description of problems (2)-(5) for the situation encoun-tered at a plant of Philips. Subsection 2.1 re�nes the description of the setting given in theintroduction. Subsection 2.2 is devoted to the technological features of the placement machinesunder consideration.2.1 Properties of the assembly environmentThis subsection deals with the following issues:� we motivate the choice of our objective function,� we discuss the nature of the feeder rack assignment problem for our situation, and� we describe the so-called component retrieval problem.At the plant investigated, several lines of placement machines are devoted to the assemblyof PCBs. Production is mostly organized in such a way that changing feeders for other purposesthan re�lling should not occur. Thus, the capacity of the feeder racks in the assembly-linerestricts the set of board types which the line can handle: this available capacity should be largeenough to accommodate all feeders needed to assemble the family of board types assigned tothat line. Accordingly, at these plants, problem (1) mentioned in Section 1 is reformulated totake this restriction into account. From now on we assume that problem (1) has been solved;thus, we deal with a set of di�erent types of PCBs (a family) that has to be produced by aline of several placement machines (sometimes referred to as the 
owshop) without any feederchanges.It is customary at the plant investigated to produce in batch mode. This means that, withina family, all boards (several hundreds) of one type are assembled consecutively before switchingto another board type. Here again, we assume that the sequence of batch types is exogeneouslydetermined (that is, in Step (1)). Due to competition and e�ciency incentives, it is importantto achieve high throughput rates for the batches. Obviously, the throughput rate of each batch3



is determined by a machine in the line on which the makespan of this board is maximal, calledthe bottleneck machine. Therefore we choose as objective to minimize the sum over all boardtypes of the makespans of these board types on their bottleneck machines (in the software usedby Philips this objective function is only implicitly used). Of course, di�erent types of PCBs,and therefore di�erent batches, may have di�erent bottleneck machines. Thus, more formally,let tpm(s) denote the makespan of a board of type p on machine m for some given solution (i.e.production plan) s. With S denoting the set of feasible solutions, our objective function maybe speci�ed as:mins2SXp maxm tpm(s):This seems a reasonable objective function when the batches are of approximately equal size.Otherwise, weights re
ecting the size of the batches can be incorporated to obtain a moreappropriate objective function.Consider now the feeder rack assignment problem. As mentioned in the introduction, thefeeder rack assignment problem becomes harder when multiple board types are involved. In fact,as far as we know, the feeder rack assignment problem with multiple board types has not beenaddressed explicitly in the literature. Of course, a straightforward way to deal with this problemis to reduce the multiple board case to the single board case. This could be done by creating aso-called composite board type which would consist of all the individual board types superposedon each other. In other words, a �ctitious board type is made on which all locations of all boardtypes of the family occur. Next, one can apply any existing software for solving the traditionalfeeder rack assignment problem for this composite board. In fact, this strategy is currently usedin practice. Our approach takes a di�erent point of view. A main characteristic of our solutionprocedure is to take into account as much as possible the individual board characteristics. Thisapproach can be motivated by observing that although the set of component types needed fordi�erent board types in the family may be similar, the distribution of the locations to be servedon those board types can be quite di�erent. Our solution procedure, which is also based onmachine characteristics to be discussed later, is described in Section 3.Finally, consider the following issue. Imagine, for reasons of simplicity, the problem of mini-mizing the makespan of a single board on a single machine. Obviously, a solution to the resultingplanning problem must consist of a component placement sequence and a feeder rack assignment.However, when components of a same type are assigned to more than one feederslot, solvingthese two subproblems is not su�cient. In addition, we have to decide for each component fromwhich feeder it is to be retrieved. Of course, di�erent decisions for a speci�c component mayresult in di�erent makespans for the board. This issue is raised in Bard, Clayton and Feo [10],and the resulting component retrieval problem is further investigated in Crama, Flippo, van deKlundert and Spieksma [13]. A solution to this problem consists in a mapping from the set ofboard locations to the feeders (where the image of each location is simply the feeder deliveringthe component to be placed at this location). Call such a mapping a component retrieval plan.Then, the component retrieval problem can be stated as follows:Given a component placement sequence and a feeder rack assignment, what component re-trieval plan minimizes the makespan of the PCB?4



Now, the way in which we are able to solve the component retrieval problem (and, in fact,some other issues) depends to some extent on the technological features of the placement ma-chines used. We describe these machines in more detail in the next subsection.2.2 The placement machineIn this subsection we describe the Fuji CP-IV placement machine that is used at the plantinvestigated. This description will enable us to translate the component retrieval problem for aFuji CP-IV into a graph-theoretical problem (see Subsection 3.2).Obviously, the task of any PCB assembly machine is to place components on a PCB. Thesecomponents are to be retrieved or gripped from feeders. Apart from di�erences in techniquesfor gripping and placing (insertion, onsertion, glueing), placement machines di�er in the waythe coordination between placing and gripping activities is achieved. At the plants we consider,two types of placement (onsertion) machines are used, Fuji CP-III's and Fuji CP-IV's. For ourpurpose, it is su�cient to assume here that the Fuji CP-III operates in an identical fashion asthe Fuji CP-IV, but at a di�erent speed.To perform its task, the CP-IV is equipped with a gripper, a placer and a carousel. Thegripping of components from a feeder is performed by the gripper, and the placement is per-formed by the placer. The gripper as well as the placer do not move. Each time a component isgripped (or placed), the feeder rack (or the table containing the PCB) is positioned accordinglybeneath the gripper (placer). The coordination of the interaction between the gripper and placeris achieved through the carousel or CAM. The carousel has 12 positions con�gured in a circleand it rotates clockwise in small rotations such that after 12 rotations it has rotated 360 degrees.See Figure 1 for a schematic representation of the CP-IV.
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Figure 1: The Fuji CP II.Let us now describe how the machine operates. Between two consecutive rotations a compo-5



nent is gripped and a component is placed simultaneously. So, after say i� 1 rotations (i � 7),two things happen at the same time: the i-th component to be gripped is gripped and stored inposition i mod 12 of the carousel, and the i� 6-th component to be placed is placed in the PCBfrom position (i� 6) mod 12 of the carousel. Observe that the gripper is six components aheadof the placer. Since the gripping of component i and the placement of component i � 6 start(and end) at the same time, this implies that, as soon as the grip and the place activities havebeen performed, three devices start to move at the same time: the table moves to bring the nextlocation beneath the placer, the rack moves to bring the next feeder beneath the gripper andthe carousel rotates. The movement which takes maximum time determines the moment whena new iteration starts.Notice that the modus operandi of the Fuji CP-IV described here (which was communicatedto us by Philips) di�ers slightly from the one given in Bard, Clayton and Feo [10]. In oursituation, the start of a grip activity coincides with the start of a place activity (at least afterthe �rst 6 rotations). This requirement is not present in the description given in [10]. It turnsout that this requirement allows us to model the component retrieval problem straightforwardlyas a shortest path problem (see Subsection 3.2), whereas in the absence of this requirement thisis no longer the case (cf. Crama, Flippo, van de Klundert and Spieksma [13]).As a �nal remark to this section, the reader will understand that the description above,although perhaps detailed, is not an exact replica of the truth. For instance, due to the factthat the speed of the carousel depends on the type of the components it carries, not all carouselrotations last equally long. Also, components which have to be rotated may take some extra timeof the placer. Further, there are di�erences between a Fuji CP-III and a Fuji CP-IV placementmachine besides speed. Although it is possible to model the aforementioned and other physicalcharacteristics, we have chosen not to do so, for reasons of simplicity and since most of thesecharacteristics will have only marginal e�ects on the makespans.3 The planning procedureLet us now return to the general planning problem. Summarizing the discussion in the previoussections, we want to �nd:1. for each machine, a feeder rack assignment,2. for each board type, a component placement sequence on each machine, such that for eachPCB of that type, the sequences form a partitioning of the components required by thePCB,3. for each pair consisting of a machine and a board type, a component retrieval plan.In this section we describe our planning procedure. This procedure is divided into twophases: Phase 1 determines a feeder rack assignment for each machine, and Phase 2 produces,for each pair consisting of a machine and a board type, a component placement sequence and acomponent retrieval plan, given the feeder rack assignment of Phase 1. Accordingly, this sectioncontains two subsections each devoted to the description of a phase in the planning procedure.Clearly, the planning procedure we present is hierarchical in nature: �rst, a feeder rackassignment is computed, next a component placement sequence and component retrieval planare determined. Of course, the following question then arises: how do we evaluate feeder rack6



assignments computed during Phase 1 without computing a placement sequence and retrievalplan, that is, without solving Phase 2? We deal with this issue by computing an estimateof the makespan of each board type on each machine given the feeder rack assignment and acorresponding partition of the components of each board type (see (2) in Section 1). Theseestimates are then used as an indication of the quality of the feeder rack assignments foundduring the execution of the algorithm.Before describing Phase 1 in more detail, let us �rst start with some observations related tothe placement machines described in the previous section.Observation 1: A feeder is nothing but a tape containing components of a certain type. Thesetapes are expensive, and to keep inventory of these tapes low, it is desirable to restrict the num-ber of tapes containing components of a certain type. In the plant considered, often a bound of2 feeders for each component type was imposed, that is, no more than 2 feeders with the samecomponent type can be used on the line. We adopt this restriction in our planning procedure.Observation 2: A basic characteristic, which has been observed by other authors as well (seee.g. Ahmadi, Grotzinger and Johnson [2] and Bard, Clayton and Feo [10]) concerns the so-calledfree movement. To explain this, consider again Figure 1. Between two consecutive grip (or place)activities, the carousel must rotate, and this takes a certain amount of time. During this time,the feeder rack, as well as the table containing the PCB, can move without increasing themakespan. Since it is impossible to avoid carousel rotations, this phenomenon occurs betweeneach pair of consecutive grip (or place) activities. These movements of the feeder rack and thetable, taking place during a carousel rotation, are referred to as free movement. Of course, thesigni�cance of this e�ect depends on the magnitude of the free movements. However, it can beconsiderable. In our situation, free movements of the feeder rack correspond to 1 position onthe rack, that is, repositioning the feeder rack by 0 or 1 feeders is free. Concerning the table,free movement corresponds to approximately 2 cm on the table containing the PCB. Since theaverage PCB is approximately 20 � 30 cm, and the feeder rack contains mostly about 100feeders, long table movements are less time consuming than long feeder rack movements. Hencewe restrict the planning procedure to considering solutions in which all feeder rack movementsare short, expecting that given this short feeder rack movements we can �nd a componentplacement sequence in which the table movements are not too long either. More speci�cally, weassume in Phase 1 that the predecessor of a component retrieved from some feeder i, is retrievedfrom feeder i� 1, feeder i itself, or feeder i+ 1 (thereby utilizing the free movement as much aspossible as far as the feeder rack is concerned). The solutions we obtain show that it is indeedpossible to construct feeder rack assignments and component placement sequences such thatsubsequent components are mostly retrieved from consecutive feeders while the larger part ofthe table movements is free.3.1 Constructing a feeder rack assignment: Phase 1Let us now describe Phase 1. It consists of �ve steps.Step 1: Determine which component types will have 2 feeders in the 
owshop (see Observation1).Step 2: Decide, for each feeder, which locations it serves on each board type.7



Step 3: Construct an arbitrary feeder rack assignment.Step 4: Estimate the makespan for each board type on each machine, given the current feederrack assignment.Step 5: If some stopping criterion is satis�ed, exit. Else, improve the feeder rack assignmentusing local search and go to Step 4.Consider Step 1. In view of Observation 2 above, it is desirable for components that arewithin free gripping movement of each other, to be not too far apart from each other on theboard, since otherwise the board movement (between consecutive placing operations) may takea long time. Thus, if there are more magazine rack positions than component types, one wayto avoid long table movements is to assign two feeders to component types whose componentsare, on some boards, far apart. Of all strategies we have tested to utilize this idea the followingsimple strategy performed best. Compute, for each combination of board type and componenttype, a short Hamiltonian path through the corresponding locations using some (TSP) heuristic(we use farthest insertion). For each component type t, let lt be the length of the longest edgeoccurring in some path corresponding to component type t. Next, we list the component typesin order of decreasing lt value and we assign two feeders to as many component types as possible,starting at the top of the list and proceeding downward, until total capacity of the feeder racksis exhausted (or until each type has two feeders). In this way it is decided which componenttypes have more than one feeder. Notice that we use individual board type characteristics toselect those component types.Step 2 resembles the component retrieval problem. The di�erence is that the position of thefeeders in the rack is not �xed yet. To partition the locations corresponding to components ofeach type for which there are two feeders placed in the rack, we propose the following. First, weconsider a board type which has led us to assign two feeders to a component type t: considerboard type p on which the Hamiltonian path as computed in Step 1 contains an edge of lengthlt. Removing this longest edge partitions the locations corresponding to components of type ton board type p into two subsets, say Lt;p1 and Lt;p2 .We have to decide next how to partition the components of this type on boards otherthan boards of type p. We take the following approach. For each location corresponding to acomponent of type t not on board type p, we determine the minimal distance to some location inLt;p1 and, similarly, we determine the minimal distance to some location in Lt;p2 . Next, we assignthis location to the subset whose corresponding minimal distance is minimal. (Notice that weassume here that a distance is known between two locations which do not occur on the sameboard type. These distances are computed as if the components where on a same board, as e.g.the composite board mentioned earlier. This composite board can be constructed unambigouslysince all component locations are expressed in terms of coordinates, and the position of theboards on the table are given.) This approach has outperformed several alternative approachesin our computational experiments. Its success should be contributed to the fact that in thisway, for each board type, the set of locations to be served by a feeder lies in the same part ofthe board.In this way, we obtain two sets of locations for each component type that has two feeders inthe 
owshop. More precisely, we refer to this partitioning of locations corresponding to compo-nents of a certain type as a clustering, and we refer, informally, to all components that are to8



be retrieved from the same feeder as a cluster. In Figure 2 we give a more formal description ofthe algorithm described in steps 1 and 2.In Step 3 we simply assign each feeder arbitrarily to some position in the racks of the ma-chines such that a feasible feeder rack assignment is obtained.Consider Step 4. Recall from Observation 2 that, given a feeder rack assignment, we intendto construct component placement sequences with the property that the rack moves at mostone position between any two consecutive grip activities. In addition, when estimating themakespan of a board given a feeder rack assignment, we assume that one pass of the feeder rackthrough all feeders gives a good approximation of an optimal way of moving the feeder rack.More explicitly, we estimate the makespan by assuming that the feeder rack movement in anoptimal solution follows approximately the following pattern: the rack starts at the feeder inthe left most position, to be called feeder 1. Then, all components are gripped (and placed)of the cluster assigned to feeder 1, interleaving them by gripping (and placing) components offeeder 2, ending with a grip of a component from feeder 2. This is followed by gripping (andplacing) the remainder of the components that are to be gripped from feeder 2, interleaved withthe gripping of components of feeder 3 et cetera.This leads to a solution in which all feeder rack movements are free (if at least one componentis retrieved from each feeder). Therefore, the makespan depends on the length of the tablemovements only, i.e. the length of a Hamiltonian path through the locations, that respects thepattern of the feeder rack movements described above. For our purposes it is desirable to beable to compute quickly an estimate of the length of such a Hamiltonian path. Therefore wepropose the following method, that does not use the exact feeder rack assignment, but onlyknowledge of which feeders are assigned to adjacent positions in the feeder rack. Notice thatfor every pair of feeders there is a set of locations on a board where the components from thesefeeders will be placed. We compute, for every pair of feeders, a value which equals the length ofa Hamiltonian path through these locations, thereby utilizing the fact that they may be grippedinterleavingly. Notice that these quantities can be computed independently of a feeder rackassignment, reducing the amount of computations required to evaluate individual feeder rackassignments.Of course, it may well be the case that, given a feeder rack assignment and some board type,there is a set of adjacent feeders from which no component is taken at all. In that case, thefeeder rack movement is not free, and the makespan depends on the duration of this feeder rackmovement. We next present an algorithm to estimate the makespan of every board type in thefamily for a given feeder rack assignment on some machine.We compute, for each board type p in the family, two so-called cluster distance matricesDp and Ep. Dpij represents the length of a (short) Hamiltonian path through all locations ofclusters Ci and Cj that are to be placed on p. Epij is the maximum of two numbers, Ep1ij and Ep2ij ,where Ep1ij is the minimum distance over all distances between locations of Ci and Cj on boardtype p and Ep2ij corresponds to the distance between the feeders positioned in the rack whichcorrespond to clusters Ci and Cj . Notice that these computations must be performed e�ciently,since for the problem instances described in Section 4, the computation of the matrices Dprequires constructing several hundreds of thousands Hamiltonian paths.Recall that the order in which the feeders are placed on the rack is known and let us refer9



Lt: set of locations corresponding to components of type t.Lt;p: set of locations corresponding to components of type t on a board of type p.P t;p: sequence of locations corresponding to components of type t on a board of type p inducedby a Hamiltonian path.dt;pij : distance between location i and location j corresponding to components of type t on aboard of type p.dis(i; L): minimum distance over the locations in the set L between location i and a locationfrom L.#t: number of component types.#p: number of board types.cap: number of feeder rack positions in the line.
1. for t := 1 to #t dofor p := 1 to #p doconstruct a Hamiltonian path P t;p using distance matrix dt;p;let the value of the longest edge in P t;p be denoted by zt;p;2. for t := 1 to #t do(a) lt :=maxpzt;p;(b) pt :=arg maxpzt;p;3. sort the component types in decreasing order of lt and index them 1; 2; : : : ;#t;4. t� := min(cap, 2�#t)�#t; comment: t� corresponds to the number of feeder duplications5. for t := 1 to t� do(a) partition Lt;pt into Lt;pt1 and Lt;pt2 by removing the longest edge from P t;pt ;(b) C2t�1 := Lt;pt1 ;C2t := Lt;pt2 ;(c) for each i 2 [p6=ptLt;p doif dis(i; Lt;pt1 ) < dis(i; Lt;pt2 ) then C2t�1 := C2t�1 [ fig else C2t := C2t [ fig;6. for t := t� + 1 to #t do Ct�+t := Lt;Figure 2: Algorithm for steps 1 and 2
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to a feeder from which components are gripped in order to assemble a board of type p as anactive feeder. Further, each feeder, except the leftmost and the rightmost ones, is adjacent totwo other feeders to which we will refer as its left neighbor and its right neighbor respectively.Now, to estimate the makespan of a board of type p on a machine we do the following.First, consider for each active feeder, its left neighbor. If its left neighbor is active, wechoose from the Dp matrix the entry corresponding to these two feeders (the value of this entryequals the length of a Hamiltonian path through the locations of both corresponding clusters).If the left neighbor is not active, we choose the diagonal element of Dp corresponding to thecurrent active feeder (the value of this entry equals the length of a Hamiltonian path throughthe locations of the corresponding (single) cluster). Second, consider for each active feeder itsright neighbor. If it is active we do nothing, else we again choose the diagonal element of Dpcorresponding to the current active feeder. Finally, we sum all chosen entries. Observe nowthat each location is part of two Hamiltonian paths. To correct for this we simply divide thecomputed sum by 2. In this way we estimate the time spent on table movements.In order to estimate the time spent on rack movements we identify pairs of active feederswhich are consecutive but not adjacent. For each such pair we �nd the corresponding entryin Ep, then we sum these values and use this sum to estimate the time spent on feeder rackmovements. A more formal description of the algorithm estimating the makespan of board typep on a machine with a given feeder rack assignment is as given in Figure 3.Using the algorithm in Figure 3, we get an estimate of the makespan of every board typefor a given feeder rack assignment for each machine in the 
owshop, without having to specifya component placement sequence. Based on these estimated makespans, we can also get anestimate of the objective function for a given feeder rack assignment for each machine. Ofcourse, the accuracy of such an estimate depends on the quality of the Hamiltonian pathsconstructed, and on the component placement sequences that will eventually be found. (We willsee later that the estimates are usually extremely good (see Table 2 in Section 4)).Step 5 of our solution procedure optimizes the feeder rack assignments, using the estimatedobjective function value found in Step 4. In fact, it is in this step that our estimates are usedextensively. Throughout this step objective function evaluations are based on the estimates ofthe makespans, instead of the actual makespans. We try to optimize the feeder rack assignmentby using two heuristics alternately.One heuristic tries to exchange between two machines a pair of clusters, together with thecorresponding feeders, to better balance the workload. To determine which pair of machines arecandidates for exchanging clusters we do the following. For each pair of machines we sum overall board types the absolute di�erence of the respective processing times. Next, we select thatpair of machines for which this sum is maximal, and attempt to improve our current feeder rackassignment by exchanging feeders (and corresponding clusters) between these machines. Nowwhat do we mean by improve? Obviously, what we want to improve is the objective functionas described in Subsection 2.1. However we have chosen another surrogate objective functionto speed up the heuristic. Let Mi and Mj be the machines between which feeders are beingexchanged, then the surrogate objective function takes on the value which the real objectivefunction would have taken, had machines Mi and Mj been the only machines in the 
owshop.The other heuristic reoptimizes the feeder rack assignment for a single machine. Moreprecisely, for a given machine, it attempts to minimize the sum of the makespans of the boardson that machine, by optimizing the feeder sequence. This sequencing problem is solved usingan insertion heuristic in which the makespan estimation algorithm given in Figure 3 is used to11



�: a permutation of the feeders, i.e the order in which the feeders are placed on the rack (sayfrom left to right),Cpi : the set of components from cluster Ci (the cluster corresponding to the feeder positionedin �(i)) that have to be placed on board type p.1. i := 1; span := 0;2. while jCp�(i)j = 0 do i := i+ 1;3. span := span+ 1=2�Dp�(i);�(i);i := i+ 1;4. while jCp�(i)j > 0 do(a) span := span+ 1=2�Dp�(i�1);�(i);(b) i := i+ 1;(c) if i = total number of feeders then set k = i and goto step 7;5. k := i� 1;span := span+ 1=2�Dp�(k);�(k);6. while jCp�(i)j = 0 do(a) i := i+ 1;(b) if i = total number of feeders then goto 7;7. span := span+Ep�(k);�(i);goto 3;8. span := span+ 1=2�Dp�(k);�(k);Figure 3: Makespan estimation algorithm
12



evaluate the insertions.Together these two heuristics deliver better solutions faster than other approaches we havetested. Since the heuristics work with di�erent objective functions, which are in turn di�erentfrom the original objective function, the process of calling both heuristics in turns does notneccesarily converge. Therefore we have the following stopping criterion. We specify someupperbound (say 5 secs.), and the algorithm stops if after some iteration, the maximum overall pairs of machines of the sum of the absolute di�erences of their makespans does not exceedthis upperbound. This strategy implies that when the algorithm stops, there may still be someroom for improvement of the balance. Achieving these last tenths of percents of improvementis time consuming, and becomes less attractive as one notices that this phase of the algorithmuses estimations rather than the actual makespans.3.2 Constructing a component placement sequence and a component re-trieval plan: Phase 2Let us now describe Phase 2. It consists of three steps.Step 1: Determine, for each machine - board type combination, a component placement se-quence.Step 2: Determine, for each machine - board type combination, a component retrieval plan.Step 3: Improve the component placement sequence using local search. If no improvements arefound, stop, else go to Step 2.Consider Step 1. For a given board type and machine, we construct an initial componentplacement sequence as follows. First assume that each location is served from the feeder associ-ated to the cluster containing that location. For the �rst two feeders, determine two locations,c1 (from the left most feeder, feeder 1) and c2 (from the feeder adjacent to it, feeder 2), thatare nearest to each other. Then sequence before c1, all locations that are to be served from theleft most feeder as well, using some insertion heuristic. Next determine the two locations c02from feeder 2, and c03 from feeder 3, that are nearest to each other, and sequence all remaininglocations that must be served from feeder 2 between c2 and c02 et cetera. Given this sequencewe solve the component retrieval problem (see below), which provides a �rst solution.Consider now Step 2. How do we solve the component retrieval problem? In order to answerthis question, recall that, when solving this problem, we assume that a component placementsequence and a feeder rack assignment are given. We are going to construct a graph G and showthat the component retrieval problem is equivalent to �nding a shortest path in this graph.We assume that the components are placed in numerical order (so component i refers to thei-th component in the component placement sequence). Furthermore, we assume that followingthe gripping of the last component, six more components are to be gripped, from the same feederfrom which the last component was gripped. These additional `dummy' grips are performed inparallel with the last six places, and do not increase the makespan since the feeder rack need notbe repositioned to perform them. Similarly we assume that there are six dummy place activitiesto accompany the �rst six grip activities, that also do not increase the makespan. So, betweeneach two consecutive carousel rotations, both a grip and a place operation must take place. We13
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: : :Figure 4: Graph Gde�ne n to be the number of such pairs. (Notice that n exceeds the number of components bysix.) Further, let K equal the number of feeder rack positions.For ease of exposition, we refer to the location on the board corresponding to component ias location i, 1 � i � n. Let�gp = time needed to grip (and hence place) a component,�c = time needed for a carousel rotation,�t(i; i + 1) = time needed for a table movement to bring location i + 1 beneath theplacer, starting from a position in which location i is beneath the placer,1 � i � n� 1, and�f(r; s) = time needed for a rack movement to bring feeder rack position r beneath thegripper, starting from a position in which feeder rack position s is beneaththe gripper, 1 � r; s � K.We construct a graph G as follows. Let Fi � f1; : : : ;Kg be the index set corresponding tofeeder rack positions which hold feeders from which component i may be retrieved. The graphhas a source, a sink and n intermediate layers. Each layer i contains jFij vertices, denoted byvij ; j 2 Fi; 1 � i � n. Indeed, there is one vertex in layer i for each feeder from which componenti may be retrieved. The interpretation of vertex vij is the start of the grip (and place) activitywhich grips component i from feeder j. Each vertex in layer i has an arc going to each vertexin layer i + 1, the source has an arc going to each vertex in layer 1 and each vertex in layer nhas an arc going to the sink. There are no other arcs. See Figure 4 for a representation of G.The weight of an arc emanating from the source is 0, and the weight of an arc going to the sinkis �gp. The weight of an arc from vir to vi+1s , r 2 Fi; s 2 Fi+1; 1 � i � n� 1, equals:�gp+max(�c;�t(i; i + 1);�f(r; s)):Notice that when one interprets vertex vir as the start of the grip (and place) activity whichgrips component i from feeder r, the weight of an arc de�ned above is equal to the time betweentwo consecutive grips. (This follows from the description in Subsection 2.2).14



Consider now any path in the graph G from the source to the sink. This path contains onevertex from each layer, re
ecting a choice of feeders for the retrieval of the n components. Fur-ther, since the weight of an arc corresponds to the time between two consecutive grip activities,the length of the path equals the makespan of the assembly of the board. Also, it is easy toverify that each solution of the component retrieval problem corresponds to a unique path in G.Since one is interested in the shortest makespan, it follows that the component retrieval problemreduces to a shortest path problem on G, for which e�cient algorithms are available (see forinstance Ahuja, Magnanti and Orlin [5]). (The recursive formulation given in Bard, Claytonand Feo [10] would also lead immediately to a polynomial time algorithm for this version of thecomponent retrieval problem.)Finally, we restrict ourselves here to noticing that, even for a given component placementsequence and a feeder rack assignment, the computation of the makespan of a PCB is in generala nontrivial task. In fact, for other technologies the component retrieval problem may becomesubstantially more di�cult (see Crama, Flippo, van de Klundert and Spieksma [13]).In Step 3, we try to improve the placement sequence by TSP-like local search techniques,using 2opt and a restricted version of 3opt. This local search process may be very time consumingsince each local search step requires solving the component retrieval problem. Therefore we havesought ways to speed up this local search phase. An easy way of doing so, without substantiallyin
uencing the e�ectiveness of the 2opt heuristic, is to keep the component retrieval plan �xed.In this way, the time consuming resolving of the component retrieval problem in each iteration ofthe 2opt heuristic can be skipped. (It should be noted however, that each iteration still requiresperforming some non-negligible computations due to the fact that changes in the componentplacement sequence will change for some components, the component that is gripped while it isbeing placed.) On the other hand, especially for the restricted 3opt heuristic (that essentiallytakes out one component of the placement sequence and then tries to reinsert it) resolving thecomponent retrieval problem may be well worth the additional e�ort. We have tried to reducethe running time of the local search heuristics by implementing several ideas that keep themfrom considering or evaluating (by solving the component retrieval problem) moves that will notresult in an improvement.We aimed to keep the running time of the entire algorithm (phases 1 and 2) within certainlimits. As a consequence the algorithm cannot spend too much time optimizing the componentplacement sequence of each board, even though the local search heuristics usually improve thesolutions signi�cantly. The methods described above to speed up these heuristics ensure thatthe bene�ts of these heuristics are realized.Notice that the feeder rack movements resulting from the �nal component placement se-quences may not always utilize free movements as the intended feeder rack movements in Phase1 of the solution approach did. Further, notice that the clustering found in steps 1 and 2 ofPhase 1 can be changed by the component retrieval plan.4 Computational resultsIn this section we test our planning procedure on two datasets. Dataset 1 corresponds to afamily consisting of 9 board types assembled by a line of 3 CP-IV machines. Dataset 2 corre-sponds to a family consisting of 7 board types assembled by a line of 2 machines, a CP-IV and a15



board type Machine 1 Machine 2 Machine 3NoC time NoC time NoC time1 50 13.8 52 13.5 49 13.52 49 13.8 52 13.5 50 13.83 86 21.1 86 21.2 84 21.24 66 17.4 72 18.4 70 18.55 25 7.9 28 8.0 25 7.06 25 7.9 28 8.2 26 7.57 42 11.3 43 12.2 47 13.48 58 15.7 61 16.1 60 16.99 304 69.4 293 69.3 332 71.0timeTotal makespan 184.8Current solution 244.1Lower bound 154.8Table 1: Final results Dataset 1CP-III machine. These datasets are real-life data made available to us by Philips. The planningprocedure we described above is programmed in Turbo Pascal and run on a personal computerwith a 486 33MHz processor. The results of our procedure are described in Tables 1, 2 and 3.To explain Table 1, consider a column corresponding with a machine. An entry in this columnhas two numbers: "NoC" is the number of components of the speci�c board type placed by thatmachine, and "time" equals the number of seconds it takes to place these components by thismachine. The total makespan is computed by summing over the board types, the makespan ofthese boards on their bottleneck machines. This total makespan is compared with the makespanof the solutions obtained by Philips (referred to as current solution) and with a lower bound.This lower bound is computed as follows. Let �c represent the time a single carousel rotationtakes on the fastest machine in the line; further, let totcomp be the total number of componentsto be placed to produce a single board of each type in the family, and let m equal the numberof machines in the line. Then �c�totcompm is a valid lower bound for the makespan. For dataset 1,we are able to improve the current solution by almost a minute, closing 66% of the gap betweenthe lower bound and the current solution.In Table 2 the estimates of the makespans as computed in Phase 1 are presented. We con-clude that these estimates are accurate enough (usually within a few percent) to give a realisticimpression of the actual makespans delivered by Phase 2. This might for example be useful toevaluate alternative solutions to the partitioning of board types into families (problem (1) inSection 1).Table 3 consists of four subtables, arising as follows. As mentioned in Subsection 2.2, thedi�erence between a CP-III and a CP-IV is its speed. To model this di�erence, we assume thatspeed (CP-IV) = speedfactor * speed (CP-III). Since this speedfactor (spf) is a simpli�cation16



board type Machine 1 Machine 2 Machine 3actual estimated actual estimated actual estimated1 13.8 13.6 13.5 13.1 13.5 13.52 13.8 13.5 13.5 13.1 13.8 13.63 21.1 22.2 21.2 21.3 21.2 22.24 17.4 18.8 18.4 18.5 18.5 19.25 7.9 8.2 8.0 8.4 7.0 7.46 7.9 8.1 8.2 8.4 7.5 7.67 11.3 12.3 12.2 12.8 13.4 13.38 15.7 16.4 16.1 17.2 16.9 17.09 69.4 71.2 69.3 72.2 71.0 71.6Table 2: Estimated Results Dataset 1spf = 1.15 Machine 1 Machine 2board type NoC time NoC time1 107 28.7 129 29.82 138 37.1 164 37.13 137 37.2 162 37.04 306 80.7 378 82.65 118 31.3 139 31.66 149 39.2 174 39.57 150 39.5 172 38.8timeTotal makespan 297.3Current solution 361.8Lower bound 284.2

spf = 1.20 Machine 1 Machine 2board type NoC time NoC time1 104 29.4 132 31.02 134 37.3 168 39.13 131 37.2 168 38.94 303 82.2 381 84.65 112 31.7 145 33.76 144 40.4 179 40.97 144 39.4 178 40.8timeTotal makespan 309.0Current solution 361.8Lower bound 289.8spf = 1.25 Machine 1 Machine 2board type NoC time NoC time1 102 30.2 134 32.12 132 38.2 170 39.43 131 38.2 168 39.14 299 84.1 385 86.45 110 33.0 147 34.26 142 41.5 181 41.57 140 41.1 182 41.3timeTotal makespan 314.0Current solution 361.8Lower bound 295.2

spf = 1.30 Machine 1 Machine 2board type NoC time NoC time1 99 31.3 137 31.12 128 39.5 174 39.13 126 39.2 173 38.74 285 84.6 399 87.75 105 31.1 152 34.36 138 42.7 185 41.47 137 41.0 185 41.4timeTotal makespan 315.9Current solution 361.8Lower bound 300.3Table 3: Final results Dataset 217



of reality it is hard to estimate exactly. The speedfactor is believed to be approximately 15%,but Table 3 also shows the outcomes for other values. Although it is hard to make an exactstatement regarding the outcomes of our algorithm based on Table 3, it shows that our planningprocedure is quite robust. The makespan grows more or less proportionally to the speedfactor.Moreover, each of the four solutions exceeds the lower bound by not more than 7%, while thecurrent solution exceeds the lower bound by more than 20%.In our view, the main di�erence between the approach presented here and the approach usedto obtain the solutions currently used in practice is that we try to use as much as possible theindividual board type characteristics, as opposed to the existing software which uses a compositeboard (see Section 2). Hence, we believe that this di�erence in solution approach causes, at leastfor a large part, the gap between the solutions found by the two approaches. How can we testthis hypothesis? If it were true, then it would imply that, for families consisting of a singleboard type, the solutions found by the two approaches should not di�er as much as they dofor larger families. Thus, to substantiate our claim that individual board type characteristicsmatter, we performed the following experiment (see Table 4). We chose board type no. 9 ofdataset 1 and considered this board type once as a family (see the row in Table 4 denoted by"sole member") and once simply as part of its original family (see the row in Table 4 denoted by"part of family"). For both cases we applied our approach (see the column in Table 4 denotedby "individual approach") and the approach currently used at Philips (see the column in Table4 denoted by "composite approach").board type no. 9 individual compositeof dataset 1 approach approachsole member 70.0 74.3part of family 71.0 79.4Table 4: Comparison between the two approaches for board no. 9 of dataset 1The results in Table 4 seem to support our claim. Indeed, in our approach, the makespanbarely increases (1 second) when the board is handled as a member of a large family rather thanby itself. In the composite board approach, this increase amounts to 5 seconds. Alternativelyviewed, the individual approach gives a makespan for board no. 9 as part of its family which isbetter by 8.4 seconds than the solution found for this board by the composite approach. Only 4.3seconds (the di�erence between the makespans found for board 9 when considered as a family)of this improvement can be attributed to better search techniques, and thus almost 50% of thetotal improvement is due to the di�erence in the two approaches, or more concretely, to takinginto account the individual board type characteristics.A similar experiment was conducted with a board type of dataset 2. As in dataset 1, weobserved that approximately 50% of the total improvement could be attributed to the individualboard type characteristics. Thus, the results of these experiments tend to support the hypothesis.Concerning the topic of running times, we restrict ourselves to the following general remarks.The running time of Phase 1 of the planning procedure (that is, constructing a feeder rackassignment) varies. Due to the fact that it is much harder to balance three machines thantwo, step 5 takes much more time for dataset 1 than for dataset 2. The exact running time18



depends on the dataset and the stopping criterion, but Phase 1 takes approximately 15 minuteson a 33Mhz 486. For both instances, Phase 2 took roughly about 10 to 15 minutes. In fact,the running times given above are in the same order of magnitude as the running times of theexisting software.Summarizing, Tables 1, 2 and 3 show that the solution procedure we present yields, at leastin terms of the makespan, signi�cantly better results than the existing software. For a largepart, this di�erence is caused by the fact that we solve the feeder rack assignment problem usingindividual board characteristics contrary to existing software which uses a composite board type(see Tables 4 and 5). Another (small) advantage of the solutions found by our approach is thatthe movements of the feeder rack tend to be relatively small. This causes less wear for the rack.5 ConclusionsThis paper deals with the assembly of a family of board types by a single line of placement ma-chines. By decomposing the planning problem, a number of subproblems arise. An importantsubproblem is to construct a feeder rack assignment for each of the machines that allows us toconstruct good placement sequences for each of the board types in the family. Here, we explicitlyaddress this problem and we propose a heuristic based on the individual board characteristics.This heuristic is incorporated into a solution procedure which delivers a solution for the generalplanning problem. Since we strived for running times of the same order as the existing software,we only considered very simple local search methods for some of the subproblems. The compu-tational results show that this approach works well.Acknowledgements:We would like to thank Mr. Voogt and Mr. Driessen of Philips NV for their willingness toprovide us with data and explanations and for their insightful comments on an earlier versionof this paper.The �rst author gratefully acknowledges the partial support of ONR (Grants N00014-92-J-1375 and N00014-92-J-4083) and NATO (CRG931531).References[1] Agnetis, A., R.G. Askin and M.S. Sodhi, Tool addition strategies for 
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