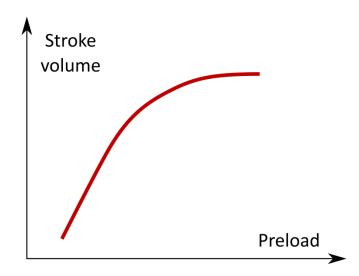


Vascular filling and the Frank-Starling mechanism

S. Kosta^{1,*}, A. Pironet¹, J.A. Negroni², E.C. Lascano², P.C. Dauby¹

¹GIGA - In Silico Medicine, University of Liege, Belgium,
²Department of Comparative Cellular and Molecular Biology, Favaloro University,


Argentina

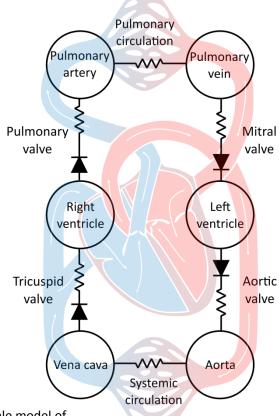
Vascular filling

- Vascular filling = intravenous administration of fluid to a patient in order to increase the stroke volume
- Clinical treatment proposed because of the Frank-Starling mechanism

 An increase in preload (= stretching of the heart muscle fibers before contraction) leads to an increase in stroke volume (= volume of blood ejected by the ventricle)

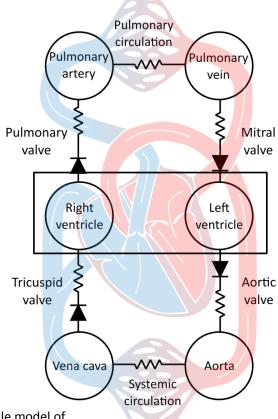
Vascular filling

- Vascular filling = intravenous administration of fluid to a patient in order to increase the stroke volume
- Clinical treatment proposed because of the Frank-Starling mechanism


- An increase in preload (= stretching of the heart muscle fibers before contraction) leads to an increase in stroke volume (= volume of blood ejected by the ventricle)
- A patient will be « fluid-responsive » if the increase in circulating blood volume substantially increases stroke volume.

Human cardiovascular system model

Human CVS is assimilated to a six-chamber model


S. Kosta, J. Negroni, E. Lascano, P.C. Dauby, Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices, Mathematical Biosciences, in press.

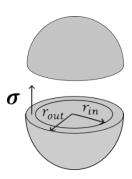
Human cardiovascular system model

Ventricular contraction is described at the cellular scale

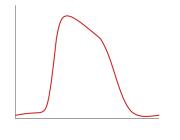
S. Kosta, J. Negroni, E. Lascano, P.C. Dauby, Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices, Mathematical Biosciences, in press.


Human cardiovascular system model

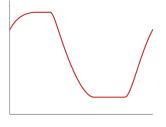
+


Cardiac cell model

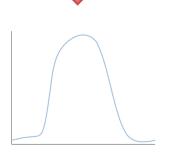
Electrophysiological model


Intracellular calcium

Spherical ventricle model



Shim, Eun Bo, et al. "The cross-bridge dynamics during ventricular contraction predicted by coupling the cardiac cell model with a circulation model." *The Journal of Physiological Sciences* 57.5 (2007): 275-285.


Mechanical model

Normalized force

Half-sarcomere length

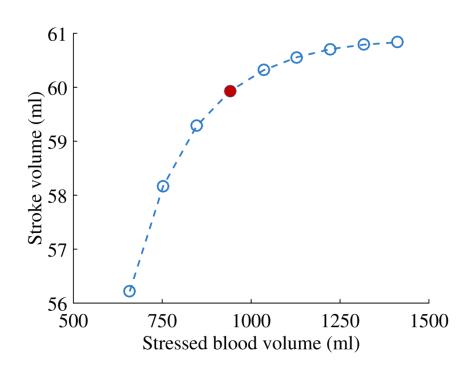
Ventricular pressure

Ventricular blood volume

Stressed blood volume

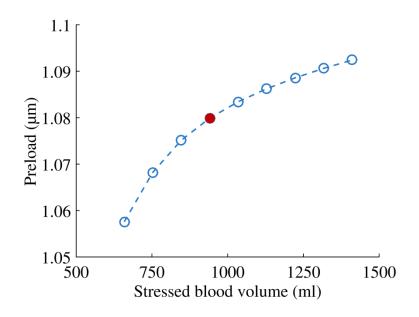
- The total stressed blood volume (SBV) is defined as the total blood volume responsible for a non-zero pressure inside the cardiovacular system
- In our 6-chamber model:

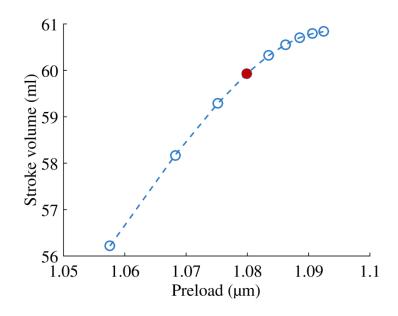
$$SBV = V_{lv} + V_{rv} + V_{ao} + V_{vc} + V_{pv} + V_{pa}$$


 Vascular filling experiments (fluid injections) are modeled with an increase in SBV

Vascular filling simulations

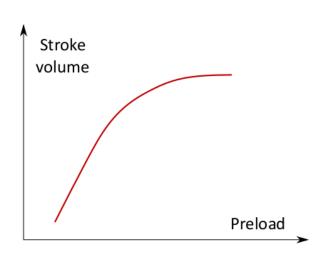
 Stroke volume is calculated for different values of SBV once the system has reached its steady state



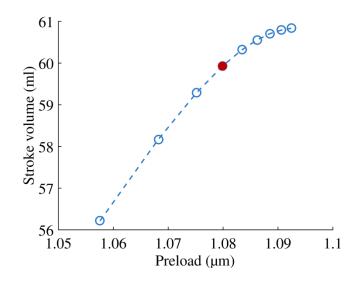


Link with the Frank-Starling mechanism

The increase in SBV lead to an increase in preload



Link with the Frank-Starling mechanism


 The vascular filling curves can not be directly compared to the Frank-Starling curves

#

Transitory effect of an increase in preload

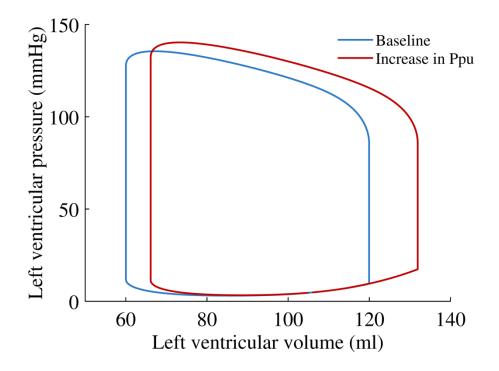
⇒ All other variables remain unchanged

Stabilized behavior following an increase in SBV ⇒ Other variables are altered

Instantaneous preload increase

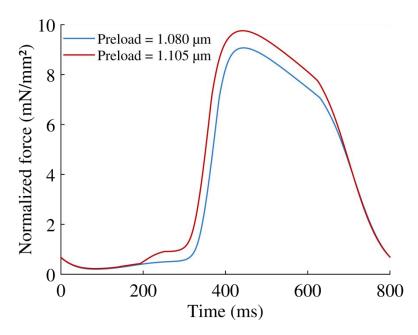
Simulation of an instantaneous increase of the pulmonary pressure during left ventricular filling

- \Rightarrow increase in the blood flow entering the ventricle
- \Rightarrow increase in preload



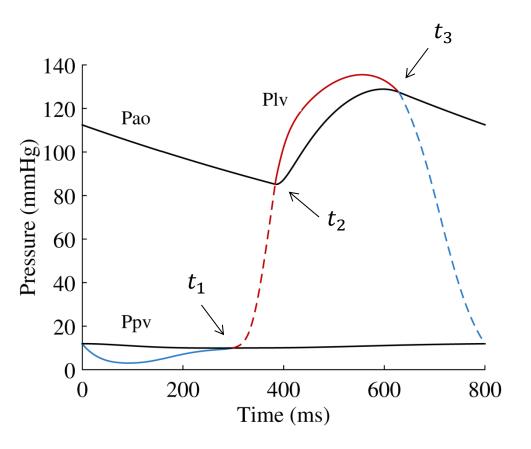
Instantaneous preload increase

The resulting pressure-volume loop shows that the stroke volume and the maximal developed pressure increase



Length effect

- Increase in half-sarcomere length \Rightarrow increase in the developed cardiac cellular force (length-dependent activation)
- Increase in force ⇒ increase in ventricular pressure ⇒ increase in stroke volume



But the timescale of the cardiac beat is also affected!

Timing effect

- Ventricular filling (stops at the mitral valve closing)
- the aortic valve opening)
- Blood ejection (stops at the aortic valve closing)
- Isovolumic relaxation (stops at the mitral valve opening)

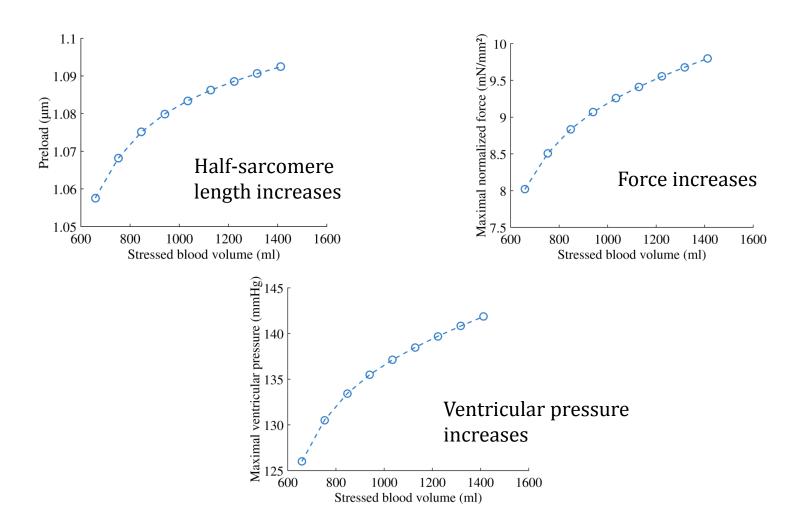
Timing effect

	Baseline	Preload increase
t_1 (mitral valve closing)	142,4 ms	110,4 ms
t_2 (aortic valve opening)	226,4 ms	222,4 ms
t_3 (aortic valve closing)	471,2 ms	483,2 ms
Isovolumic contraction (t_2-t_1)	84 ms	112 ms
Blood ejection (t_3-t_2)	244,8 ms	260,8 ms

- ⇒ The isovolumic contraction starts earlier
- ⇒ The isovolumic contraction and the blood ejection phases last longer
- ⇒ The timing of valves opening and closing also affects the stroke volume

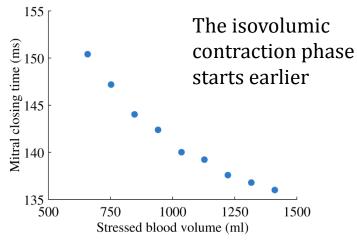
Length & timing effect

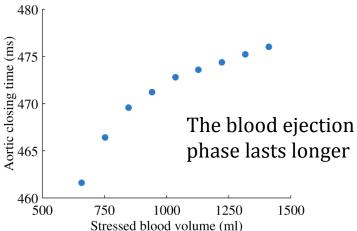
- Instantaneous increase in preload
- ⇒ increase in the developed cardiac cellular force (length-dependent activation) and in ventricular pressure
 - ⇒ longer isovolumic contraction and blood ejection phases
 - ⇒ increase in stroke volume
- Do the length and timing effect play a role in the vascular filling results?

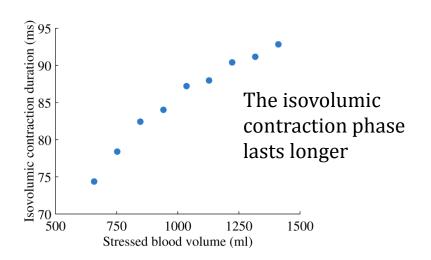


Length effect and vascular filling

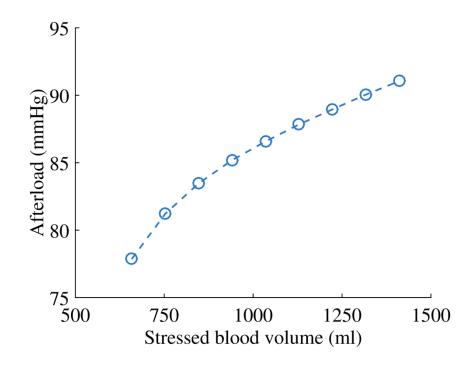
As SBV increases,





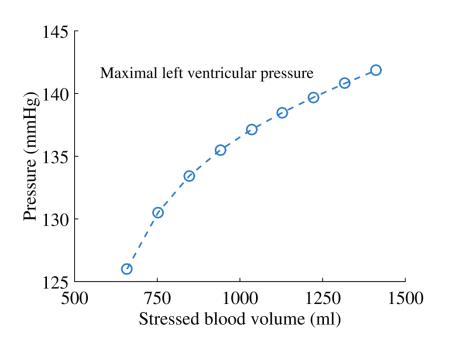

Timing effect and vascular filling

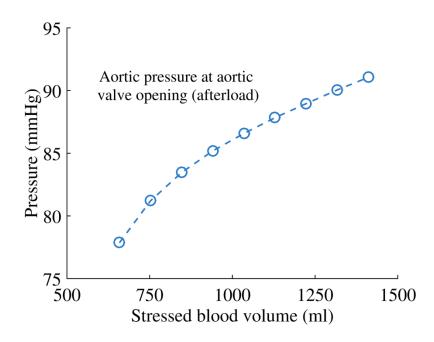
As SBV increases,


⇒ There is a link between the Frank-Starling mechanism and the vascular filling effect on stroke volume

Afterload effect

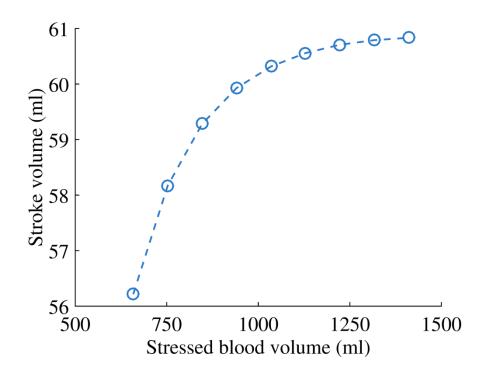
- Variables other than preload are affected by the SBV increase
- The afterload (= aortic pressure at the opening of the aortic valve) also increases with SBV





Afterload effect

The stroke volume depends on the blood flow through the aortic valve, which
is dictated by the difference between ventricular and aortic pressure



Afterload effect

• The saturating portion of the vascular filling curve occurs because the preload increase is not large enough to counterbalance the afterload increase

 Is the Frank-Starling mechanism the founding principle of vascular filling therapy?

- Is the Frank-Starling mechanism the founding principle of vascular filling therapy?
- Vascular filling simulations : SBV $\nearrow \Rightarrow$ preload $\nearrow \Rightarrow$ stroke volume $\nearrow \Rightarrow$

- Is the Frank-Starling mechanism the founding principle of vascular filling therapy?
- Vascular filling simulations : SBV $\nearrow \Rightarrow$ preload $\nearrow \Rightarrow$ stroke volume $\nearrow \Rightarrow$
- A length and a timing effect are involved in the instantaneous Frank-Starling mechanism

- Is the Frank-Starling mechanism the founding principle of vascular filling therapy?
- Vascular filling simulations : SBV $\nearrow \Rightarrow$ preload $\nearrow \Rightarrow$ stroke volume $\nearrow \Rightarrow$
- A length and a timing effect are involved in the instantaneous Frank-Starling mechanism
- Those two effects are also found in the vascular filling experiments
 ⇒ The Frank-Starling mechanism plays a role in the stroke volume increase following an increase in SBV

- Is the Frank-Starling mechanism the founding principle of vascular filling therapy?
- Vascular filling simulations : SBV $\nearrow \Rightarrow$ preload $\nearrow \Rightarrow$ stroke volume \nearrow
- A length and a timing effect are involved in the instantaneous Frank-Starling mechanism
- Those two effects are also found in the vascular filling experiments
 ⇒ The Frank-Starling mechanism plays a role in the stroke volume increase following an increase in SBV
- Vascular filling also increases afterload and as a consequence fluid responsiveness may be compromised for high preloads (or high SBV values)
 - ⇒ The Frank-Starling effect is not the only determinant of fluid responsiveness