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We investigate the algorithmic complexity of several geometric problems of the following
type: given a “feasible” box and a collection of balls in Euclidean space, find a feasible
point which is covered by as few or, respectively, by as many balls as possible. We establish
that all these problems are NP-hard in their most general version. We derive tight lower and
upper bounds on the complexity of their one-dimensional versions. Finally, we show that
all these problems can be solved in polynomial time when the dimension of the space is
fixed.

1. Introduction

In this paper, we consider various algorithmic problems of the following nature: given
a “feasible” region Q and n balls B1, B2,…,Bn in Euclidean space Rd, find a feasible
point which is covered by as few or, respectively, by as many balls as possible.

The maximization variant of this problem has been previously studied by several
authors (e.g. [2,4,5,8,19], etc.). The main motivation for considering this problem
stems from a product positioning problem arising in marketing theory. In this
framework, Rd is the space of attributes of a family of existing products, which are
represented by points p1, p2,…,pm in Rd. Customer groups are also represented by
points c1, c2,…,cn in Rd, each of which can be viewed as describing the attributes of
the “ideal” product for this customer group. Each group is assumed to buy that product
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which is closest (in the Euclidean sense) to its representative point. The product
positioning problem is now to locate a new product in a feasible region Q # Rd so
as to maximize the market share captured by this new entry. Observe that, in view of
our assumption regarding customer behavior, the new product p will be bought by
customer group ci if and only if p is contained in the ball Bi with center ci and with
radius mink=1,…,m‖ci – pk‖. Thus, in order to maximize its market share, the new prod-
uct should be covered by as many as possible of the balls B1, B2,…,Bn. We refer, for
instance, to the paper [9] or to the surveys by Green and Krieger [9] or Schmalensee
and Thisse [18] for a more thorough discussion of the relevance of this model in the
marketing context.

A variant of the above model arises if we assume that the customers are some-
how “continuously distributed” over a region Q of Rd and that each product pi is
characterized by a “radius of attraction” ri . Customer c buys product pi if and only if
c lies close enough to pi, viz. if c lies in the ball with center pi and with radius ri

(in this model, products are not assumed to be competing with each other, so that a
customer may buy several of them). A point p ∈Q that is not covered by any ball can
be viewed as a segment of the customer population which does not buy any of the
existing products, and which therefore constitutes an unexplored marketing “niche”.
If no such uncovered point exists, then any minimally covered point similarly defines
a region of the space where customer requirements may be insufficiently met by
existing products.

More generally, choice and preference models based on proximity considerations
in perceptual or attribute spaces have been extensively considered in the mathemati-
cal psychology literature (see e.g. Coombs [3]). In this framework, points that are
maximally, respectively, minimally, covered can be naturally interpreted as represent-
ing choice alternatives that are selected by a maximal, respectively, a minimal, number
of individuals. This observation, together with the obvious symmetry between the
maximizing and minimizing variants of our problems, provides the main motivation
for the work described in this paper.

In the next section, we give a more precise definition of the problems to be
investigated. In section 3, we establish that all these problems are NP-hard in their
most general version. In section 4, we restrict our attention to the one-dimensional
situation (i.e., d = 1), and we derive tight bounds on the complexity of the resulting
problems. More generally, we show in section 5 that all problems considered here can
be solved in polynomial time when the dimension d of the space is fixed. Some of
these results are further improved in section 6.

2. Definitions and statement of the problems

Given n balls in Euclidean space Rd, either all closed,
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or all open,

    B x x c r i ni
d

i i= − < = …∈{ } ( , , , ),R | ‖ ‖ 1 2

where ci ∈Rd and ri ∈R (i = 1, 2,…,n), and given a closed box

    Q x l x u j dd
j j j= ≤ ≤ = …∈{ , , , , },R | 1 2

we consider the following problems:

Feasibility: Decide if there is a point x ∈Q\(
⋃n

i =1Bi).

Mimimum covering : Find a point x ∈Q that minimizes |{ i = 1, 2,…,n| x ∈Bi} |.
Maximum covering: Find a point x ∈Q that maximizes |{ i = 1, 2,…,n| x ∈Bi} |.

When a statement about balls does not specify whether the balls are open or
closed, it means that the statement holds in both cases. We denote by MIN-CLOSED
(respectively, MIN-OPEN) the version of minimum covering in which all balls are
closed (respectively, open). Similarly for MAX-CLOSED and MAX-OPEN.

3. NP-hardness results

All three problems defined in section 2 turn out to be NP-hard in their full generality.

Theorem 1. The feasibility problem is NP-complete.

Proof. The feasibility problem is in NP (this may not be entirely obvious at first, but
follows for instance from proposition 3 in section 5).

We first consider the case where all balls are closed. Consider an instance of 3-
SAT with clauses C1, C2,…,Cn over the set of Boolean variables {x1, x2,…,xd}, where
each clause contains three literals (see e.g. Garey and Johnson [7]). With each clause
Ci = xh∨ xk∨ xl , we associate a closed ball

We claim that clauses C1, C2,…,Cn are simultaneously satisfiable if and only if there
exists a point x ∈Q\(

⋃n
i =1Bi ). To see this, consider an arbitrary clause Ci = xh ∨

xk ∨ xl . Notice that, for any x ∈{0, 1} d, x satisfies Ci if and only if x ∉Bi (by

    Q x x j dd
j= ≤ ≤ = …∈{ , , , , }.R |0 1 1 2

for i = 1, 2,…,n. If a negated literalxh appears in Ci , use (1 –xh)2 instead of xh
2 in

the above definition. Then define the unit hypercube
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definition of Bi ). This trivially implies the “only if ” part of the claim. For the “if ”
part, consider any point x ∈Q\Bi . Define another point y ∈{0, 1} d by
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Since x ∉Bi , we obtain successively
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thus  x x xh k l
2 2 2 3 4+ + > y , and one of xh, xk, xl must be larger than 1y2. This in turn

implies that one of yh, yk, yl is equal to 1, and thus clause Ci is satisfied by y.
This shows that the feasibility problem for closed balls is NP-complete.
It is easy to see that a similar proof works when all balls B1, B2,…,Bn are open:

it suffices to replace the radius dy4 by dy4 + ε, where 0 <ε ≤ 1y4. u

Theorem 2. MIN-CLOSED and MIN-OPEN are NP-hard.

Proof. This is an immediate corollary of theorem 1. u

Theorem 3. MAX-CLOSED and MAX-OPEN are NP-hard.

Proof. First recall that MIN-SAT is the following problem: given an instance
C1, C2,…,Cn of the satisfiability problem and an integer m, decide whether there exists
a truth assignment such that at least m of the clauses C1, C2,…,Cn are not satisfied. It
is known that MIN-SAT is NP-complete even when every clause contains at most two
literals (we call MIN-2-SAT this restricted version of the problem; see [12]).

Now, given an instance of MIN-2-SAT with clauses C1, C2,…,Cn over the vari-
ables {x1, x2,…,xd}, we construct an instance of MAX-CLOSED as follows. With
each clause, for example Ci = xh∨ xk , we associate a closed ball

We claim that there is a point y ∈{0, 1} d that does not satisfy m of the clauses C1,
C2,…,Cn if and only if there is a point x ∈Rd that lies in m of the balls B1, B2,…,Bn.

Indeed, for any x ∈{0, 1} d, x does not satisfy Ci if and only if x ∈Bi . This
implies the “only if” part of the claim. Conversely, assume that x ∈Bi , and assume
for example that Ci = xh∨ xk . If xh ≥ 1y2 or xk ≤ 1y2, then
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contradicting x ∈Bi .  Thus, xh < 1y2 and xk > 1y2. Define now a point y ∈{0, 1} d by
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Then, y does not satisfy Ci . Therefore, if there is a point x in Bi1 > Bi2 > … > Bim,
then the corresponding y does not satisfy any of Ci1, Ci2,…,Cim. This establishes the
“if” part of the claim, and proves the NP-hardness of MAX-CLOSED.

It is easy to see that the above construction also works for MAX-OPEN.u

For closed balls, theorem 3 was first proved in [4] by a more involved argument.
As observed by a referee, theorem 3 is also a close relative of the (folklore?) result
according to which it is NP-hard to find a largest feasible subsytem of a system of
linear inequalities.

4. Problems in one-dimensional space

We show in this section that when d = 1, i.e. the dimension of the Euclidean space is
one, then all problems defined in section 2 can be solved in O(n log n) time and this
time bound is optimal.

Let us first state a lemma (we refer to Preparata and Shamos [16] for a defini-
tion of the algebraic decision tree computational model).

Lemma 1. The following problems require Ω(n log n) operations in the algebraic
decision tree model:

(P1) Given (a1, a2,…,an) ∈Rn, decide whether there exists a permutation π of
{1, 2,…,n} such that

where (i – 1, i ) denotes the open interval with endpoints i – 1 and i.

Proof. We apply a general result due to Ben-Or, as presented in Preparata and Shamos
(theorem 1.2 in [16]). Let Sn be the set of all permutations of {1, 2,…,n}. For π ∈Sn,
consider the lines in n-space

(P2) Given (a1, a2,…,an) ∈Rn, decide whether there exists a permutation π of
{1, 2,…,n} such that

a i i i niπ ( ) ( , ) ( , , , ),∈ − = …1 1 2

a a i ni iπ π( ) ( ) ( , , , ).+ = + = … −1 1 1 2 1

Y. Crama, T. Ibarakiy Hitting or avoiding balls 51



    

W x x x i n

V x x i i i n

n
i i

n
i

π π π

π π

= = + = … −

= − = …

∈
∈ ∈

+{ , , , , },

{ ( , ), , , , }.

( ) ( )

( )

R

R

|
|

1 1 1 2 1

1 1 2

Clearly, (a1, a2,…,an) is a Yes-instance of (P1) (respectively, (P2)) if and only if
(a1, a2,…,an) ∈⋃π ∈Sn

Wπ  (respectively, (a1, a2,…,an) ∈⋃π ∈Sn
Vπ). Moreover, if π1 ≠ π2,

then Wπ1 > Wπ2 = ∅ and Vπ1 > Vπ2 = ∅; thus, 
⋃

π ∈Sn
Wπ and 

⋃
π ∈Sn

Vπ  each have n!
connected components. Ben-Or’s theorem now implies that O(log n!) = O(n log n)
operations are necessary to solve (P1) or (P2) in the algebraic decision tree model,
thus proving the lemma. u

As pointed out by a referee, the Ω(n log n) lower bound for problem (P1) was
previously established by Lee and Wu [14] and Ramanan [17]. Here, lemma 1 allows
us to derive the following results:

Proposition 1. The feasibility problem for closed balls in R (i.e., for closed inter-
vals) requires Ω(n log n) operations in the algebraic decision tree model.

Proof. Given an instance (a1, a2,…,an) of (P1) (see lemma 1), define the following
instance of the feasibility problem:

B a a i ni i i= + = …[ , ]    ( , , , )1 1 2
and

Q a a n= +[ , ],min min

where amin = min{a1, a2,…,an}. Note that Bi and Q can be defined in linear time.
Then, (a1, a2,…,an) is a Yes-instance of (P1) if and only if Q\(

⋃n
i =1Bi ) = ∅.  There-

fore, the statement follows from lemma 1. u

Proposition 2. The feasibility problem for open balls in R (i.e., for open intervals)
requires Ω(n log n) operations in the algebraic decision tree model.

Proof. Given an instance (a1, a2,…,an) of (P2), define (in linear time) the following
instance of the feasibility problem, involving 2n + 1 open balls and a box:

B a a i n

I j j j n

Q n
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We claim that (a1, a2,…,an) is a Yes-instance of (P2) if and only if
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Indeed, for any x ∈Q, there holds that x ∉⋃n
j =0 I j if and only if  x i i∈ − ={ 1

2 |
1, 2, …,n}. Therefore,

In these implications, π must be a permutation, since each of the balls B1, B2,…,Bn

can contain at most one point of the formi − 1
2 , for i = 1, 2,…,n. This establishes

the claim, and hence the proposition (via lemma 1). u

Theorem 4. Feasibility problems, minimum covering problems and maximum
covering problems in one dimensional space R can all be solved in Θ(n log n) time
(in the sense of algebraic operations).

Proof. Each ball in R is given as either a closed interval [ai , bi] or an open interval
(ai , bi ), for i = 1, 2,…,n, and a box is given as a closed interval Q = [l, u]. First sort
all ai and bi belonging to Q by nondecreasing value (this requires O(n log n) time).
Then scan the sorted list of 2n numbers from smallest to largest (this requires O(n)
time). All problems in the theorem statement can easily be solved if, in the course of
this scanning procedure, we keep track of how many intervals cover the point being
scanned.

The resulting time bound O(n log n) is optimal for feasibility problems by
propositions 1 and 2. It is also optimal for minimum covering problems since these
include feasibility problems as special cases.

To see that the time bound is also optimal for maximum covering problems,
associate an instance of MAX-CLOSED with each instance of MIN-OPEN by asso-
ciating the closed intervals [l, ai] and [bi , u] with each open interval (ai , bi ) of MIN-
OPEN (if l > ai or bi > u holds, ignore the corresponding interval). It is easy to see
that the optimal solutions of these two problem instances coincide. Therefore, MAX-
CLOSED requires Ω(n log n) time.

The case of MAX-OPEN is analogous. u

Remark 1. Problems (P1) and (P2) in lemma 1 can be solved in O(n) time if the
computational model is modified to allow the use of the floor function b ·c. For
instance, when solving (P1), the floor function can be used to determine to which of
the buckets
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I a i a i i ni = + − + = …[ , )    ( , , , )min min1 1 2

each aj belongs. If some aj does not fall in any of these buckets, then we are done.
Thus, assume aj ∈Iπ( j ) for j = 1, 2,…,n. Check whether aj = amin + π( j ) – 1 for each
j, and check whether π is a permutation. If so, then answer “Yes”, otherwise answer
“No”.

By contrast, however, we do not know whether the feasibility problem can be
solved in O(n) time when the floor function is available. u

5. Power diagrams and d-dimensional problems

We show in this section that our problems can be solved in polynomial time when d,
i.e. the dimension of the space, is fixed. In order to achieve polynomiality, we make
extensive use of the concept of power diagram, which allows us to tackle feasibility,
minimum covering and maximum covering problems in a unifying framework.

Power diagrams generalize Voronoi diagrams and provide a rather standard tool
for the investigation of computational geometry problems involving balls (see for
instance Aurenhammer [1], Imai et al. [11] – for the planar case – , Edelsbrunner [6],
Preparata and Shamos [16]). However, their properties are not widely known in the
Operations Research community, and their relevance to the class of problems consid-
ered in this paper seems to have gone unnoticed so far. Let us start, therefore, with
some basic definitions.

The power of a point x ∈Rd with respect to a ball B # Rd with center c ∈Rd and
radius r ∈R is defined by

(This quantity is sometimes called the Laguerre distance of the point to the ball.) The
following properties are immediate consequences of the definition:

  pow x B x c r( , ) .= − −‖ ‖2 2

pow x B x B

pow x B x B

pow x B

( , )

( , )

<

>

0

0

if is in the interior of ,

( , ) = 0 if  is on the boundary of ,

otherwise.

Fix a collection B1, B2,…,Bn of balls in Rd. For j ∈{1, 2,…,n}, define the power cell
of Bj by

The power diagram of B1, B2,…,Bn, denoted PD(B1, B2,…,Bn) (or PD for short), is
the collection of all cells cell(B1), cell(B2),…,cell(Bn). For a given (closed) box
Q # Rn, define

  cell B cell B Q j nQ j j( ) ( )    ( , , , )= = …> 1 2

and

    cell B x pow x B pow x B i jj
d

j i( ) { ( , ) ( , ) }.= ≤ ≠∈R |  for all 

Y. Crama, T. Ibarakiy Hitting or avoiding balls54



  PDQ n Q jB B B cell B j n( , , , ) { ( ) , , , }.1 2 1 2… = = …|

It is known that each cellQ(Bj ) is a closed polyhedron. We denote by Vj the vertex set
of cellQ(Bj ), and we let

The next result motivates our interest in power diagrams: it implies that, if an instance
of the feasibility problem is a Yes-instance, then it has a solution among the vertices
of the power diagram.

Proposition 3. The box Q is not covered by 
⋃n

j =1Bj (i.e., the answer to the feasibility
problem is Yes) if and only if there exists i ∈{1, 2,…,n} and a vertex υ ∈Vi such that
υ ∉Bi .

Proof. To show the “if ” part, assume that υ ∈Vi\Bi for some i.  Since υ ∈cellQ(Bi ),
pow(υ, Bi ) ≤ pow(υ, Bj ) for all j ≠ i. Together with υ ∉Bi , this implies that υ ∉Bj for
all j, and thus υ is not covered by 

⋃n
j =1Bj .

To show the converse, assume now that u ∈Q\⋃n
j =1Bj. For some i ∈{1, 2,…,n},

we have u ∈cellQ(Bi ). Let υ be a point maximizing pow(x, Bi ) over cellQ(Bi). Since
cellQ(Bi ) is a polyhedron and the power function is convex, we may assume that
υ ∈Vi . Moreover, since u ∉Bi and pow(υ, Bi ) ≥ pow(u, Bi ), we see that υ ∉Bi , as
required. u

Observe that proposition 3 holds independently of whether the balls B1, B2,…,Bn

are closed or open.
Consider now the following procedure for the feasibility problem.

Procedure 1 (to solve the feasibility problem):

construct PDQ(B1, B2,…,Bn) and V;
for  each vertex u ∈V do

begin
find i ∈{1, 2,…,n} such that υ ∈cellQ(Bi );
if  υ ∉Bi then return  “yes” {i.e., υ ∈Q\⋃n

j =1Bj }
end;

return  “no”.

The correctness of this procedure is trivially implied by proposition 3. Let us
examine its complexity. Aurenhammer [1] shows that the power diagram PD can be
computed in O(n log n) time when d = 2 (see also Imai et al. [11]), in O(nd(d+1)y2e)
time when d ≥ 3, and in O(nb(d+1)y2c) space for all d. PD is then represented by a data
structure in which each face (of dimension 0, 1,…,d – 1) of the cells of PD corre-

  

V Vj
j

n

=
=

.
1

U
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sponds to a node, and incident faces are associated via pointers. The coordinates of
the vertices of V are also recorded. The number of vertices (i.e., faces of dimension
0) and edges (i.e., faces of dimension 1) of PD is O(nddy2e). It follows that PDQ can
also be constructed in time O(nd(d+1)y2e), by computing the penetration points of all
edges of PD into the box Q. In Procedure 1, the block begin –end is executed
O(nddy2e) times. By means of the above data structure, each execution requires con-
stant time. Thus we have established the next theorem:

Theorem 5. In fixed dimension d, the feasibility problem can be solved in O(n log n)
time if d = 2, and in O(nd(d+1)y2e) time if d ≥ 3. u

In view of theorem 4, the time bound O(n log n) for d = 2 is optimal.
We next explain how the ideas described above can be extended to minimum

and maximum covering problems, thus leading to solution algorithms with time
complexity O(nd+2) and space complexity O(nd+1) for these problems. For MAX-
CLOSED and MIN-OPEN, more efficient algorithms will be described in the next
section.

For every subset T # {1, 2,…,n}, we define

Based on these definitions, we can now establish that an optimal solution of the
minimum covering problem is to be found among the vertices of 1-PDQ, 2-PDQ,…,
n-PDQ. More precisely:

Proposition 4. For k = 1, 2,…,n, the optimal value of the minimum covering prob-
lem is at most k – 1 if and only if there exists υ ∈V(k) such that |{ i = 1, 2,…,n|υ ∈Bi} |
≤ k – 1.

Proof. The condition is clearly sufficient. In order to prove its necessity, let u be an
optimal solution of the minimum covering problem, and assume without loss of
generality that pow(u, B1) ≤ pow(u, B2) ≤ … ≤ pow(u, Bn) and that u ∉Bj for all j ≥ k

    
V Vk

T k
T

( ) .=
=| |

U

This is the set of points which are closer (with respect to the power function) to the
balls in T than to those not in T. For k = 1, 2,…,n, the order-k power diagram of
B1, B2,…,Bn (or k-PD for short) is the collection of all cells cell(T) such that |T| = k.
The intersection of cell(T) with Q is denoted cellQ(T), and the corresponding collec-
tion for |T| = k is denoted k-PDQ. Similarly to the case of PDQ, each cellQ(T) is a
polyhedron, whose vertex set we denote by VT. Finally, we let

    cell T x pow x B pow x B i T j Td
i j( ) { ( , ) ( , ) }.= ≤∈ ∈ ∉R |  for all  and 
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(this implies in particular that u ∈cellQ({1,…, k})). Let υ be a maximizer of pow(x, Bk)
over cellQ({1,…, k}). By convexity of the power function, we can take υ to be a vertex
of cellQ({1,…, k}). Moreover, since both u and υ are in cellQ({1,…, k}), there holds
pow(u, Bk) ≤ pow(υ, Bk) ≤ pow(υ, Bj ) for all j ≥ k. Since u ∉Bk, we see that, for all
j ≥ k, υ ∉Bj . Thus, υ is in at most k – 1 of the balls B1, B2,…,Bn, as required. u

Proposition 4 suggests the following procedure:

Procedure 2 (to solve MIN-OPEN and MIN-CLOSED):

construct 1-PDQ, 2-PDQ,…,n-PDQ;
for  k = 1 to n and for each vertex υ ∈V (k) do

begin
find the set T = { i = 1, 2,…,n|υ ∈Bi};
if  |T| < k then return  υ and k – 1 (i.e., υ is optimal)

end.

Theorem 6. In fixed dimension d, minimum covering problems can be solved in
O(nd+2) time.

Proof. It follows from proposition 4 that Procedure 2 correctly solves minimum
covering problems.

As for its complexity, notice that the diagrams 1-PDQ, 2-PDQ,…,n-PDQ together
contain O(nd+1) facets and O(nd+1) vertices, and that constructing all these diagrams
takes O(nd+1) time and space (see[1]). Since the block begin–end of Procedure 2
is executed O(nd+1) times and each execution can be done in linear time by using
appropriate data structures, the total time required by the procedure is O(nd+2). u

Let us now turn to maximum covering problems. Our procedure for these prob-
lems is based on the following easy observation:

Proposition 5. If T is a maximal subset of {1, 2,…,n} such that Q > (
⋂

j ∈TBj ) ≠ ∅,
then cellQ(T) ≠ ∅.

Proof. Assume first that B1, B2,…,Bn are all closed. Then, for every point υ in
Q > (

⋂
j ∈TBj ), there holds pow(υ, Bj ) ≤ 0 if j ∈T, and pow(υ, Bj ) > 0 if j ∉T (by

maximality of T). Thus, υ ∈cellQ(T). A similar argument applies, mutatis mutandis,
when B1, B2,…,Bn are open. u

Proposition 5 implies that, when solving the maximum covering problem, we
can restrict our attention to subsets of balls such that cellQ(T) is nonempty. There-
fore, the following algorithm is correct:
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Procedure 3 (to solve MAX-OPEN and MAX-CLOSED):

construct 1-PDQ, 2-PDQ,…,n-PDQ;
for  k = n down to 1 and for all T # {1, 2,…,n} with |T| = k and cellQ(T) ≠ ∅ do

begin
if  Q > (

⋂
j ∈TBj ) ≠ ∅ then return  T

(i.e., any point in Q > (
⋂

j ∈TBj ) is optimal)
end.

Theorem 7. In fixed dimension d, maximum covering problems can be solved in
O(nd+2) time.

Proof. Procedure 3 is clearly correct. Regarding its complexity, we notice that the
only difficulty consists in testing efficiently whether Q > (

⋂
j ∈TBj) ≠ ∅ for various

sets T. So, consider any set T for which the test must be performed. We claim first that
Q > (

⋂
j ∈TBj ) ≠ ∅ if and only if, for some i ∈T, cellQ(T\{ i }) > Bi ≠ ∅.

Indeed, let υ ∈Q > (
⋂

j ∈TBj ). We can freely assume that T is maximal with the
property that Q > (

⋂
j ∈TBj ) ≠ ∅, for otherwise Procedure 3 would have terminated

earlier. Thus, as in the proof of proposition 5, υ ∈cellQ(T). Now, if i ∈T is chosen
such that pow(υ, Bi ) ≥ pow(υ, Bj ) for all j ∈T, we obtain that υ ∈cellQ(T\{ i }) > Bi .

Conversely, if υ ∈cellQ(T\{ i }), then pow(υ, Bi) ≥ pow(υ, Bj) for all j ∈T, and
hence υ ∈Bi implies υ ∈Q > (

⋂
j ∈TBj ).

Having thus proved the claim, we deduce that each test of the form “Is
Q > (

⋂
j ∈TBj ) empty?” can be reduced to a sequence of |T| tests (corresponding to

all i ∈T) of the form: “Is cellQ(T\{ i }) > Bi empty?”.
Each of the latter subproblems can in turn be formulated as a convex quadratic

minimization problem with linear constraints: in this formulation, the objective is to
find a point υ which minimizes the quantity pow(υ, Bi ), and the constraints on υ
correspond to the facets of cellQ(T\{ i }) (i.e., faces of cellQ(T\{ i }) whose dimension
is the dimension of the cell minus 1). For fixed d, this minimization subproblem can
be solved in time linear in the number of constraints (see Megiddo [15]).

It can be verified that, over the complete execution of Procedure 3, each facet of
1-PDQ, 2-PDQ,…,n-PDQ appears as a constraint in O(n) minimization subproblems.
Indeed, consider any facet F, and assume that F is the intersection of two cells
cellQ(T1) and cellQ(T2). Then, F gives rise to a constraint in each of the (n – |T1|)
tests associated with sets T of the form T = T1 < { i ), for i ∈{1, 2,…,n} \T1. And
similarly, F gives rise to a constraint in each of the (n – |T2|) tests associated with
sets T of the form T = T2 < { i }, for i ∈{1, 2,…,n}\T2. Thus, in total, F generates
(2n – |T1| – |T2|) constraints over the whole procedure.

Since there are O(nd+1) facets in 1-PD, 2-PD,…,n-PD, and since each convex
quadratic subproblem can be solved in time linear in the number of constraints (i.e.,
facets) in its formulation, we conclude that the time complexity of Procedure 3 is
O(nd+2). u
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6. Faster algorithms for MAX-CLOSED and MIN-OPEN

In this section, we revisit the problems MAX-CLOSED and MIN-OPEN in fixed
dimension d, and propose more efficient algorithms than those presented in section 5.
These two problems share the property that an optimal solution can always be found
on the boundary of some subset of balls. As we shall see, this property makes them
slightly easier to solve than their respective counterparts, MAX-OPEN and MIN-
CLOSED.

Drezner [5] proposed an O(n2 log n) time algorithm for MAX-CLOSED in R2,
and Crama et al. [4] extended his approach to derive an O(nd+1) time algorithm for
MAX-CLOSED in Rd. In this section, we improve the latter to O(nd log n) time.
(Notice that [4,5] do not consider a feasible box Q, as we do here.) We now briefly
describe the ideas behind these algorithms, since they will be the starting point for the
algorithms to be presented below. Throughout this section, we denote byṠ the bound-
ary of a set S# Rd.

Drezner [5] first shows that, if the optimum value of MAX-CLOSED in R2 is at
least 2, then some optimal solution lies at the intersection of two circles. By succes-
sively considering each of the n circles, this allows him to reduce the solution of
MAX-CLOSED in R2 to the solution of the following n subproblems (SPk), for
k = 1, 2,…,n:

(SPk) Given n closed balls B1, B2,…,Bn # R2, find a point x ∈Ḃk that maximizes

Problem (SPk) can best be seen as a one-dimensional maximum covering prob-
lem, since its feasible set is restricted to the boundary of Bk. Therefore, it should be
no surprise that (SPk) can be solved  in O(n log n) time by a straightforward adapta-
tion of the algorithm outlined in the proof of theorem 4. More specifically, Drezner
solves (SPk) as follows. Let ai , bi be the intersection points oḟBi with Ḃk for i ≠ k.
Sort Ik =

⋃
i ≠k{ ai , bi} according to the order in which these points are encountered

when moving alongḂk starting from an arbitrary point p ∈Ḃk (this step requires
O(n log n) time). Compute fk(x) for all x ∈Ik, starting from fk( p) and updating the
value of fk according to whether each point of Ik corresponds to an “entry” point into
some ball Bi or an “exit” point from Bi (this step takes O(n) time). In this way, a
maximizer of fk over Ik (i.e., an optimal solution of (SPk)) can be computed in
O(n log n) time.

In order to generalize Drezner’s approach, Crama et al. [4] defined the concept
of a representative set of points. We next introduce a variant of this concept, which
will lead to more efficient algorithms. First, denote by˙ , ˙ , , ˙B B Bn n n d+ + +…1 2 2 the
hyperplanes {x ∈Rd|xj = l j} and {x ∈Rd|xj = uj } ( j = 1, 2,…,d) defining the facets
of Q. Also, for any set F # {1, 2,…,n + 2d}, denote by L(F) the smallest linear

  f x i n k x Bk i( ) { { , , , } { } } .= …∈ ∈| \ | |1 2
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subspace containing (some translate of) 
⋂

i ∈F Ḃi. Now, a set P # Rd (d ≥ 3) is called
max-representative for ˙ , ˙ , , ˙B B Bn d1 2 2… + if, for all F # {1, 2,…,n + 2d} such that
1 ≤ |F| ≤ d – 1,

(i) if |F| ≤ d – 2 and 
⋂

i ∈F Ḃi ≠ ∅, then P contains at least one point of 
⋂

i ∈F Ḃi;

(ii) if |F| = d – 1, 
⋂

i ∈F Ḃi ≠ ∅ and dimL(F) ≤ 2, then P contains an optimal solution
of MAX-CLOSED restricted to solutions in 

⋂
i ∈F Ḃi.

The following property generalizes Drezner’s result mentioned above (it is
similar to theorem 5 in [4]):

Lemma 2. If P is a max-representative set for ˙ , ˙ , , ˙B B Bn d1 2 2… + , then P contains an
optimal solution of MAX-CLOSED.

Proof. Let H be a maximum cardinality subset of {1, 2,…,n} such that Q > (
⋂

i ∈HBi)
≠ ∅. Select an index set F # H < { n + 1, n + 2,…,n + 2d}, as large as possible with
the property that Q > (

⋂
i ∈F Ḃi) > (

⋂
i ∈H\F Bi) ≠ ∅. We consider three cases.

Case 1: |F| ≤ d – 2. Then, by definition of max-representative sets, P contains a
point u ∈

⋂
i ∈F Ḃi. We claim that u ∈Q > (

⋂
i ∈HBi ), which implies that u is optimal

for MAX-CLOSED. To verify the claim, observe first that the set 
⋂

i ∈F Ḃi is connected
(this follows from our assumption that |F| ≤ d – 2, together with the fact that all sets
Ḃi, i ∈F, are either spheres or hyperplanes). Hence, 

⋂
i ∈F Ḃi contains a path from x to

u, where x is any point in Q > (
⋂

i ∈F Ḃi) > (
⋂

i ∈H\F Bi). If the claim is false, then,
when moving from x to u along this path, we must encounter a first boundary set Ḃj,
for some index  j ∉F. But this contradicts the choice of F, since F ′ = F < { j } is larger
than F and satisfies Q > (

⋂
i ∈F ′ Ḃi) > (

⋂
i ∈H\F ′Bi) ≠ ∅.

Case 2: |F| ≥ d – 1 and dimL(F) > 2. In this case, it is easy to see that 
⋂

i ∈F Ḃi
=
⋂

i ∈G Ḃi for some set G , F such that |G| ≤ d – 2. Thus, P contains a point
u ∈

⋂
i ∈F Ḃi, and u can be shown to be optimal for MAX-CLOSED by the same argu-

ment as in case 1 (observe that 
⋂

i ∈F Ḃi is connected, since dimL(F) > 2).

Case 3: |F| ≥ d – 1 and dimL(F) ≤ 2. In this case, let G be any subset of F such that
|G| = d – 1. Since P is max-representative, P contains an optimal solution of MAX-
CLOSED restricted to 

⋂
i ∈G Ḃi. By choice of H and G, this solution is also optimal for

the unrestricted problem. u

In [4], a result similar to lemma 2 leads to an O(nd+1) time algorithm for MAX-
CLOSED. We now show that an O(nd log n) time procedure can be obtained if we
combine lemma 2 with Drezner’s O(n log n) algorithm for (SPk).

Consider the following procedure:
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Procedure 4 (to solve MAX-CLOSED):

P ← ∅;
for all  F # {1, 2,…,n + 2d} such that |F| ≤ d – 2 and 

⋂
i ∈F Ḃi ≠ ∅ do

begin
find x ∈

⋂
i ∈F Ḃi;

P ← P < { x};
f (x) ← |{ i ∈{1, 2,…,n} | x ∈Bi} |

end;
for all  F # {1, 2,…,n + 2d} such that |F| = d – 1 and 

⋂
i ∈F Ḃi ≠ ∅ do

begin
compute the smallest linear subspace L(F) containing 

⋂
i ∈F Ḃi;

if  dimL(F) > 2 then consider the next F else do
begin {solve MAX-CLOSED over 

⋂
i ∈F Ḃi}

Ḋ0 ←
⋂

i ∈F Ḃi;
for all  j ∈{1, 2,…,n}\F do Dj ← Bj > L;
find x ∈Q > Ḋ0  which maximizes |{ j ∈{1, 2,…,n}\F|x ∈Dj} |;
P ← P < { x};
f (x) ← |{ j ∈{1, 2,…,n}\F|x ∈Dj} | + d – 1

end
end;

return  a maximizer of f over P.

We now have the announced result:

Theorem 8. In fixed dimension d, MAX-CLOSED can be solved in O(nd log n)
time.

Proof. To prove that Procedure 4 is correct, we only need to show that the set P
constructed by the procedure is max-representative. First, observe that P contains
a point of  

⋂
i ∈F Ḃi whenever |F| ≤ d – 2. On the other hand, if |F| = d – 1 and

dimL(F) ≤ 2, then the procedure computes an optimal solution of MAX-CLOSED
under the additional restriction that this solution should be inḊ0 =

⋂
i ∈F Ḃi. Hence,

the set P is max-representative.
Let us now analyze the complexity of Procedure 4. The first “for all ” loop

requires O(nd–1) times (there are O(nd–2) subsets F of cardinality at most d – 2, and
each execution of the “begin–end” block requires O(n) time). In the second “for all ”
loop, computing L, Ḋ0 and Di (i ∈{1, 2,…,n}\F) only involves some linear algebra
in d-dimensional space (see [4] for details). Since d is fixed, this requires constant
time for each F.

The innermost “begin –end” block consists in solving MAX-CLOSED over
Q > Ḋ0 , where Ḋ0  is a circle (i.e., a sphere in L(F)). This is a slight generalization
of the subproblem (SPk) introduced earlier, in which the feasible box Q must now be
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taken into account. This problem is easily solved in O(n log n) time by a straight-
forward modification of Drezner’s procedure. Since there are O(nd–1) sets F satisfying
|F| ≤ d – 1, the overall complexity of Procedure 4 is O(nd log n). u

We finally turn our attention to MIN-OPEN. Let us define a min-representative
set analogously as a max-representative set, with the only difference that “MAX-
CLOSED” should be replaced by “MIN-OPEN” in condition (ii). Then, we can prove:

Lemma 3. If P is a min-representative set for˙ , ˙ , , ˙B B Bn d1 2 2… + , then P contains an
optimal solution of MIN-OPEN.

Proof. Let x be an optimal solution of MIN-OPEN, let H = { i ∈{1, 2,…,n} |x ∈Bi},
and let F = { i ∈{1, 2,…,n + 2d} |x ∈Ḃi} (observe that H > F = ∅, since all balls are
open). We assume that x has been chosen (among all optimal solutions of MIN-OPEN)
so that |F| is as large as possible. Now, we distinguish between three cases.

Case 1: |F| ≤ d – 2. Then, by definition of P, there exists a point u in P > (
⋂

i ∈F Ḃi).
We claim that u ∈Q and that, for all i ∈{1, 2,…,n} \H, u ∉Bi (this implies in
particular that u is optimal for MIN-OPEN, as required). Indeed, since |F| ≤ d – 2,
the set 

⋂
i ∈F Ḃi is connected. Hence, there is a path from x to u in 

⋂
i ∈F Ḃi. If the claim

is not valid, then, when moving from x to u along this path, we must encounter a first
boundary setḂj, for some index j ∈{1, 2,…,n + 2d} \F. Let υ be the intersection
point of the path withḂj. If j ∈H, then this means that υ is a first point outside of⋂

i ∈HBi on the path, contradicting the optimality of x (υ is in fewer balls than x).
Thus, j ∉H and υ is optimal for MIN-OPEN (υ is in the same balls as x). But now
this contradicts the choice of x, since F ′ = F < { j } is larger than F and F ′ #
{ i ∈{1, 2,…,n + 2d} |υ ∈Ḃi}.

Case 2: |F| ≥ d – 1 and dimL(F) > 2. Then, there exists a subset G of F such that
|G| ≤ d – 2 and 

⋂
i ∈F Ḃi =

⋂
i ∈G Ḃi, and we conclude as in case 1.

Case 3: |F| ≥ d – 1 and dimL(F) ≤ 2. In this case, let G be any subset of F such that
|G| = d – 1. Since P is min-representative, P contains an optimal solution (say u) of
MIN-OPEN restricted to 

⋂
i ∈G Ḃi. Since x ∈

⋂
i ∈G Ḃi, u must also be optimal for the

unrestricted problem. u

Based on lemma 3, we obtain the following statement:

Theorem 9. In fixed dimension d, MIN-OPEN can be solved in O(nd log n) time.

Proof. A straightforward adaptation of Procedure 4, in which all “max” operators
are replaced by “min” operators, yields the result. u
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7. Discussion

The work described in this paper could be extended in several directions. First,
weighted versions of the minimum and maximum covering problems are of immedi-
ate interest for the marketing applications discussed in section 1 (see [18]). The reader
will easily convince himself that, since all our algorithms are of enumerative type,
they can easily be modified to handle weighted instances, without increase in compu-
tational complexity.

Next, one may also want to consider more general feasible regions than a box,
as we have done here. In particular, the case where Q is an arbitrary polyhedron seems
quite natural. Here again, our algorithms could be modified to handle this broader
class of instances, but their running time may now be affected by the “complexity” of
the description of Q itself (e.g., by its number of facets).

Finally, interesting variants of our problems arise when the Euclidean space is
replaced by other normed spaces. The case of the L∞-norm has been considered by
several authors (see e.g. [4,10,13]), but not much seems to be known, for instance,
concerning the L1-norm. Another variant consists in substituting the balls by ellipsoids.
The maximum covering problem for ellipsoids has been much studied in connection
with the product positioning problem; see e.g. [2,8,18,19]. But here also, much work
remains to be done.
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