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We investigate the algorithmic complexity of several geometric problems of the following
type: given a “feasible” box and a collection of balls in Euclidean space, find a feasible
point which is covered by as few or, respectively, by as many balls as possible. We establish
that all these problems are NP-hard in their most general version. We derive tight lower and
upper bounds on the complexity of their one-dimensional versions. Finally, we show that
all these problems can be solved in polynomial time when the dimension of the space is
fixed.

1. Introduction

In this paper, we consider various algorithmic problems of the following nature: given
a “feasible” regiorQ andn ballsBy, B,,...,B, in Euclidean spacgY, find a feasible
point which is covered by as few or, respectively, by as many balls as possible.
The maximization variant of this problem has been previously studied by several
authors (e.g. [2,4,5,8,19], etc.). The main motivation for considering this problem
stems from aproduct positioningproblem arising in marketing theory. In this
framework,R? is the space of attributes of a family of existing products, which are
represented by points,, ps,...,Pm in RY%. Customer groups are also represented by
pointscy, C,,...,C, in RY, each of which can be viewed as describing the attributes of
the “ideal” product for this customer group. Each group is assumed to buy that product
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which is closest (in the Euclidean sense) to its representative point. The product
positioning problem is now to locate a new product in a feasible regiank® so

as to maximize the market share captured by this new entry. Observe that, in view of
our assumption regarding customer behavior, the new prgowii be bought by
customer grou; if and only if p is contained in the baB; with centerc; and with

radius mip=1__mllC —pkll. Thus, in order to maximize its market share, the new prod-
uct should be covered by as many as possible of the®alBs,...,B,. We refer, for
instance, to the paper [9] or to the surveys by Green and Krieger [9] or Schmalensee
and Thisse [18] for a more thorough discussion of the relevance of this model in the
marketing context.

A variant of the above model arises if we assume that the customers are some-
how “continuously distributed” over a regidd of R® and that each produgt is
characterized by a “radius of attractian Customer buys producp; if and only if
c lies close enough tp;, viz. if c lies in the ball with centep; and with radiug;

(in this model, products are not assumed to be competing with each other, so that a
customer may buy several of them). A pgiritlQ that is not covered by any ball can

be viewed as a segment of the customer population which does not buy any of the
existing products, and which therefore constitutes an unexplored marketing “niche”.
If no such uncovered point exists, then any minimally covered point similarly defines

a region of the space where customer requirements may be insufficiently met by
existing products.

More generally, choice and preference models based on proximity considerations
in perceptual or attribute spaces have been extensively considered in the mathemati-
cal psychology literature (see e.g. Coombs [3]). In this framework, points that are
maximally, respectively, minimally, covered can be naturally interpreted as represent-
ing choice alternatives that are selected by a maximal, respectively, a minimal, number
of individuals. This observation, together with the obvious symmetry between the
maximizing and minimizing variants of our problems, provides the main motivation
for the work described in this paper.

In the next section, we give a more precise definition of the problems to be
investigated. In section 3, we establish that all these problems are NP-hard in their
most general version. In section 4, we restrict our attention to the one-dimensional
situation (i.e.,d = 1), and we derive tight bounds on the complexity of the resulting
problems. More generally, we show in section 5 that all problems considered here can
be solved in polynomial time when the dimenstof the space is fixed. Some of
these results are further improved in section 6.

2. Definitions and statement of the problems

Givenn balls in Euclidean spad@d, either allclosed

B ={xORY |Ix-gllsr} (@(=12..,n),
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or all open
B ={xUORYIx-cll<r} (i=12..,n),

wherec; ORY andr; OR (i = 1, 2,...,n), and given a closed box
Q={xORYI;<x;<u;, j =12,...,d},

we consider the following problems:
Feasibility: Decide if there is a point DQ\(Ui":lBi).
Mimimum covering: Find a pointx LIQ that minimizes|{i =1, 2,...,n| x LIB}|.
Maximum covering: Find a pointx LJQ that maximizeg{i =1, 2,....n| x LIB;}|.

When a statement about balls does not specify whether the balls are open or
closed, it means that the statement holds in both cases. We denote by MIN-CLOSED

(respectively, MIN-OPEN) the version of minimum covering in which all balls are
closed (respectively, open). Similarly for MAX-CLOSED and MAX-OPEN.

3.  NP-hardness results

All three problems defined in section 2 turn out to be NP-hard in their full generality.
Theorem 1 The feasibility problem is NP-complete.

Proof. The feasibility problem is in NP (this may not be entirely obvious at first, but
follows for instance from proposition 3 in section 5).

We first consider the case where all balls are closed. Consider an instance of 3-
SAT with clause&,, C,,...,C, over the set of Boolean variables {X,,..., X4}, where
each clause contains three literals (see e.g. Garey and Johnson [7]). With each clause
G =X,V XV X, we associate a closed ball

B 1f _ d8
B = x ORYx2 + x2 + x? + i~ 50 < 0
: j#%k,l %(J 20 ™ 45

fori=1,2,...,n. If a negated literak,, appears irC;, use (1 -x,)? instead ofx? in
the above definition. Then define the unit hypercube

Q={xORY0<x;<1 j=12,..,4d.

We claim that clauses§,, C,,...,C, are simultaneously satisfiable if and only if there
exists a poinx JQ\(U!-,B;). To see this, consider an arbitrary cla@e x, Vv
X, V x. Notice that, for any [J{0, 1}9, x satisfiesG; if and only if x OB, (by
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definition of B;). This trivially implies the “only if” part of the claim. For the “if”
part, consider any point JQ\B;. Define another poing [I{0, 1}¢ by

DO, if Xj < 1/2,
YiTHy it x 212

gl if x; 21/2
Sincex LIB;, we obtain successively

et ie 3 B2
j£ Rkl

< XpHXxg +xf +(d-3)/4

thus x2 + x2 + x? > 3/4, and one ok, X, X must be larger than/2. This in turn
implies that one of,, Yy, Y, is equal to 1, and thus clau€gis satisfied byy.
This shows that the feasibility problem for closed balls is NP-complete.
It is easy to see that a similar proof works when all B|8.,...,B, are open:
it suffices to replace the radiag4 byd/4 + ¢, where 0 << 1/4. O

Theorem 2 MIN-CLOSED and MIN-OPEN are NP-hard.
Proof. This is an immediate corollary of theorem 1. ]

Theorem 3 MAX-CLOSED and MAX-OPEN are NP-hard.

Proof. First recall that MIN-SAT is the following problem: given an instance
C,, C,,..., G, of the satisfiability problem and an integerdecide whether there exists
a truth assignment such that at leastf the clauseg€,, C,,..., G, arenot satisfied. It
is known that MIN-SAT is NP-complete even when every clause contains at most two
literals (we call MIN-2-SAT this restricted version of the problem; see [12]).

Now, given an instance of MIN-2-SAT with clauség C,,..., G, over the vari-
ables {;, Xo,..., X4}, we construct an instance of MAX-CLOSED as follows. With
each clause, for examp(& = x, vV X, we associate a closed ball

B = %(|(d+xh)2+(d+1—xk)2 Y %(J' - 28252d2+d%.
A j £k B

We claim that there is a poigt[1{0, 1} that does not satisfin of the clause€;,
C,,...,C, if and only if there is a point JRY that lies inm of the ballsB;, B,,...,B,.

Indeed, for anyx [J{0, 1}9, x does not satisfiC, if and only if x (JB;. This
implies the “only if” part of the claim. Conversely, assume thaiB;, and assume
for example thaC =x, vV X,. If x,=21/2 orx,<1/2, then
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(d+xp)2+(d+1- %)+ ¥ %(j—;gzzgp+;gz+d2>2d2+d,
T

contradictingx [JB,. Thus,x, < 1/2 andx, > 1/2. Define now a poiny [J{0, 1} ¢ by

DO, if Xj < 1/2,
yi = O .

oL if x; >1/2.
Then,y does not satisfi;. Therefore, if there is a pointin B, N B, N --- N B,
then the correspondingdoes not satisfy any @, C,,...,C;_ . This establishes the
“if” part of the claim, and proves the NP-hardness of MAX-CLOSED.

It is easy to see that the above construction also works for MAX-OPEN.

For closed balls, theorem 3 was first proved in [4] by a more involved argument.
As observed by a referee, theorem 3 is also a close relative of the (folklore?) result
according to which it is NP-hard to find a largest feasible subsytem of a system of
linear inequalities.

4. Problems in one-dimensional space

We show in this section that when= 1, i.e. the dimension of the Euclidean space is
one, then all problems defined in section 2 can be solv&qridog n) time and this
time bound is optimal.

Let us first state a lemma (we refer to Preparata and Shamos [16] for a defini-
tion of the algebraic decision tree computational model).

Lemma 1L The following problems requir@(nlogn) operations in the algebraic
decision tree model:

(P1) Given @y, a,...,a,) LIR", decide whether there exists a permutatioiof
{1, 2,...,n} such that

an(i+1)=an(i)+1 (I =ZL2,...,n—1).
(P2) Given (@, ay,...,a,) LIR", decide whether there exists a permutatioof
{1, 2,...,n} such that
an(i) D(I —].,I) (I =1,2,...,n),

where {—1,i) denotes the open interval with endpointsl andi.

Proof. We apply a general result due to Ben-Or, as presented in Pregrad&8hamos
(theorem 1.2 in [16]). Le§, be the set of all permutations of {1, 2,n}, For mL1S,,
consider the lines in-space
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W;-[:{X DR”|X7T(i+1):X7T(i)+1! i =ZL2,...,n—ZI},
Vnz{X DR”|XH(i) D(I —].,i), i =1,2,...,n}.

Clearly, @4, a,,...,a,) is a Yes-instance of (P1) (respectively, (P2)) if and only if
(ag, @, ..., 8n) LU 05 Wy (respectively, &, a,,...,a,) LU 05 Vr). Moreover, ifrm # 15,

then Wy, N Wi, = 0 andV, N Vg, = O; thus, U ;o5 Wy and U 405, Vi €ach haven!
connected components. Ben-Or’s theorem now implies Giflatg n!) = O(n log n)
operations are necessary to solve (P1) or (P2) in the algebraic decision tree model,
thus proving the lemma. O

As pointed out by a referee, tliHn log n) lower bound for problem (P1) was
previously established by Lee and Wu [14] and Ramanan [17]. Here, lemma 1 allows
us to derive the following results:

Proposition 1. The feasibility problem for closed balls i (i.e., for closed inter-
vals) require2(n log n) operations in the algebraic decision tree model.

Proof. Given an instancea(, a,,...,a,) of (P1) (see lemma 1), define the following
instance of the feasibility problem:

B=[a,a+1] (i=12..,n)

Q = [anin, @min *+ N,

and

where a,i, = min{ay, a,,...,a,}. Note thatB, andQ can be defined in linear time.
Then, &, a,,...,a,) is a Yes-instance of (P1) if and onIyQt\(Uinlei) =[0. There-
fore, the statement follows from lemma 1. ]

Proposition 2 The feasibility problem for open balls f(i.e., for open intervals)
requiresQ(nlog n) operations in the algebraic decision tree model.

Proof. Given an instancea(, a,, ...,a,) of (P2), define (in linear time) the following
instance of the feasibility problem, involvingn 2 1 open balls and a box:

B=th-sa+ 50 (i=12..)

i=9-0+58  (=o0l..m,
Q=[0,n.

We claim that 4, a,,...,a,) is a Yes-instance of (P2) if and only if
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DLnJ LnJ 0
Q\ol JB U lig=0.
\DizlI j:oJD

Indeed, for anyx [1Q, there holds thai DUJ-”zolj if and only if x O{i - 1[i =
1, 2, ...n}. Therefore,

DLnJ LnJ O
Q\oyYB U | Jlio=0O
\DizlI j:OJD

o Oi (L2, O DL 2,1 i — % 0By
o O O@2,....1; O(i) O{L2,.....1}; angy O -1i).

In these implicationsyt must be a permutation, since each of the B8,,...,B,
can contain at most one point of the form % fori=1,2,...,n. This establishes
the claim, and hence the proposition (via lemma 1). ]

Theorem 4 Feasibility problems, minimum covering problems and maximum
covering problems in one dimensional sp&cean all be solved i®(nlog n) time
(in the sense of algebraic operations).

Proof. Each ball inR is given as either a closed interval,[o;] or an open interval
(a,b), fori=1,2,...,n, and a box is given as a closed inter@at [l, u]. First sort

all & andb; belonging toQ by nondecreasing value (this requi@é log n) time).

Then scan the sorted list oh Ziumbers from smallest to largest (this requitgn)

time). All problems in the theorem statement can easily be solved if, in the course of
this scanning procedure, we keep track of how many intervals cover the point being
scanned.

The resulting time boun@®(nlogn) is optimal for feasibility problems by
propositions 1 and 2. It is also optimal for minimum covering problems since these
include feasibility problems as special cases.

To see that the time bound is also optimal for maximum covering problems,

associate an instance of MAX-CLOSED with each instance of MIN-OPEN by asso-
ciating the closed interval$, ;] and [b;, u] with each open intervaky(, b;) of MIN-
OPEN (ifI > & or b; > u holds, ignore the corresponding interval). It is easy to see
that the optimal solutions of these two problem instances coincide. Therefore, MAX-
CLOSED require2(n log n) time.

The case of MAX-OPEN is analogous. L]

Remark 1. Problems (P1) and (P2) in lemma 1 can be solve@(im time if the
computational model is modified to allow the use of the floor functioh For
instance, when solving (P1), the floor function can be used to determine to which of
the buckets
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i =[@min +1 —Lam, +i) (=12,..,n)

eacha belongs. If somey; does not fall in any of these buckets, then we are done.
Thus, assume DI,,(J-) forj=1, 2,....n. Check whetheg; = ay,, + 1(j) — 1 for each
j, and check whetheris a permutation. If so, then answer “Yes”, otherwise answer
“NO"_

By contrast, however, we do not know whether the feasibility problem can be
solved inO(n) time when the floor function is available. O

5. Power diagrams andd-dimensional problems

We show in this section that our problems can be solved in polynomial timedyhen
i.e. the dimension of the space, is fixed. In order to achieve polynomiality, we make
extensive use of the conceptpmwer diagramwhich allows us to tackle feasibility,
minimum covering and maximum covering problems in a unifying framework.

Power diagrams generalize Voronoi diagrams and provide a rather standard tool
for the investigation of computational geometry problems involving balls (see for
instance Aurenhammer [1], Imai et al. [11] — for the planar case —, Edelsbrunner [6],
Preparata and Shamos [16]). However, their properties are not widely known in the
Operations Research community, and their relevance to the class of problems consid-
ered in this paper seems to have gone unnoticed so far. Let us start, therefore, with
some basic definitions.

The powerof a pointx CJR® with respect to a baB C R with centerc (R and
radiusr LJR is defined by

pow(x, B) =[x - c||? - r?.

(This guantity is sometimes called thaguerre distanc®f the point to the ball.) The
following properties are immediate consequences of the definition:

pow(x, B) < 0 if xisintheinterior of B,

pow(x, B) = 0 if xison the boundary of B,

pow(x, B) > 0 otherwise.
Fix a collectionBy, B,,..., B, of balls inRY, Forj [J{1, 2,...,n}, define thepower cell

cel(Bj) ={x ORY| pow(x, Bj) < pow(x, B;) forali # j}.
The power diagramof By, Bs,...,B,, denoted PL[K;, B,,...,B,) (or PD for short), is
the collection of all cellsell(B,), cell(B,),...,cell(B,). For a given (closed) box
Q C R", define
cellg(Bj) =cel(B;))NQ (j=12,...,n)

and
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PD(BL, By, ..., By) ={cellg(B;)|j =12,...,1}.

It is known that eackelly(B;) is a closed polyhedron. We denote\hyhe vertex set
of celly(B;), and we let
V.
1

s

V =

j
The next result motivates our interest in power diagrams: it implies that, if an instance

of the feasibility problem is a Yes-instance, then it has a solution among the vertices
of the power diagram.

Proposition 3. The boxQ is not covered by/; _1B (i.e., the answer to the feasibility
problem is Yes) if and only if there exrstQ{l 2,...,n} and a vertexw L1V, such that
v UB;.

Proof. To show the “if” part, assume that ]V;\B; for somei. Sincev Lcelly(B),
pow(u, Bj) < pow(u, By) for all j # . Together withw [B;, this implies thav LIB; for
all j, and thusv is not covered bjUJ 1B;.

To show the converse, assume now t!n@lQ\UJ 1Bj. For some [{1, 2,...,n},
we haveu Lcello(B;). Let v be a point maximizingpow(x, B;) overcellg(B;). Slnce
cello(B;) is a polyhedron and the power function is convex, we may assume that
v LJV,. Moreover, sincau [IB; and pow(u, B;) = pow(u, B;), we see thav [IB;, as
required. L]

Observe that proposition 3 holds independently of whether theBalbs,...,B,
are closed or open.
Consider now the following procedure for the feasibility problem.

Procedure 1(to solve the feasibility problem):

construct P3(By, By,...,B,) andV;
for each vertexu LV do
begin
find i [J{1, 2,...,n} such thatv DceIIQ(B)
if v [IB; then return “yes” {i.e., v DQ\UJ 1B}
end;
return “no”.

The correctness of this procedure is trivially implied by proposition 3. Let us
examine its complexity. Aurenhammer [1] shows that the power diagram PD can be
computed inO(n log n) time whend = 2 (see also Imai et al. [11]), @(n(@+1/21)
time whend = 3, and inO(n'©@*Y/2!y space for altl. PD is then represented by a data
structure in which each face (of dimension 0, 1d.=,1) of the cells of PD corre-
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sponds to a node, and incident faces are associated via pointers. The coordinates of
the vertices ol are also recorded. The number of vertices (i.e., faces of dimension
0) and edges (i.e., faces of dimension 1) of PD(is'¥/2!). It follows that PR can

also be constructed in tim@(n'@*Y/21y by computing the penetration points of all
edges of PD into the bo®. In Procedure 1, the blockegin—endis executed
O(n'%21) times. By means of the above data structure, each execution requires con-
stant time. Thus we have established the next theorem:

Theorem 5 In fixed dimensiord, the feasibility problem can be solveddn log n)
time if d = 2, and inO(n'@*Y/2l time if d = 3. O

In view of theorem 4, the time bour@(n log n) for d = 2 is optimal.

We next explain how the ideas described above can be extended to minimum
and maximum covering problems, thus leading to solution algorithms with time
complexity O(n%*?) and space complexit®(n®*?) for these problems. For MAX-
CLOSED and MIN-OPEN, more efficient algorithms will be described in the next
section.

For every subset C {1, 2,...,n}, we define

cell(T) = {x ORY| pow(x, B;) < pow(x, B;) forali OTandj OT}.

This is the set of points which are closer (with respect to the power function) to the
balls in T than to those not iif. Fork=1, 2,...,n, the order-k power diagranof

By, Bs,...,B, (or k-PD for short) is the collection of all celtgll(T) such that T| = k.

The intersection o€ell(T) with Q is denotectelly(T), and the corresponding collec-
tion for |T| = k is denoteck-PDq. Similarly to the case of RD eachcelly(T) is a
polyhedron, whose vertex set we denoteVpy Finally, we let

v = | ) vr.
ITI=k

Based on these definitions, we can now establish that an optimal solution of the
minimum covering problem is to be found among the vertices of -REPD,...,
n-PDg. More precisely:

Proposition 4. Fork=1, 2,...,n, the optimal value of the minimum covering prob-
lem is at mosk — 1 if and only if there exists JV® such that{i =1, 2,...,n|v OB} |
<k-1.

Proof. The condition is clearly sufficient. In order to prove its necessity ket an
optimal solution of the minimum covering problem, and assume without loss of
generality thapow(u, B;) < pow(u, B,) < ... < pow(u, B,) and thau LB for all j = k
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(this implies in particular that [cellg ({1, ..., k})). Let v be a maximizer apow(x, By)
overcelly({1,...,k}). By convexity of the power function, we can takéo be a vertex
of cellg({1,..., k}). Moreover, since botlu andv are incelly({1,..., k}), there holds
pow(u, B,) < pow(u, B) < pow(v, B;) for all j > k. Sinceu [IB,, we see that, for all
jzk v DBJ-. Thus,u is in at mosk — 1 of the ball$8,, B,,...,B,, as required. [

Proposition 4 suggests the following procedure:

Procedure 2(to solve MIN-OPEN and MIN-CLOSED):

construct 1-Plg, 2-PDy,...,n-PDg;
for k=1 ton and for each vertexw VX do
begin
find the sefT={i=1, 2,...njv LUB};
if |T| <kthen return v andk-1 (i.e.,v is optimal)
end.

Theorem 6. In fixed dimensiond, minimum covering problems can be solved in
O(n%*?) time.

Proof. It follows from proposition 4 that Procedure 2 correctly solves minimum
covering problems.

As for its complexity, notice that the diagrams 1R-PD,,...,n-PDg together
containO(n*?) facets and(n*?) vertices, and that constructing all these diagrams
takesO(n9*!) time and space (see[1]). Since the blbegin—end of Procedure 2
is executedO(n?*!) times and each execution can be done in linear time by using
appropriate data structures, the total time required by the procedd(e’s). []

Let us now turn to maximum covering problems. Our procedure for these prob-
lems is based on the following easy observation:

Proposition 5. If T is a maximal subset of {1, 2,.n} such thatQ N (N;51B;) # U,
thencelly(T) # 0.

Proof. Assume first thaB,, B,,...,B,, are all closed. Then, for every poiatin
Q N (Njn7By), there holdspow(v, B;)) <0 if j LIT, andpow(u, B)) >0 if j LIT (by
maximality of T). Thus,v Ucello(T). A similar argument appliesputatis mutandis
whenB,, B,,...,B, are open. O

Proposition 5 implies that, when solving the maximum covering problem, we
can restrict our attention to subsets of balls suchablg(T) is nonempty. There-
fore, the following algorithm is correct:
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Procedure 3(to solve MAX-OPEN and MAX-CLOSED):
construct 1-Plg, 2-PD,,...,n-PDg;
for k=ndown to1and for all T C {1, 2,...,n} with |T| =k andcello(T) # O do
begin
if QN (NjprB;) 20 then return T
(i.e., any point inQ N (N;p7B;) is optimal)
end.

Theorem 7. In fixed dimensiond, maximum covering problems can be solved in
O(n%*?) time.

Proof. Procedure 3 is clearly correct. Regarding its complexity, we notice that the
only difficulty consists in testing efficiently wheth@ N (;51B;) # U for various
setsT. So, consider any sétfor which the test must be performed. We claim first that
QN (N;prBj) # U if and only if, for some LT, cello(T\{i}) N B #0O.

Indeed, lew JQ N (NjorB;). We can freely assume thkis maximal with the
property thatQ N (";5rB;) # U, for otherwise Procedure 3 would have terminated
earlier. Thus, as in the proof of propositionuﬂ]cellQ(T). Now, if i LJT is chosen
such thapow(u, B;) = pow(u, B;) for all j LT, we obtain thav Lcello(T\{i}) N B;.

Conversely, ifv Ucellg(T\{i}), then pow(v, B;) = pow(v, B)) for all j [IT, and
hencev UB; impliesv JQ N (N1 B)).

Having thus proved the claim, we deduce that each test of the form “Is
QN (NjnrBj) empty?” can be reduced to a sequenceETdftests (corresponding to
all i IT) of the form: “Iscello(T\{i}) N B, empty?”.

Each of the latter subproblems can in turn be formulated as a convex quadratic
minimization problem with linear constraints: in this formulation, the objective is to
find a pointu which minimizes the quantitpow(v, B;), and the constraints om
correspond to the facets céllo(T\{i}) (i.e., faces ofcello(T\{i}) whose dimension
is the dimension of the cell minus 1). For fixgdthis minimization subproblem can
be solved in time linear in the number of constraints (see Megiddo [15]).

It can be verified that, over the complete execution of Procedure 3, each facet of
1-PDq, 2-PDy,...,n-PDg appears as a constraint@fn) minimization subproblems.
Indeed, consider any fac&, and assume thdt is the intersection of two cells
cello(T,) andcellg(T,). Then,F gives rise to a constraint in each of tme-(T;|)
tests associated with sefsof the formT =T, U {i), for i L{1, 2,...,n}\T;. And
similarly, F gives rise to a constraint in each of time-(T,|) tests associated with
setsT of the formT =T, U {i}, for i [J{1, 2,...,n}\T,. Thus, in totalF generates
(2n—|T;| — |T,|) constraints over the whole procedure.

Since there ar@(nd”) facets in 1-PD, 2-PD,..n-PD, and since each convex
guadratic subproblem can be solved in time linear in the number of constraints (i.e.,
facets) in its formulation, we conclude that the time complexity of Procedure 3 is
O(nd+2). D



Y. Crama, T. Ibaraky Hitting or avoiding balls 59

6. Faster algorithms for MAX-CLOSED and MIN-OPEN

In this section, we revisit the problems MAX-CLOSED and MIN-OPEN in fixed
dimensiond, and propose more efficient algorithms than those presented in section 5.
These two problems share the property that an optimal solution can always be found
on the boundary of some subset of balls. As we shall see, this property makes them
slightly easier to solve than their respective counterparts, MAX-OPEN and MIN-
CLOSED.

Drezner [5] proposed a®(n? log n) time algorithm for MAX-CLOSED irR?,
and Crama et al. [4] extended his approach to deriv@(afi*?) time algorithm for
MAX-CLOSED in RY. In this section, we improve the latter @n®log n) time.
(Notice that [4,5] do not consider a feasible ligxas we do here.) We now briefly
describe the ideas behind these algorithms, since they will be the starting point for the
algorithms to be presented below. Throughout this section, we den&éhleypound-
ary of a setSC RY.

Drezner [5] first shows that, if the optimum value of MAX-CLOSEDRMmis at
least 2, then some optimal solution lies at the intersection of two circles. By succes-
sively considering each of thecircles, this allows him to reduce the solution of
MAX-CLOSED in R? to the solution of the following subproblems (38, for
k=1, 2,...n

(SPk) Givenn closed ballsB;, B,,...,B, C R?, find a pointx DBk that maximizes

f) =1{i D{L2,...,nt \{K [ x OB}

Problem (SR) can best be seen as a one-dimensional maximum covering prob-
lem, since its feasible set is restricted to the boundaB.ofherefore, it should be
no surprise that (3 can be solved i®(nlog n) time by a straightforward adapta-
tion of the algorithm outlined in the proof of theorem 4. More specifically, Drezner
solves (SR) as follows. Leta,, b, be the intersection points @& with By for i # k.

Sort Iy = U« &, b} according to the order in which these points are encountered
when moving alongB, starting from an arbitrary poirg OB (this step requires
O(n log n) time). Computef,(x) for all x LI, starting fromf,(p) and updating the
value off, according to whether each pointlgfcorresponds to an “entry” point into
some ballB; or an “exit” point fromB; (this step take©(n) time). In this way, a
maximizer off, overly (i.e., an optimal solution of (%P can be computed in
O(nlogn) time.

In order to generalize Drezner’s approach, Crama et al. [4] defined the concept
of arepresentativesetof points. We next introduce a variant of this concept, which
will lead to more efficient algorithms. First, denote By+1, n+2,+-+, Bn+2g the
hyperplanes X ORY % = I;} and {x OR% x = u} (j =1, 2,...,d) defining the facets
of Q. Also, for any seF Cc{1,2,...,n+ 2d}, denote byL(F) the smallest linear



60 Y. Crama, T. Ibaraki’ Hitting or avoiding balls

subspace containing (some translate(df}r B. Now, a seP C RY (d = 3) is called
max-representativéor By, B,, ..., B, o4 if, for all F C {1, 2,...,n+ 2d} such that
1<|F|<d-1,

(i) if |F| <d—-2 andN;grB# O, thenP contains at least one point Of o B;;

(i) if |F| =d—1,NigeB# 0 anddimL(F) < 2, thenP contains an optimal solution
of MAX-CLOSED restrictedto solutions inN; ¢ B.

The following property generalizes Drezner’s result mentioned above (it is
similar to theorem 5 in [4]):

Lemma 2. If P is a max-representative set fB[, Bz, ..., Bn+24, thenP contains an
optimal solution of MAX-CLOSED.

Proof. LetH be a maximum cardinality subset of {1, 2,n}. such thatQ N (N;g4B)
# . Select anindex stC HU {n+1,n+ 2,...,n + 2d}, as large as possible with
the property thaQ N (Mg B) N (Nion\rB) # 0. We consider three cases.

Case 1 |F| <d- 2. Then, by definition of max-representative s@sontains a
pointu [N B. We claim thau [JQ N (NipnB;), which implies thau is optimal
for MAX-CLOSED. To verify the claim, observe first that the Setg B; is connected
(this follows from our assumption thi| < d — 2, together with the fact that all sets
Bi, i LIF, are either spheres or hyperplanes). Heflggx B; contains a path fromto

u, wherex is any point inQ N (NigeB) N (Nigu\e B). If the claim is false, then,
when moving fronx to u along this path, we must encounter a first boundaryBset
for some indexy LIF. But this contradicts the choice®fsinceF' = F U { j} is larger
thanF and satisfie®Q N (Mg B) N (Nign\eB) # 0.

Case 2 |F| 2d-1 anddimL(F) > 2. In this case, it is easy to see thit B;

= Nipe B; for some setG C F such that|G| <d-2. Thus,P contains a point

u N;ioe Bi, andu can be shown to be optimal for MAX-CLOSED by the same argu-
ment as in case 1 (observe thate B is connected, sincgimL(F) > 2).

Case 3 |F| =d-1 anddimL(F) < 2. In this case, leB be any subset d¢f such that
|G| =d - 1. SinceP is max-representativé contains an optimal solution of MAX-
CLOSED restricted t6); 5 B;. By choice ofH andG, this solution is also optimal for
the unrestricted problem. O

In [4], a result similar to lemma 2 leads to@m“*?) time algorithm for MAX-
CLOSED. We now show that ad(n®log n) time procedure can be obtained if we
combine lemma 2 with Drezner@(n log n) algorithm for (SR).

Consider the following procedure:
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Procedure 4(to solve MAX-CLOSED):

P~ 0O,
for all F C {1, 2,...,n+ 2d} such that|F| <d—2 andN; B # O do
begin _
find x LN ge B;;
P~ PU{x}s
f(x) « |{i {1, 2,...,n} | x UUB}|
end, .
forall FC {1, 2,...,n+ 2d} such that|F| =d -1 andN;;B;# 0 do
begin _
compute the smallest linear subspa¢E) containing; o B;;
if dimL(F) > 2 then consider the next else do
begin {solve MAX-CLOSED over ;¢ B}
Do « Mige Bs
for all j {1, 2,...,n}\F do D; —~ By N L;
find x JQ N Dy which maximizes{j [{1, 2,...,n}\F|x LD} |;
P~ PU{x}
fx) « [{j{1,2,....,n\F[xUDj}| +d-1
end
end;
return a maximizer off overP.

We now have the announced result:

Theorem 8 In fixed dimensiond, MAX-CLOSED can be solved i®(nlog n)
time.

Proof. To prove that Procedure 4 is correct, we only need to show that tife set
constructed by the procedure is max-representative. First, observié tioatains

a point of N5 B whenever|F| <d- 2. On the other hand, ifF| =d-1 and
dimL(F) < 2, then the procedure computes an optimal solution of MAX-CLOSED
under the additional restriction that this solution should b®gjr ;¢ B. Hence,

the setP is max-representative.

Let us now analyze the complexity of Procedure 4. The fiimt all” loop
requiresO(n?~1) times (there ar®(n%~?) subset$ of cardinality at mostl — 2, and
each execution of theoegin—end block requiresO(n) time). In the secondér all”
loop, computing., Dy andD; (i LI{1, 2,...,n}\F) only involves some linear algebra
in d-dimensional space (see [4] for details). Sidcis fixed, this requires constant
time for eachF.

The innermost Begin—end block consists in solving MAX-CLOSED over
Q N Dg, where Dy is a circle (i.e., a sphere kfF)). This is a slight generalization
of the subproblem (S& introduced earlier, in which the feasible b@xmust now be
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taken into account. This problem is easily solvedim log n) time by a straight-
forward modification of Drezner’s procedure. Since theregrd—1) setsF satisfying
|F| <d -1, the overall complexity of Procedure 40¢n° log n). ]

We finally turn our attention to MIN-OPEN. Let us definenin-representative
set analogously as a max-representative set, with the only difference that “MAX-
CLOSED?” should be replaced by “MIN-OPEN” in condition (ii). Then, we can prove:

Lemma 3. If P is a min-representative set f&, B, ..., B, 24, thenP contains an
optimal solution of MIN-OPEN.

Proof. Letx be an optimal solution of MIN-OPEN, let={i [}{1, 2,...,n} | x [IB},

and letF = {i [J{1, 2,...,n+ 2d} | x [IB} (observe thaH N F = [J, since all balls are
open). We assume thahas been chosen (among all optimal solutions of MIN-OPEN)
so that|F| is as large as possible. Now, we distinguish between three cases.

Case 1 |F| <d- 2. Then, by definition o, there exists a pointin P N (N B).
We claim thatu LJQ and that, for alli LI{1, 2,...,n}\H, u IB; (this implies in
particular thatu is optimal for MIN-OPEN, as required). Indeed, sinée¢ <d- 2,
the sef ), 5¢ B; is connected. Hence, there is a path fsotmu in ;5 B;. If the claim
is not valid, then, when moving frorto u along this path, we must encounter a first
boundary seB;, for some index ({1, 2,...,n+ 2d} \F. Let v be the intersection
point of the path withB;. If | [IH, then this means thatis a first point outside of
N;onB; on the path, contradicting the optimality f(u is in fewer balls thar).
Thus,j JH andu is optimal for MIN-OPEN ¢ is in the same balls a§. But now
this contradicts the choice of sinceF'=F U { ]} is larger thanF and F' C
{i {1, 2,...,n+2d} |v UB}.

Case 2 |F| >2d-1 anddimL(F) > 2. Then, there exists a subg&if F such that
|G| <d-2 andN;zr B = N B, and we conclude as in case 1.

Case 3 |F| =d-1 anddimL(F) < 2. In this case, leB be any subset d¢f such that
|G| =d - 1. SinceP is min-representative? contains an optimal solution (say of
MIN-OPEN restricted td ;5 B;. Sincex LIN;5¢ B, u must also be optimal for the
unrestricted problem. O

Based on lemma 3, we obtain the following statement:
Theorem 9 In fixed dimensiord, MIN-OPEN can be solved i®(n®log n) time.

Proof. A straightforward adaptation of Procedure 4, in which all “max” operators
are replaced by “min” operators, yields the result. ]
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7. Discussion

The work described in this paper could be extended in several directions. First,
weightedversions of the minimum and maximum covering problems are of immedi-
ate interest for the marketing applications discussed in section 1 (see [18]). The reader
will easily convince himself that, since all our algorithms are of enumerative type,
they can easily be modified to handle weighted instances, without increase in compu-
tational complexity.

Next, one may also want to consider more general feasible regions than a box,
as we have done here. In particular, the case wpéean arbitrary polyhedron seems
guite natural. Here again, our algorithms could be modified to handle this broader
class of instances, but their running time may now be affected by the “complexity” of
the description of) itself (e.qg., by its number of facets).

Finally, interesting variants of our problems arise when the Euclidean space is
replaced by other normed spaces. The case of theorm has been considered by
several authors (see e.g. [4,10,13]), but not much seems to be known, for instance,
concerning thé;-norm. Another variant consists in substituting the ballsliyysoids.

The maximum covering problem for ellipsoids has been much studied in connection
with the product positioning problem; see e.g. [2,8,18,19]. But here also, much work
remains to be done.
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