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Abstract. Production planning and scheduling models arising in automated manufac-

turing environments exhibit several features not encountered in models developed for 
traditional production systems. For instance, models of automated facilities typically in-
clude tooling constraints which reflect the possibility for a machine to use different tools 
in order to perform successive operations, within limits imposed by the size of the tool 
magazine. Also, these models often account for the existence of flexible material han-
dling systems whose activities must be synchronized with the machining operations in 
order to optimize system utilization. In this paper, we describe a few interesting combi-
natorial optimization problems proposed in this framework, we point to their relation-
ships with models investigated in seemingly remote areas, and we identify a number of  
challenging open problems. 
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1 Introduction: What this paper is (and is not) about 
 
In this paper, we discuss a few interesting combinatorial optimization models which 

we believe to play a central role in mathematical programming approaches to production 
planning and scheduling for highly automated (flexible) manufacturing systems. 

This article is not a survey, in the sense that we have no claim to provide a system-
atic or exhaustive review of the many uses to which combinatorial optimization models 
have been put in order to formulate management issues arising in automated manufactur-
ing settings. There are several reasons to this negative choice. First of all, the abundance 
of research contributions in this field and the diversity of the issues that they tackle have 
been so great over the last few years that any attempt at (near) comprehensiveness would 
result, at best, in a terse enumeration of references. Second, several excellent surveys or-
ganized by subtopics have recently appeared and continue to appear regularly in the lit-
erature. This compartmentalization into distinct, though interrelated, subtopics, is obvi-
ously imposed by the difficulties mentioned above. It makes it easier to apprehend the 
central ideas and the state-of-the-art of research concerning a particular theme. Thus, the 
reader anxious to gain a broad understanding of the rich interplay between management 
science and automated manufacturing is referred to all or any of the recent articles 
[1,4,16,17,40,41,63,87,94,98,108,110,111] or to the books [8,19,29,109].  

Now that we have stated what this article is not, let us try to explain what it strives 
to be. Several authors have proposed general frameworks for modeling production plan-
ning and scheduling decisions in flexible manufacturing (see e.g. [66,102,110]). In spite 
of minor differences, there is some kind of general agreement among these authors re-
garding the nature of the decisions that have to be made in the planning process, and on 
how this process can be structured in a hierarchical fashion. What still appears to be 
missing at this point, however, is a clear identification of the fundamental optimization 
models that lie at the core of these decision problems. Of course, many optimization 
models have been proposed in the literature and/or have been successfully applied to the 
solution of real-world planning problems in automated environments. But, oftentimes, 
these models include numerous specific features which, for all their practical or concep-
tual relevance, may obscure some of the basic issues rather than illuminate them. As a re-
sult, little consensus exists as to what a suitable model should be for a given subproblem, 
and the formulations proposed by different authors tend to be difficult to compare.  

From the viewpoint of the theoretician, this a rather disturbing state of affairs. It is 
much like being confronted to the huge literature on production planning in conventional 
manufacturing systems without being able to refer to classical models like the lot-sizing 
model or the various multiprocessor scheduling models (flow shop, job shop, parallel 
machines,...). We are not going to argue here about the benefits gained by focusing on 
simplified (hence restrictive) models: better understanding and classification of various 
approaches, easier complexity analysis, development of efficient algorithms or approxi-
mation algorithms, investigation of intricate formulations through a reduction to simple 
ones, etc. We simply want to point out that this line of attack has proved fruitful in other 
settings, and we will postulate without further justification that it should be the case in 
the present framework as well. 
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Of course, we have no ambition to identify all fundamental models alluded to above. 
Rather, our aim in this paper will be twofold. First, we will describe a few combinatorial 
optimization models which, as far as formulating planning decisions for flexible produc-
tion systems goes, appear to rank among the more basic ones. (Let us immediately add, 
however, that our selection of models has been strongly biased by our idiosyncrasies and 
personal research involvements.) We will try to convince the reader of the importance of 
these models by pointing to some of their occurrences in the research literature, either in 
their pure form or as substructures of more complex models. Interestingly, several of 
these occurrences happen to lie far from the manufacturing world which primarily retains 
our attention here. We take this as additional evidence of the importance of these mod-
els. 

Second, we will mention a number of concepts and techniques that have been ap-
plied by various authors to the solution of the models under discussion. We hope thereby 
to illustrate the richness of the models and to underline their attractiveness from a purely 
theoretical viewpoint. We will also identify a number of  problems currently left open or 
that seem to deserve further attention. 

In Section 2, we briefly present some basic concepts pertaining to automated manu-
facturing systems. In Section 3, we discuss several scheduling models that incorporate 
tool management considerations, and in Section  4, we consider models for simultaneous 
scheduling of parts and material handling systems. 

As a final note, let us stress once more (in case this would not be evident from the 
above discussion yet) that our discussion will be limited to the theoretical underpinnings 
of combinatorial optimization models arising in production planning for flexible manu-
facturing systems. Other points of view are obviously very useful as well but fall outside 
the scope of our essay. (See for instance [66] for an overview of the basic quantitative 
techniques used for the solution of problems arising in automated manufacturing). 

 
 

2 Automated manufacturing systems  
 

2.1 What is an automated manufacturing system? 
 
Our focus in this essay is on modern, highly automated manufacturing systems, i.e.  

production systems presenting one or more of the following characteristics (see for in-
stance [8,52,102,110]). 

A number of machines are used to perform operations on parts. Parts are moved and 
delivered to the machines by some (automated) material handling system (conveyor belt, 
automated guided vehicles, robot, ...). Each operation requires a set of tools that can be 
stored in the tool magazines of the machines. During production, an automatic tool in-
terchanging device is used to quickly interchange the tools between the magazine and the 
tool holder of each machine (i.e. the device that holds the active tool). This rapid inter-
change capability enables the machines to successively perform several operations with 
virtually no setup time between operations. Typically, however, the tool magazine of 
each machine is too small to hold all the tools necessary for the execution of a produc-
tion plan. Additional tools are therefore kept at a central storage area and can be brought 
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to the machines as needed (either manually or by an automated  handling device). Finally, 
a network of computers take care of the control of parts, machines, tools and material 
handling. (A detailed description of an actual automated facility is found in [103].) 

The above definition is broad enough to encompass stand-alone numerically con-
trolled machines (NC, DNC, CNC), robotic cells, robotic flow shops and flexible assem-
bly lines, as well as completely integrated flexible manufacturing systems (FMS). (As a 
matter of fact, we will indifferently use the words ‘flexible’ or ‘automated’ to qualify 
such systems.) Systems of this nature are common in the metal-working industry. Much 
of  the literature has therefore concentrated on this type of industry, where our terminol-
ogy also directly draws its origins. However, very similar settings are also widespread in 
the electronics industry for the production of printed circuit boards (PCBs). As a conse-
quence, production planning for the assembly of PCBs and for other FMSs often rely on 
nearly identical models (this similarity has been for instance explicitly noticed in [67]; see 
also [4,29]). 

 

2.2 What is flexible in a flexible system? 

 
It is important to understand what differentiates, in the spirit of this paper, a flexible 

production system from a traditional one. In other words, what justifies the use of spe-
cific production planning models for flexible production systems?  

The answer is, of course, flexibility. But what exactly means ‘flexibility’?  
Automated manufacturing systems display flexibility in multiple and intertwined 

ways, pertaining to the equipment, processes, products, production volumes, etc. (See 
e.g. [18,42,94]). Sethi and Sethi [94] have accordingly enumerated 50 different terms 
used in the literature for various types of flexibilities, and have themselves chosen to dis-
tinguish between 11 distinct concepts. Among the more important of these concepts, let 
us mention the following ones (we borrow from the classification in [94], which is itself 
inspired from [18]): 
• machine flexibility, that is the ability of the machines to perform various types of op-

erations without requiring a prohibitive effort in switching from one operation to an-
other; 

• material handling flexibility, that is the ability of the material handling system to 
move different parts efficiently for proper positioning and processing through the 
manufacturing facility; 

• operation flexibility of a part, that is its ability to be produced in different ways; 
• process flexibility, which relates to the set of part types that the system can produce 

without major setups; 
• routing flexibility, that is the ability of a manufacturing system to produce a part by 

alternate routes through the system. 
We will concentrate in this article on machine flexibility and material handling flexi-

bility, which, together with operation flexibility, constitute what Sethi and Sethi [94] 
term ‘component’ or ‘basic’ flexibilities of a system. These basic flexibilities restrict and 
determine to a very large extent the remaining ones. Mathematical formulations geared at 
modeling machine, material handling or operation flexibilities provide therefore some of 
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the fundamental ingredients for developing more comprehensive models of automated 
facilities. This explains our focus on this part of the literature. 

Let us observe, however, that mathematical programming models have also been ex-
tensively used in order to develop production plans that either maximize or otherwise 
exploit routing flexibility. Such concerns are for instance very obviously present in 
[1,2,5,12,64,97,100,101,102], as well as in much of the literature addressing the assem-
bly of PCBs in automated shops, such as [4,24,76,67]. Even though we are not going to 
discuss any routing models in detail, they clearly deserve special attention from the op-
erations research community. 

Machine flexibility is directly related to the capacity of the tool magazine and to the 
ease with which tools can be interchanged between the magazine and the tool holder. 
Therefore, planning models that explicitly take into account the bounded capacity of the 
tool magazine or the limitations and opportunities offered by tool changes are, in our 
view, especially characteristic of flexible production systems as opposed to conventional 
ones. This class of models will be discussed in Section 3. 

Models for managing material handling flexibility, on the other hand, are already well 
established in the literature on traditional manufacturing systems (see e.g. [8]). What ap-
pears to be a specific feature of flexible systems, though, is the high degree of integration 
attained between the material handling system and the machines. This feature is directly 
reflected in several combinatorial optimization models which simultaneously address the 
processing requirements of the parts on the machines and the transportation of these 
parts through the facility. We will describe some of these models in Section 4. 

Observe that, at the scheduling level, machine and material handling problems can be 
viewed as scheduling problems under resource constraints, i.e. problems whose descrip-
tion involves various resources (tools, robots, ...) in an essential way, besides the usual 
characteristics of the jobs (processing times, release dates, deadlines, ...). This point of 
view is discussed in [16] in a spirit very close to that of our essay. 

 

3 Machine flexibility and tool management 
 
The influence of tool management on the overall performance of automated produc-

tion facilities has been stressed by several authors. The recent articles [40,111] contain 
comprehensive surveys of the literature on this topic.  

At the individual machine level (as opposed to the tool or system levels, see [40]), 
tool management subsumes the problem of allocating tools to the machine and simulta-
neously sequencing the parts to be processed so as to optimize some measure of produc-
tion performance. This generic one-machine scheduling problem, or loading problem in 
the terminology of Stecke [102], can somehow be seen as the FMS analog of the funda-
mental one-machine scheduling problem of traditional manufacturing [14,69]. 

A more precise formulation of the problem can be stated as follows. A part set or 
production order containing N parts must be processed, one part at a time, on a single 
flexible machine. Each part requires a subset of tools which have to be placed in the tool 
magazine of the machine before the part can be processed. The total number of  tools 
needed to process all the parts is denoted by M. We represent these data by an M×N 
tool-part matrix A, with 
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           aij   = 1    if part j requires tool i 

  = 0    otherwise, 

for i = 1, ..., M and j = 1, ..., N. The tool magazine of the machine features C tool slots. 
When loaded on the machine, tool i occupies si slots in the magazine (i = 1, ..., M). We 
assume that no part requires more than C tool slots for processing. We refer to the 
number C as the capacity of the magazine and to si as the size of tool i. (Typical 
magazine capacities lie between 30 and 120. Tool sizes are usually in the range {1,2,3}, 
with tools of size 1 being most common. See e.g. [103].) The total number of tools 
required, i.e. M, can be much larger than C, so that it is sometimes necessary to change 
tools while processing the order. A tool switch consists in removing one tool from the 
magazine and replacing it by another one. A batch of parts is called feasible if it can be 
processed without any tool switches. 

Additional data for the problem may include the processing time of each part, the to-
tal time available on the machine, the tool changeover time, the operating cost of each 
tool, the number of tools available of each type, etc (see e.g. [12,64,80,91,92,102,113]). 
Due dates, however, are usually not taken in consideration in this short-term framework 
(see [51,85,91,115] for some exceptions to this statement). 

The objective function of  the one-machine loading problem can reflect various tacti-
cal goals: maximizing the number of parts that can be produced without tool switches 
([27,48,50,51,102,104]), maximizing the use of the magazine ([102]), minimizing the 
number of tool switches ([10,25,32,90,106]), minimizing the number of times that pro-
duction must be interrupted for tool switches ([28,50,107,91,92,104]), or optimizing 
more general performance measures ([64,80,91,113,114,115]). (In multimachine sys-
tems, balancing workloads often becomes a primary objective; see [12,97,102,104], etc.)  

In the next subsection, we briefly present the main integer programming formulations 
that have been proposed in order to model the magazine capacity constraint and the in-
terdependence between tools and parts. Then, we successively tackle three of the most 
basic objective functions (maximizing the number of parts in a feasible batch, minimizing 
the number of tool switches instants, minimizing the total number of tool switches). 

Notice that, by restricting our attention to a few fundamental one-machine schedul-
ing models, we will only touch upon the surface of tool management issues in flexible 
systems. Many combinatorial models of interest also arise in connection with other tool 
management problems (tool provisioning, arrangement and retrieval of tools in the 
magazine, ...). For a discussion of these, we refer to the surveys [40,111]. 

 

3.1 Modeling the magazine capacity constraint 
 

3.1.1 A linear model 
 

We concentrate here on the simple case where no tool switches are allowed during 
the planning period (or, equivalently, we restrict our attention to a production period be-
tween successive tool switches). Under this restriction, the loading problem becomes one 
of selecting an ‘appropriate’ feasible batch of parts. Integer programming formulations of 
this problem usually rely on (some or all of) the following variables: 
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 xi  =  1   if tool i is loaded in the tool magazine  
                =  0   otherwise 
and 
 
 yj  =  1   if part j is processed during the period under consideration 
                =  0   otherwise 

for i = 1, ..., M and j = 1, ..., N. 
With these variables, the basic constraints of the one-machine loading problem can 

be formulated as: 
 
 a yij j i≤ x      for i = 1, ..., M and j = 1, ..., N     (1) 

 s x Ci i
i

M

≤
=
∑

1

           (2) 

 { }xi ∈ 0 1,      for i = 1, ..., M       (3) 

 { }y j ∈ 01,      for j = 1, ..., N.       (4) 

The first group of constraints (1) expresses that all the tools needed for processing 
the selected parts must be loaded in the magazine. Constraint (2) translates the limita-
tions imposed by the capacity of the magazine. 

The simple formulation (1)–(4), augmented of a general objective function of the 
form 

maximize α βj j
j

N

i i
i

M

y x+
= =

∑ ∑
1 1

,         (5) 

has been proposed in [48] to model the one-machine loading problem. It has been further 
examined in [27,39,50,51,104]. The formulation can also be easily extended to account 
for multiple machines or for the possibility to switch tools between production periods. 
Multi-period, multi-machine extensions can be found for instance in 
[38,52,64,80,91,106,113] and in numerous other papers. Thus, formulation (1)–(4) can 
be viewed as an essential component of many complex FMS tool loading models. 

Interestingly, model (1)–(5) has also been considered in areas rather remote from the 
FMS world. It appears for instance in an order selection problem with high setup costs 
([31]), in capital budgeting models ([77,112]), in repair kit selection problems ([77]) and 
in a provisioning model proposed in [68]. An application to the allocation of memory space 
in databases is described in [39]. A restricted version (corresponding to the case where 
two tools are needed for processing each part) also arises in a column generation approach 
to a graph partitioning model of compiler construction ([54]). As observed in [27], the full 
model (1)–(5) similarly arises if column generation is used to attack hypergraph partitioning 
problems relevant to VLSI layout. 

 

3.1.2 Nonlinear models 
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Problem (1)–(5) can alternatively be modeled as a nonlinear integer programming prob-
lem in (at least) two different ways. To see this, let us first assume without loss of generality 
that, in (5), αj ≥ 0 for j = 1, ..., N (if this is not the case, then the corresponding variable 
yj can be set to 0 in the optimal solution of (1)–(5)). Then, by elimination of the y–
variables, (1)–(5) can be equivalently reformulated as a nonlinear knapsack problem: 

 

maximize α βj i
ij

N

i i
i

M

x x
ij:a == =

∏∑ ∑+
11 1

        (6) 

subject to  s x Ci i
i

M

≤
=
∑

1

          (7) 

             { }xi ∈ 0 1,      for i = 1, ..., M.      (8) 

The nonlinear knapsack problem with a quadratic objective function has been inves-
tigated in [20,34,46]. More generally, because the coefficients of all its nonlinear terms are 
nonnegative, the objective function (6) is supermodular; hence, (6)–(8) can be viewed as a 
special case of the supermodular knapsack problem studied in [35]. 

On the other hand, Stecke [102] suggested to model the magazine capacity constraint by 
the following nonlinear inequality in the y–variables: 

 
( ) ( )− ≤+

∈≠∅
∏∑ 1 1J

j
j JJ

s J y C        (9) 

where the summation runs over all nonempty subsets J ⊆ {1,..., N }and s(J) denotes the sum 
of the sizes of the tools common to all the parts in J. Denote by g(y) the left-hand side of (9). 
For any y ∈ {0,1}M, g(y) is nothing but the inclusion-exclusion formula computing the sum of 
the sizes of the tools needed in order to process the batch { j ∈ N | yj = 1 }. Hence, (9) is a 
valid expression of the capacity constraint. This expression can be viewed as resulting from 
the elimination of the x–variables in (1)–(2). 

When the x–variables do not appear in the objective function (5) (which is the case in the 
framework of [102]), then an alternative formulation of (1)–(5) is given by  

 

maximize α j j
j

N

y
=

∑
1

          (10) 

subject to ( ) ( )− ≤+

∈≠∅
∏∑ 1 1J

j
j JJ

s J y C       (11) 

  { }y j ∈ 01,      for j = 1, ..., N.      (12) 

This model has a linear objective function and a single nonlinear constraint, and only in-
volves the y–variables. (Contrast with the formulation (6)–(8), which has a nonlinear objec-
tive function, a linear constraint, and only involves the x–variables.) The merits of this model 
with respect to the linear model (1)–(5) will be discussed in the next subsection. 

 

3.2 Solving the batch selection problem 
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Let us now survey some of the approaches that have been proposed to solve the batch 
selection problem (1)–(5) (or, equivalently, (6)–(8) or (10)–(12)). 

The batch selection problem is strongly NP-hard. As a matter of fact, Gallo, Hammer and 
Simeone [34] observed that it is already NP-hard when each part requires two tools (i.e., 
when (6) is quadratic), αj = 1 for j = 1, ..., N, βi = 0 and si = 1 for i = 1, ..., M. A further re-
finement of this result is established by Goldschmidt, Nehme and Yu [39]. These authors also 
identify some polynomially solvable cases of the problem and describe a dynamic program-
ming algorithm for its solution. Several authors have developed and tested branch-and-bound 
codes based on the ideas surveyed hereunder. 

In an early attempt to apply mathematical programming techniques to the solution of the 
batch selection problem, Stecke [102] investigated various procedures to transform (10)–(12) 
into a 0–1 linear programming problem (see also [12,79,81] for related studies). One of these 
procedures is the standard linearization method proposed in [37]. This method can be viewed 
as replacing (11) by a family of weaker linear inequalities, each of which is derived by substi-
tuting a linear function for every monomial of g(y). Crama and Mazzola [26] proved that the 
linear description obtained in this way is weaker than the description (1)–(4), in the sense that 
its continuous relaxation defines a larger feasible region than the relaxation of (1)–(4). As a 
consequence, algorithmic approaches based on the inclusion-exclusion formulation (11)–(12) 
appear less promising than those based on the linear formulation (1)–(4).  

A fundamental observation regarding the batch selection problem is that the subproblem 
defined by (1), (3)–(5) (and omitting the capacity constraint (2)) is polynomially solvable. In-
deed, the constraint matrix of (1) is totally unimodular, so that the subproblem is reducible to 
a network maximum flow problem. It follows that the Lagrangian dual of (1)–(5) obtained by 
relaxation of the capacity constraint is polynomially solvable and has the same optimal value 
as the linear relaxation of (1)–(5). This observation has been exploited by several authors in 
order to efficiently solve the linear relaxation of (1)–(5), and hence to compute an upper-
bound on the optimal value of the problem ([20,35,51,77]; see also [34,48] for related ap-
proaches).  

Unfortunately, as observed e.g. in [28,31,51,54], the linear relaxation of (1)–(5) is often 
extremely weak. This has motivated several researchers to investigate families of inequalities 
which could be used to strengthen the formulation (1)–(5). Specifically, Dietrich, Lee and Lee 
[31] concentrate on cuts ‘implied by optimality considerations’, that is on inequalities satisfied 
by at least one optimal solution better than an incumbent solution (assuming that such an opti-
mal solution exists). For the quadratic case (two tools per part), Johnson, Mehrotra and 
Nemhauser [54] present strong valid inequalities and facets for the convex hull of the feasible 
region defined by (1)–(4). Crama and Mazzola [27] systematically investigate the polyhedral 
structure of (1)–(4). They derive several families of valid and/or facet-defining inequalities, 
some of which generalize results of [54]. When N = 1 (one part) and si = 1 for i = 1, ..., M, 
they obtain a complete description of the convex hull of the feasible region (subproblems with 
N = 1 naturally arise when one attempts to solve (1)–(5) via Lagrangian decomposition). 
Computational experiments will be necessary to establish the usefulness of the polyhedral ap-
proach to the batch selection problem. 

Numerous heuristics have been proposed for the solution of the batch selection problem. 
Most of these heuristics are of the greedy type: a selection rule is iteratively used to add parts 
to the current batch, as long as magazine capacity allows. Heuristics proposed in 
[28,31,91,92,105,107,114] are of this nature. As far as we are aware, the relative perform-
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ance of these heuristics has not been directly tested on the batch selection problem, but only 
when batch selection is iteratively solved to produce a solution of the tool-part grouping 
problem (see Subsection 3.3 below, and [28,65]). In this framework, the most effective selec-
tion rules appear to rest on (variants of) the following principle: among the parts not yet in the 
batch, select one that has the largest number of tools in common with the parts already in the 
batch (this is the Maximal Intersection rule described in [28]; see also the MIMU rule in [107] 
or [114]).  

A local search heuristic is proposed in [31]. Heuristics based on Lagrangian relaxation 
schemes have been tested in [51,77]. Heuristics directly motivated by the quadratic knapsack 
formulation are considered in [46]. 

In conclusion, it seems that the basic integer programming model (1)–(5) is a rather 
ubiquitous one, and that the simplicity of its appearance is quite misleading. We believe that it 
deserves even more attention than it has received up to now, both from the theoretical and 
from the computational viewpoints. In particular, some intriguing questions remain open re-
garding the worst-case performance of heuristics for the batch selection problem. Crama and 
van de Klundert [23,60a] observe that most greedy-type heuristics for batch selection have 
unbounded worst-case ratio for this problem. For instance, on some instances, the MIMU 
heuristic could produce a batch involving (roughly) C parts while the optimal batch contains 

C

C / 2







  parts. In [23,60a], it is also proved that the existence of a polynomial time algo-

rithm with constant worst-case ratio for batch selection would imply the existence of a poly-
nomial time approximation scheme for the same problem. The existence of such effective ap-
proximation algorithms, however, has not been completely ruled out. On the positive side, 
Kortsarz and Peleg [61] describe a polynomial approximation algorithm with ratio O(M 0.5) 
for the special case where each part requires exactly two tools, βi = 0 and si = 1 for i = 1, ..., 
M (the exponent 0.5 can be slightly reduced at the cost of additional work). It would be 
interesting to extend such results to more general cases of the problem. 

 

3.3 Grouping of parts and tools 
 

In the previous subsection, we have focused on the problem of selecting a feasible 
batch, i.e. a subset of parts that could be produced without any tool switches. In general, 
however, the problem faced by the shop is that of processing the whole set of N parts as 
efficiently as possible. One way of turning this informal goal into a precise planning prob-
lem goes as follows: find a partition of the parts into a minimum number of feasible 
groups (batches). Equivalently, the objective function of this tool-part grouping problem 
is to minimize the number of tool switching instants. This objective is appropriate in 
situations where the automatic tool interchanging device can switch a set of tools simul-
taneously ([48,104,107]). It is also relevant if the machine has to be shut down during 
tool interchanges. Indeed, in such a case, the fixed cost incurred for interrupting produc-
tion may dwarf the time spent in actual tools switches ([38,50]). 

Let us also mention that the tool-part grouping problem is closely related in spirit to 
the group technology cell formation problem, which has recently generated an enormous 
amount of literature (see e.g. [8,30]). The objective functions of these two problems, 
however, are quite different. Moreover, many of the best known approaches to the cell 
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formation problem (e.g. [56,82]) do not explicitly model the capacity constraints which 
play an essential role for tool-part grouping. 

The tool-part grouping problem has been studied by several authors, often ignoring 
each other. Rajagopalan [91,92] and Tang and Denardo [107] observed that partitioning 
parts into a minimum number of batches can be seen as an extension of the classical bin 
packing problem (see also Stecke and Talbot [105]). Hence, the part grouping problem is 
NP–hard [107]. Crama and Oerlemans [28] have further noticed that the problem 
remains NP–hard even when C = 3, and that deciding whether there exists a partition of 
the parts into two feasible groups is NP–complete. The latter result is especially 
interesting, as it establishes an unexpected connection between tool management 
problems and certain optimization problems related to VLSI and PLA (Programmable 
Logic Array) layout, such as those discussed in [84]. More precisely, in our terminology, 
the PLA block folding problem can be interpreted as that of determining the minimum 
value of the magazine capacity C such that the parts can be partitioned into two feasible 
batches. The PLA block folding problem is known to be NP–hard and is itself closely 
related to a wide variety of combinatorial problems (see [84] for details). It may be 
worthwhile to further exploit this intriguing connection between FMS and VLSI models 
(more on this topic in the next subsection). 

Various heuristic approaches have been proposed for the tool-part grouping 
problem. Most of these heuristics iteratively solve (some version of) the batch selection 
problem in order to sequentially create feasible batches containing a ‘large’ number of  
parts (see [28,50,65,91,92,104,107,114]). Based on computational experiments with 
randomly generated instances, this greedy approach seems to perform very well when the 
batch selection subproblem is solved by heuristics based on some variant of the Minimum 
Intersection principle (see Subsection 3.2 and [28]).  

From a theoretical viewpoint, however, most of the above heuristics have been 
shown in [23,60a] to have extremely poor worst-case performance ratios (this is 
essentially a consequence of the bad worst-case ratios achieved by batch selection 
heuristics; see previous section). For instance, the MIMU heuristic [107] can produce a 

partition involving (roughly) 
C

C
C

/ 2







  more batches than an optimal partition. This is 

especially striking in view of the fact that any arbitrary partition never uses more than 
C

C / 2







  times the optimal number of batches!  

Goldschmidt, Hochbaum and Yu [38] describe polynomial approximation algorithms 
for some special cases of the tool-part grouping problem. But more general results are 
called for. Let us notice here that, in particular, any ρ–approximation polynomial 
algorithm for the batch selection problem can be turned into a polynomial algorithm with 
approximation ratio O(ρlogN)) = O(ρC) for the tool-part grouping problems, as follows 
from general properties of greedy algorithms (see e.g. [21]). 

Hirabayashi, Suzuki and Tsuchiya [48] formulated the tool-part grouping problem as 
a large-scale set covering problem. In this formulation, each column corresponds to a 
feasible batch of parts and the constraints express that each part must be included in 
some batch. The authors mention in [48] the possibility to solve this set covering 
formulation using a column generation approach, and concentrate further on developing 
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a branch-and-bound procedure for the column generation subproblem. The latter 
subproblem turns out to be exactly our old friend, the batch selection problem (1)–(5).  

Hwang [50] (see also [51]) and Tang and Denardo [107] rediscovered the previous 
set covering formulation, but, because of its size, did not use it for algorithmic purposes. 
These authors decided instead to rely on greedy heuristics (as mentioned above) or spe-
cialized branch-and-bound algorithms. Crama and Oerlemans [28] have implemented a 
column generation procedure that solves the linear relaxation of the set covering formu-
lation of the problem. Computational experiments indicate that this approach delivers ex-
tremely strong lower bounds (almost always equal, in these experiments, to the optimal 
value of the problem). Moreover, the approach also lends itself to the computation of 
good heuristic solutions. Altogether, the column generation approach allows to solve to 
optimality much larger and sparser instances than those previously tackled. 

 

3.4 Tool switching 
 
In some situations, the total number of tool switches incurred while processing an 

order appears to be a more relevant performance criterion than the number of switching 
instants (i.e., the number of batches). This is for instance the case when the setup time of 
operations is proportional to the number of tool interchanges, or when the tool transpor-
tation system is congested. The distinction between number of tool switches and number 
of switching instants is clearly drawn in [106,107] and is also discussed at length in 
[5,97,104], etc.  

We address in this section the following tool switching problem: determine a part in-
put sequence and an associated sequence of tool loadings such that all the tools required 
by the j-th part are present in the j-th tool loading and the total number of tool switches 
is minimized. In this form, the tool switching problem has been investigated in 
[10,25,32,52,89,90,93,106,113,115]. All these papers are restricted to the special case 
where the tools occupy exactly one slot in the tool magazine. We shall assume that this 
condition holds throughout the section. (Notice that the formulation of the problem be-
comes ambiguous when the assumption is lifted.) 

Crama, Kolen, Oerlemans and Spieksma [25] proved that the tool switching problem 
is NP–hard for any fixed C ≥ 2. They also observed that deciding whether there exists a 
job sequence requiring exactly M tool setups is NP-complete. The latter result follows 
immediately from the kinship of the tool switching problem to the VLSI gate matrix 
permutation problem discussed in [84]. In our terminology, the gate matrix permutation 
problem asks for the minimum value of the tool magazine capacity such that no tool 
needs to be set up twice. Since this problem is NP–hard, the tool switching problem must 
clearly be NP–hard, too. (Notice the similarity of this argument with the one presented 
earlier for the tool-part grouping problem.) 

The tool switching problem decomposes into two interdependent problems, namely: 
(1)  part sequencing: determine an optimal part sequence, and 
(2)  tooling: given a fixed part sequence, determine a tool loading sequence that mini-
mizes the number of tool switches. 
(This is a two-level scheduling model in the sense of [16]). 
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Tang and Denardo [106] established that the tooling subproblem can be solved in 
time O(MN) by applying the so-called Keep Tool Needed Soonest (KTNS) policy. This 
policy prescribes that, whenever tools must be removed from the magazine in order to 
make room for the tools required by the next part, then the tools that are kept should be 
those that will be needed the soonest in the future. As observed in Privault and Finke 
[90] (see also [16]), the optimality of the KTNS principle was previously established by 
Belady [11] for a restricted version of the tooling problem, in his investigation of paging 
techniques for computer memory management. In a two-level memory system, a page 
fault occurs when a page must be moved from fast memory to slow memory to make 
room for a new page. The paging problem is that of deciding, for a given sequence of 
page requests, which pages to keep in a fast memory of C pages in order to minimize the 
number of page faults (see e.g. [11,83]). Thus, the paging problem is formally equivalent 
to a tooling problem in which each part would require exactly one tool.  

Tang and Denardo’s proof of correctness for the KTNS principle relies on ad hoc 
combinatorial arguments. Crama, Kolen, Oerlemans and Spieksma [25] present a more 
compact proof based on an appropriate integer programming formulation of the tooling 
subproblem. The constraint matrix of this formulation has the consecutive ones property 
for columns, i.e. it is an interval matrix in the sense of [33,86]. This directly implies that 
the tooling subproblem is reducible to a network maximum flow problem, even in its 
generalized version where each tool i has its own setup time bi and the objective is to 
minimize the sum of all setup times (see [25]). When all setup times are equal, i.e. when 
the objective is only to minimize the total number of switches, then the integer program 
can be solved by a greedy algorithm which turns out to be equivalent to the KTNS algo-
rithm (this follows from more general results on greedy and totally balanced matrices; 
see [49,86]).  

The previous results have been further extended by Privault and Finke [90]. These 
authors give a direct network flow formulation of the tooling subproblem which allows 
them to model changeover costs of the form dik when loading tool i after unloading tool 
k. This approach leads to an O( N 2 ) optimization algorithm for the generalized tooling 
subproblem. Interestingly, the formulation in [90] is inspired from related work on the 
computer paging problem mentioned above. Similar reformulations have also been ex-
ploited by several authors in the context of lot-sizing with sequence-dependent change-
over costs; see Wolsey [116] for references. 

(We observe here, in passing, that nothing seems to be known concerning the com-
plexity of the tooling subproblem when tool sizes are not uniform.) 

In spite of the simplicity of the tooling subproblem, the tool switching problem re-
mains a hard nut to crack. Many heuristics have been proposed for its solution, but we 
are not aware of any successful attempts to solve reasonably large instances to optimal-
ity. As a consequence, the performance of different heuristics can only be compared rela-
tive to each other, as is done in [25,32,89,90,106], etc. Crama, Oerlemans and Spieksma 
[29] present partial results and suggest directions which may be worth exploring in order 
to compute tight lower bounds on the optimal value of the tool switching problem. More 
work is clearly needed on this question. 

Heuristics for the tool switching problem come in two flavors: construction heuris-
tics, which progressively construct a single, hopefully good part sequence, and local 
search heuristics, which iteratively modify an initial part sequence. In the first class, sev-
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eral approaches are based on approximate formulations of the tool switching problem as 
a traveling salesman problem, where the ‘distance’ between two parts is an estimate of 
the number of tool switches required between these parts (see e.g. [25,89,90,106]). It 
may be interesting to notice that one of these traveling salesman formulations (namely, 
the block minimization model of [25]) is in fact an exact model for a database manage-
ment problem closely resembling the tool switching problem (see [62]). Another type of 
construction heuristics fall into the category of ‘greedy’ heuristics: parts are successively 
added to a current subsequence on the basis of some (dynamically updated) priority cri-
terion (see [25,32]). In [89,90], an efficient greedy-type heuristic is developed by draw-
ing on ideas used in [83] for the solution of on-line paging problems. 

Various local search strategies (2-exchanges, tabu search, ...) for the tool switching 
problem have been tested in [25,32,89,90,93,106,115]. 

 

 
4 Material handling flexibility 

 

Classical scheduling models often ignore the constraints imposed by material han-
dling systems (MHS) on the efficiency of the productive system as a whole, thereby im-
plicitly assuming that the MHS does not constitute a bottleneck or a limited resource (as 
an example, transportation times are assumed to be zero between the machines of a tradi-
tional flow shop). On the other hand, in flexible manufacturing systems, material handling 
operations (transfers, loading, unloading) on parts, raw materials and tools are usually 
performed by automated devices such as robots or automated guided vehicles (AGVs). 
Such automated MHSs share a high degree of integration with the workstations, with the 
consequence that the performance of the system is directly affected by material handling 
activities. Therefore, the material handling system should be explicitly taken into account 
in FMS scheduling models. This point has been recently stressed by several researchers, 
e.g. in [15,16,57,60,95]. 

In order to discuss some of the recent results in this direction, we first propose a 
rather general multiserver scheduling model in which most of the results that we want to 
address fit rather well. We consider a part set made up of N parts. This part set must be 
produced either one time only, or infinitely many times, depending on the situation ad-
dressed. The manufacturing system consists of an input station, an output station, M ma-
chines and K identical servers. All parts are initially available at the input station and 
must end up at the output station after processing. Each machine can only process one 
part at a time, nonpreemptively; the processing time of part i on machine j is equal to pij 
(i = 1, ..., N; j = 1, ..., M). The servers model the material handling system in the follow-
ing way. We assume that the presence of a server is necessary to load parts on machines 
before processing, to unload the parts after processing, and to transport the parts from 
machine to machine. Each server can only handle one part at a time. The servers can cir-
culate unaided in the shop, possibly along some predetermined routes. Moving from ma-
chine j to machine l requires djl units of time. Loading or unloading operations on part i 
at machine j require time εij. The multiserver scheduling problem is now to construct si-
multaneous schedules for the parts and the servers so as to optimize an arbitrary meas-
ure of production performance (makespan, cycle time, ...). 
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It does not take much imagination to realize that this basic multiserver model can be 
either enriched or restricted in various ways, e.g. by specifying the organization of the 
shop (parallel machines, flow shop, job shop, ...), by allowing preemption of operations, 
by defining release dates, due dates or weights for the parts, etc. More generally, almost 
any classical scheduling model can be turned as above into a multiserver model. Addi-
tionally, constraints can also be imposed on the set of moves available to the servers 
(unidirectional AGV path, hoists sharing a common track, ...).  

Special cases of our general multiserver model have been investigated by several re-
searchers, chiefly for flow shops and parallel machine shops (although some authors have 
considered more general situations; see for instance Lieberman and Turksen [74]). In the 
following subsections, we give a brief overview of these research contributions. 

 

 

4.1 Flow shops  
 

In multiserver flow shop scheduling problems, the machines are assumed to be laid 
out on a line or on a circle (say, in the order 1, 2, ..., M), each part must be successively 
processed on machines 1, 2, ..., M, and the servers can only travel from machine j to ma-
chine l by traversing all intermediate locations (the latter assumption can be modeled 
through an appropriate definition of travel times, e.g. by setting djl = djk + dkl if j < k < l). 

Two main streams of research can be identified in the multiserver flow shop litera-
ture: one is concerned with scheduling problems in robotic cells (as in 
[3,22,43,44,55,57,58,59,60,75,95,99]), and the other one with hoist scheduling problems 
(as in [6,47,70,71,72,78,88,96]). 

 

4.1.1 Robotic flow shops 
 

Robotic flow shop scheduling problems are characterized by the presence of a 
unique server. It is commonly assumed that the machines have no buffers, the part set 
must be processed infinitely many times and the objective is to minimize the long-run cy-
cle time of the schedule. This type of situation is typical of manufacturing cells where a 
number of machines served by a single robot are used for repetitive production of a 
minimal part set (see e.g. [7]). 

Early work on this problem is due to Sethi, Sriskandarajah, Sorger, Blazewicz and 
Kubiak [95], as well as Kise, Shioyama and Ibaraki [60] for the case of makespan mini-
mization. These authors study small shops, composed of 2 or 3 machines, and most of 
their investigations focus on one-unit cycles, i.e. sequences of robot moves in which each 
machine is loaded and unloaded exactly once and which can therefore be repeated indefi-
nitely. In [95], the authors observe that there are only M! one-unit cycles for any M. 
When M = 2, they show that, for any fixed one-unit cycle, the part sequence (i.e. the 
permutation of  1, 2, ..., N) which minimizes the long-run cycle time can be computed in 
polynomial time through a reduction to a special case of the traveling salesman problem 
which is amenable to the Gilmore-Gomory algorithm (see [36] for a discussion of this al-
gorithm). (In [60], a similar result is derived for makespan minimization.)  
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However, as observed by Hall, Kamoun and Sriskandarajah in [43], the optimal cycle 
time is not necessarily attained by repeating infinitely many times the same one-unit cy-
cle, even when M = 2: in some cases, it could be more advantageous to switch back and 
forth between the two possible one-unit cycles. The authors also show in [43] how to 
palliate this difficulty; they describe an algorithm that jointly determines the optimal ro-
bot move sequence and the part input sequence for a two-machine robotic flow shop, 
again by a reduction to the Gilmore-Gomory algorithm. 

When M ≥ 3, the robotic flow shop scheduling problem becomes much less tractable. 
As a matter of fact, Hall, Kamoun and Sriskandarajah [44] prove that, for M = 3, the 
problem is strongly NP–hard as soon as N ≥ 2, whether robot moves are restricted to 
one-unit cycles or not. Moreover, Sriskandarajah, Hall, Kamoun and Wan [99] classify 
the complexity of the part sequencing problem obtained for any fixed one-unit cycle. 
They show that the part sequencing problem is polynomially solvable for 2M–2 of the M! 
available cycles and NP–hard for the remaining cycles. Finally, at the lowest level of 
complexity, Cohen, Dubois, Quadrat and Viot [20a], Ioachim and Soumis [51a] and van 
de Klundert [60a] provide polynomial algorithms for the following subproblem: given a 
feasible robot move sequence and a part input sequence, what is the smallest attainable 
long-run cycle time? 

The previous results leave open the complexity of the robotic flow shop problem for 
identical parts, that is for N = 1 and arbitrary M. This special case is interesting in sev-
eral respects. Sethi, Sriskandarajah, Sorger, Blazewicz and Kubiak [95] formulated the 
following conjecture (call it the SSSBK conjecture): for identical parts, one-unit cycles 
dominate multi-unit cycles, in the sense that long-run cycle time can be minimized by re-
peating infinitely many times the same one-unit cycle. (As mentioned before, this state-
ment is definitely not true for multiple part types, i.e. when N ≥ 2.) Sethi et al. [95] ob-
served that the conjecture holds true when M = 2. For M = 3, its validity was recently es-
tablished in van de Klundert  [60a]. But in its full generality, this nice conjecture remains 
desperately open.  

If the SSSBK conjecture is correct, then one-unit cycles are all we need to consider 
in the identical parts problem. On the other hand, independently of the truth of the con-
jecture, one-unit cycles remain attractive in industrial settings because of their ease of 
implementation. For identical parts and arbitrary M, Crama and van de Klundert [22] es-
tablished that pyramidal cycles dominate all other one-unit cycles. To define the concept 
of pyramidal cycle, notice first that a one-unit cycle can be represented as a permutation 
(i0,i1, ...,iM) of the unloading activities {0,1,..., M} (where activity i corresponds to  un-
loading a part from machine i, and the input station is identified with machine 0). Then, a 
pyramidal cycle is a permutation (i0,i1, ...,iM) such that, for some index s in {0,1,..., M},  
i0 < i1 < ... < iS and iS > iS+1 > ... > iM . The concept of pyramidal permutation has been 
thoroughly investigated in connection with the traveling salesman problem (and, coinci-
dentally (?), with the Gilmore-Gomory algorithm repeatedly mentioned in previous para-
graphs; see [36]). But the role played by pyramidal cycles in the identical parts problem 
is rather puzzling, as this problem does not seem to be directly reducible to the TSP. In 
spite of this, it is possible to exploit the dominance properties of pyramidal cycle and to 
solve the identical parts, one-unit, robotic flow shop problem in O( M 3) time (see [22]). 
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Variants of  the basic robotic flow shop problem have been investigated by several 
researchers. For instance, Kise [58] shows that the 2-machine problem is NP–hard when 
the machines feature infinite-capacity buffers, and King, Hodgson and Chafee [57] im-
plement a branch-and-bound algorithm for this problem. Finke, Gueguen and Brauner 
[31a] prove that the SSSBK conjecture is valid (for any number of machines) when each 
machine has a single unit of buffer space. Kats and Levner [55a] and Levner, Kats and 
Levit [73a] consider no-wait problems for identical parts. Agnetis, Pacciarelli and Rossi 
[3] and Liu and Lin [75] consider swapping devices which act as temporary buffers at the 
robot arm. Heuristic, exact and Petri net approaches for other versions of the problem 
are proposed and tested in [55,59,60,73b,etc]. 

 
 

4.1.2 Hoist scheduling 
 

Hoist scheduling problems, although closely related to robotic flow shop problems, 
exhibit several distinguishing features. First – and this is probably the main difference 
with the previous problem – the processing times pij are replaced here by two sets of pa-
rameters aij and bij with the following interpretation: the time spent by part i on machine j 
must be at least aij and at most bij, for i = 1, 2, ..., N and j = 1, 2, ..., M. The intervals  
[aij, bij] are referred to as time windows by some authors (though these are not ‘time 
windows’ in the traditional acceptation of the vehicle routing literature).  

Second, more than one server can be present in the flow shop. The servers are 
viewed as hoists sharing a common track. Because of this particular layout, the hoists 
cannot cross each other and collisions must be avoided. 

Finally, all parts are usually assumed to be identical (i.e. N = 1). An infinite number 
of parts must be processed, and the objective is to minimize long-run cycle time. Much 
of the literature is restricted to the optimization of one-unit cycles. 

Applications of the hoist scheduling problem are found for instance in the electronics 
industry, where printed circuit boards must undergo a sequence of chemical and electro-
plating operations in successive tanks. Hoists are used to lower PCBs into tanks, to lift 
them from tanks, and to transport them between tanks. The nature of the chemical proc-
esses imposes upper and lower bounds on the sojourn time of PCBs in each tank. More-
over, identical PCBs are often processed in large batches, thus justifying some of the as-
sumptions of the model. 

Contrary to the robotic flow shop problem, few results of a theoretical nature are 
available concerning hoist scheduling. The single-hoist, identical-parts problem is proved 
to be strongly NP-hard in van de Klundert [60a] (a previous proof by Lei and Wang [70] 
involves somewhat « artificial » instances, with non-zero travel time from a machine to 
itself). For the same problem, Lei [69a] proposes a polynomial algorithm which com-
putes the optimal cycle time for any fixed sequence of hoist moves.  

Much of the remaining research effort has concentrated on developing and testing 
practical algorithms for special cases of the problem. Phillips and Unger [88], in a semi-
nal paper, gave an integer programming formulation of the single-hoist problem. Branch-
and-bound procedures for the same problem have been proposed  in [6,72,96,86a]. 
Multi-hoist problems have been considered in [47,71,78]. 
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4.2 Parallel machines  
 

In multiserver scheduling problems with parallel machines, the machines are as-
sumed to be identical and each part needs to be processed on one machine only. The 
servers could be robots or AGVs. Settings of this type tend to arise frequently in flexible 
manufacturing systems. Indeed, due to their high versatility, individual machines are typi-
cally able to perform all operations required on each part ([52]). When tooled identically, 
such machines actually behave like parallel ones (see e.g. [101,102,103,105]). 

Research on multiserver parallel machine problems is still pretty much in its infancy. 
Systems with a unique server have been investigated in [45,53]. Jeng, Lin and Wen [53] 
compare the performance of heuristic and branch-and-bound procedures for minimizing 
the sum of completion times. Hall, Potts and Sriskandarajah [45] consider a variant of 
our basic single-server parallel machine problem in which travel times and load/unload 
times are not explicitly modeled, but are rather aggregated into a global setup time sj for 
each job j. They investigate the complexity of this scheduling problem for several objec-
tive functions (makespan, maximum lateness, sum of completion times, number of late 
jobs, total tardiness). They prove that the resulting problems are all NP–hard in their 
most general form, and they further identify some polynomially solvable special cases 
(most notably, when the processing times of all jobs are equal). 

Blazewicz, Eiselt, Finke, Laporte and Weglarz [15] consider a version of the multis-
erver problem motivated by a real-world application. Here, the servers are AGVs and the 
facility is arranged following a unidirectional loop network layout. The AGVs are dis-
patched at regular intervals on the network and take of loading, unloading and transfers 
of parts. The objective is to minimize makespan. For a fixed part schedule (i.e., for a 
fixed assignment of parts to machines and fixed operations starting times), the authors 
show how to compute a feasible server schedule, if one exists. Their algorithm is based 
on a variant of the Earliest Due Date rule and runs in O(NlogN) time. When the part 
schedule and the server schedule must be jointly determined, then the problem clearly be-
comes NP-hard. But the authors show that an optimal solution can be computed in 
pseudo-polynomial time by dynamic programming. 

A generalization of the previous problem is studied by Blazewicz, Burkard, Finke 
and Woeginger [13]. Here, the transportation network consists of two loops sharing a 
common stretch and the emphasis is on developing a server schedule that is both colli-
sion-free and compatible with a given production schedule. As shown in [13], this ques-
tion can be addressed by making use of elementary arithmetic notions. Namely, collision-
free schedules can be enforced by releasing the vehicles at times that are incongruent 
modulo gcd(A,B), where A and B are the travel times along the two loops. 

 

 
4 Conclusions 

 

In this paper, we have presented a few combinatorial optimization models which ex-
plicitly reflect some of the characteristic features of flexible manufacturing systems, 
namely their tool interchange capability and their high-degree of integration with auto-
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mated material handling devices. Besides their practical relevance in production planning, 
these models turn out to be highly attractive from the viewpoint of optimization theory 
as well. They are for instance closely related to models investigated in other application 
areas (we have mentioned VLSI layout and PLA folding, paging problems, database 
management, compiler construction, ...). Solution techniques and complexity analyses of 
these models rely on all tools of the trade (Lagrangian relaxation, dynamic programming, 
column generation, cutting planes, greedy algorithms,...) and make unexpected use of 
concepts like totally balanced matrices or pyramidal permutations. 

Many questions are still left open concerning the models that we discussed. Some of 
these questions have been mentioned in previous sections. Many more will be found in 
the references cited in the text. 
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