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Abstract. This paper introduces a reasoning system based on ternary projec-
tive relations between spatial objects. The model applies to spatial objects of 
the kind point and region, is based on basic projective invariants and takes into 
account the size and shape of the three objects that are involved in a relation. 
The reasoning system uses permutation and composition properties, which al-
low the inference of unknown relations from given ones. 

Introduction 

The field of Qualitative Spatial Reasoning (QSR) has experienced a great inter-
est in the spatial data handling community due to its potential applications [1]. An 
important topic in QSR is the definition of reasoning systems on qualitative spatial 
relations. For example, regarding topological relations, the 9-intersection model 
[2] provides formal definitions for the relations and a reasoning system based on 
composition tables [3] establishes a mechanism to find new relations from a set of 
given ones.  

Topological relations take into account an important part of geometric knowl-
edge and can be used to formulate qualitative queries about the connection proper-
ties of close spatial objects, like “retrieve the lakes that are inside Scotland”. Other 
qualitative queries that involve disjoint objects cannot be formulated in topologi-
cal terms, for example: “the cities that are between Glasgow and Edinburgh”, “the 
lakes that are surrounded by the mountains”, “the shops that are on the right of the 
road”, “the building that is before the crossroad”. All these examples can be seen 
as semantic interpretations of underlying projective properties of spatial objects. 
As discussed in [4], geometric properties can be subdivided in three groups: topo-
logical, projective and metric. Most qualitative relations between spatial objects 
can be defined in terms of topological or projective properties [5], with the excep-
tion of qualitative distance and direction relations (such as close, far, east, north) 
that are a qualitative interpretation of metric distances and angles [6]. The use of 
projective properties for the definition of spatial relations is rather new. A model 
for ternary projective relations has been introduced for points and regions in [7]. 
The model is based on a basic geometric invariant in projective space, the collin-
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earity of three points, and takes into account the size and shape of the three objects 
involved in a relation. 

In first approximation, this work can be compared to research on qualitative re-
lations dealing with relative positioning or cardinal directions [8-13]. Most ap-
proaches consider binary relations to which is associated a frame of reference, 
never avoiding the use of metric properties (minimum bounding rectangles, an-
gles, etc.). To this respect, the main difference in our approach is that we only deal 
with projective invariants, disregarding distances and angles. Most work on pro-
jective relations deals with point abstractions of spatial features. In [9], the authors 
develop a model for cardinal directions between extended objects. Composition 
tables for the latter model have been developed in [14]. Freksa’s double-cross cal-
culus [15] is similar to our approach in the case of points. Such a calculus, as it 
has been further discussed in [16, 17], is based on ternary directional relations be-
tween points. However, in Freksa’s model, an intrinsic frame of reference centred 
in a given point partitions the plane in four quadrants that are given by the front-
back and right-left dichotomies. This leads to a greater number of qualitative dis-
tinctions with different algebraic properties and composition tables. 

In this paper, we establish a reasoning system based on the ternary projective 
relations that were introduced in [7]. From a basic set of rules about the permuta-
tion and composition of relations, we will show how it is possible to infer un-
known relations using the algebraic properties of projective relations. The paper is 
organized as follows. We start in Section 2 with introducing the general aspects of 
a reasoning system with ternary relations. In Section 3 we summarize the model 
for ternary projective relations between points and we present the associated rea-
soning systems. In section 4, recall the model in the case of regions and we intro-
duce the reasoning system for this case too. In Section 5, we draw short conclu-
sions and discuss some future developments. 

2. Reasoning systems on ternary relations 

In this section, we present the basis of a reasoning system on ternary projective 
relations. Usually, reasoning systems apply to binary spatial relations, for exam-
ple, to topological relations [3] and to directional relations [18]. For binary rela-
tions, given three objects a,b,c and two relations r(a,b) and r(b,c), the reasoning 
system allows to find the relation r(a,c). This is done by giving an exhaustive list 
of results for all possible input relations, in the form of a composition table. The 
inverse relations complete the reasoning system, by finding, given the relation 
r(a,b), the relation r(b,a). 

Reasoning with ternary relations is slightly more complex and it is not been ap-
plied a lot to spatial relations till now, with few exceptions [16, 17, 19]. The nota-
tion we use for ternary relations is of the kind , where the first 
object PO represents the primary object, the second object RO

),,( 21 ROROPOr
1 represents the first 

reference object and the third object RO2 represents the second reference object. 
The primary object is the one that holds the relation r with the two reference ob-
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jects, i.e., PO holds the relation r with RO1 and RO2. A reasoning system with ter-
nary relations is based on two different sets of rules: 
• a set of rules for permutations. Given three objects a,b,c, and a relation r(a,b,c), 

these rules allow to find which are the other relations with permutations of the 
three arguments. There are 6 (=3!) potential arrangements of the arguments. 
The permutation rules correspond to the inverse relation of binary systems. 

• a set of rules for composition. Given four objects a,b,c,d, and the two relations 
r(a,b,c) and r(b,c,d), these rules allow to find the relation r(a,c,d). The compo-
sition of relations r1 and r2 is indicated 21 rr ⊕ . 
Considering a set of relations Ρ, it is possible to prove that the four following 

rules, three permutations and one composition, are sufficient to derive all the pos-
sible ternary relations out of a set of four arguments.  

(1)  ),,('),,( bcarcbar →
(2)  ),,(''),,( cabrcbar →
(3)  ),,('''),,( bacrcbar →
(4)  ),,(),,(),,( 321 dcardcbrcbar →⊕
In the next sections, we will see how to apply such a ternary reasoning system 

in the case of projective ternary relations between points and between regions. 

3. Reasoning system on ternary projective relations between 
points 

The projective ternary relations between points have been introduced in a pre-
vious paper [7]. They have a straightforward definition because they are related to 
common concepts of projective geometry [20]. In section 3.1, we will only present 
the definitions and the concepts necessary for a good understanding of the reason-
ing system. In section 3.2, we show how to apply the reasoning system on these 
ternary projective relations. 

3.1. Ternary projective relations between points 

Our basic set of projective relations is based on the most important geometric 
invariant in a projective space: the collinearity of three points. Therefore, the na-
ture of projective relations is intrinsically ternary. 

Given a relation , the points that act as reference objects must be 
distinct, in such a way they define a unique line passing through them, indicated 
with 

),,( 321 PPPr

32PP . When the relation needs an orientation on this line, the orientation is 
assumed to be from the first reference object to the second one: the oriented line is 
indicated with 32 PP . The most general projective relations between three points 
are the collinear relation and its complement, the aside relation. The former one 
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can be refined into between and nonbetween relations, and the latter one into 
rightside or leftside relations. In turn, the nonbetween relation can be subdivided 
into before and after relations, completing the hierarchical model of the projective 
relations between three points of the plane (see Figure 1.a). Out of this hierarchi-
cal model, five basic projective relations (before, between, after, rightside, left-
side) are extracted. They correspond to the finest projective partition of the plane 
(see Figure 1.b). 

 

  
a. Hierarchical model of the relations b. Projective partition of the plane 

Fig. 1. Projective relations between points 

Definitions are given only for the collinear relation and the five basic relations. 
Definition 1. A point P1 is collinear to two given points P2 and P3, with 

, ,32 PP ≠ ),,( 321 PPPcollinear  if 321 PPP ∈ . 
Definition 2. A point P1 is before points P2 and P3, with , 

,
32 PP ≠

),,( 321 PPPbefore  if  and ),,( 321 PPPcollinear ),( 21 PP −∞∈ , where the last in-

terval is part of the oriented line 32 PP . 
Definition 3. A point P1 is between two given points P2 and P3, with , 

,
32 PP ≠

),,( 321 PPPbetween  if [ ]321 PPP ∈ . 
Definition 4. A point P1 is after points P2 and P3, with , 

,
32 PP ≠

),,( 321 PPPafter  if  and ),,( 321 PPPcollinear ),( 31 +∞∈ PP , where the last interval 

is part of the oriented line 32 PP . 

Considering the two halfplanes determined by the oriented line 32 PP , respec-

tively the halfplane to the right of the line, which we indicate with )( 32PPHP+ , 

and the halfplane to the left of the line, which we indicate with )( 32 PPHP− , we 
may define the relations rightside and leftside. 

Definition 5. A point P1 is rightside of two given points P2 and P3, 
, if   ),,( 321 PPPrightside )( 321 PPHPP +∈ . 

Definition 6. A point P1 is leftside of two given points P2 and P3, 
,),,( 321 PPPleftside  if  )( 321 PPHPP −∈ . 
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3.2. Reasoning system 

Using this model for ternary relations between points, it is possible to build a 
reasoning system, which allows the prediction of ternary relations between spe-
cific points. Such a reasoning system is an application of the reasoning system on 
ternary relations previously introduced. The four rules become: 

(1)  ),,('),,( 231321 PPPrPPPr →
(2)  ),,(''),,( 312321 PPPrPPPr →
(3)  ),,('''),,( 213321 PPPrPPPr →
(4)  ),,(),,(),,( 431343223211 PPPrPPPrPPPr →⊕
For any ternary relations (P1,P2,P3), Table 1 gives the corresponding relations 

resulting from permutation rules (1), (2) and (3). The following abbreviations are 
used: bf for before, bt for between, af for after, rs for rightside and ls for leftside. 
For example, knowing bf(P1,P2,P3), one can derive the relationships corresponding 
to the permutation of the three points, which are this case af(P1,P3,P2), bt(P2,P1,P3) 
and af(P3,P1,P2). 

Table 1. Permutation table of ternary projective relations between points 

),,( 321 PPPr  ),,( 231 PPPr  ),,( 312 PPPr  ),,( 213 PPPr  
bf  af  bt  af  
bt  bt  bf  bf  
af  bf  af  bt  
rs  ls  ls  rs  
ls  rs  rs  ls  

 
Table 2 gives relations resulting from the composition rule (4). The first col-

umn of the table contains the basic ternary relations for  and the first 
row contains the basic ternary relations . The other cells give the de-
duced transitive relations for . For some entries, several cases may oc-
cur and all the possibilities are presented in the table. 

),,( 321 PPP
),,( 432 PPP

),,( 431 PPP

 

Table 2. Composition table of ternary projective relations between points 

 bf bt af rs ls  
bf bf af, bt  af rs ls 
bt bf bt  af, bt rs ls 
af af, bt bf bf ls rs 
rs rs ls ls af, rs, ls, bt  bf, rs, ls 
ls ls rs rs bf, rs, ls af, rs, ls, bt 
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Using this reasoning system and knowing any two ternary relations between 
three different points out of a set of four, it is possible to predict the ternary rela-
tions between all the other possible combinations of three points out of the same 
set. 

4. Reasoning system on ternary projective relations between 
regions 

Likewise the section on relations between points, we first recall some concepts 
about the ternary projective relations between regions (section 4.1). Afterwards, 
we introduce the associated reasoning system including an example of application 
of such a system (section 4.2). 

4.1. Ternary projective relations between regions 

We will assume that a region is a regular closed point set possibly with holes 
and separate components. We will only present briefly the basic projective rela-
tions and the related partition of the space, while we refer to [7] for a more ex-
tended treatment. In the following, we indicate the convex hull of a region with a 
unary function CH(). As in the case of points, we use the notation  for 
projective relations between regions, where the first argument A is a region that 
acts as the primary object, while the second and third arguments B and C are re-
gions that act as reference objects. The latter two regions must satisfy the condi-
tion 

),,( CBAr

∅=∩ )()( CCHBCH , that is, the intersection of their convex hulls must be 
empty. This condition allows to build a reference frame based on B and C, as it 
will be defined in this section. We also use the concept of orientation, which is 
represented by an oriented line connecting any point in B with any point in C. 

 
Definition 7. Given two regions B and C, with ∅=∩ )()( CCHBCH , a region 

A is collinear to regions B and C, , if for every point ),,( CBAcollinear AP∈ , 
there exists a line l intersecting B and C that also intersects P, that is: 

∅≠∩∅≠∩∧∅≠∩∃∈∀ PlClBllAP |)()(,, . 
 
The projective partition of the space into five regions corresponding to the five 

basic projective relations is based, as it was for the points, on the definition of the 
general collinear relation between three regions. The portion of the space where 
this relation is true is delimited by four lines that are the common external tan-
gents and the common internal tangents. Common external tangents of B and C 
are defined by the fact that they also are tangent to the convex hull of the union of 
B and C (figure 2.a). Common internal tangents intersect inside the convex hull of 
the union of regions B and C and divide the plane in four cones (figure 2.b). In or-
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der to distinguish the four cones, we consider an oriented line from region B to re-
gion C and we call  the cone that contains region B,  

the cone that contains region C, the cone that is to the right of the 

oriented line,  the cone that is to the left of the oriented line. We ob-
tain a partition of the space into five regions, which correspond to the five basic 
projective relations before, between, after, rightside, and leftside (figure 3.a). 

),( CBCone ∞− ),( CBCone ∞+

),( CBCone+

),( CBCone−

 

  
a. Common external tangents b. Common internal tangents 

Fig. 2. Internal and external tangents 

Definition 8. A region A is before two regions B and C, , with 
, if 

),,( CBAbefore
∅=∩ )()( CCHBCH ⊂A ),( CBCone ∞− )( CBCH ∪− . 

Definition 9. A region A is between two regions B and C, , 
with 

),,( CBAbetween
∅=∩ )()( CCHBCH , if . )( CBCHA ∪⊆

Definition 10. A region A is after two regions B and C, , with 
, if 

),,( CBAafter
∅=∩ )()( CCHBCH ⊂A ),( CBCone ∞+ )( CBCH ∪− . 

Definition 11. A region A is rightside of two regions B and C, 
, with ),,( CBArightside ∅=∩ )()( CCHBCH , if A is contained inside 

 minus the convex hull of the union of regions B and C, that is, if 

. 

),( CBCone+

))(),(( CBCHCBConeA ∪−⊂ +

Definition 12. A region A is leftside of two regions B and C, , 

with 

),,( CBAleftside

∅=∩ )()( CCHBCH , if A is contained inside  minus the con-
vex hull of the union of regions B and C, that is, if 

. 

),( CBCone−

))(),(( CBCHCBConeA ∪−⊂ −

 
The set of five projective relations before, between, after, rightside, and leftside 

can be used as a set of basic relations to build a model for all projective relations 
between three regions of the plane. The model, that we call the 5-intersection, is 
synthetically expressed by a matrix of five values that are the empty/non-empty 
intersections of a region A with the five regions defined in Figure 3.b. In the ma-
trix, a value 0 indicates an empty intersection, while a value 1 indicates a non-
empty intersection. The five basic relations correspond to values of the matrix 
with only one non-empty value (Figure 4). In total, the 5-intersection matrix can 
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have 25 different values that correspond to the same theoretical number of projec-
tive relations. Excluding the configuration with all zero values, which cannot ex-
ist, we are left with 31 different projective relations between the three regions A, B 
and C. 

 
 

 
A∩  

leftside(B,C) 
 
 

A∩  
Before(B,C) 

A∩  
between(B,C) 

A  ∩
after(B,C) 

  A∩  
rightside(B,C)  

a. The partition of the plane in five re-
gions 

b. The 5-intersection model 

Fig. 3. Projective relations between regions 

  

before(A,B,C):  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0
001

0
between(A,B,C):  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0
010

0
after(A,B,C):  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0
100

0

 

 

rightside(A,B,C):  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1
000

0
leftside(A,B,C):  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0
000

1  

Fig. 4. The projective relations with object A intersecting only one of the regions 
of the plane. 

4.2. Reasoning system 

The reasoning system for regions is fully defined on the basis of the following 
relations: 

(1)  ),,('),,( BCArCBAr →
(2)  ),,(''),,( CABrCBAr →
(3)  ),,('''),,( BACrCBAr →
(4)  ),,(),,(),,( 321 DCArDCBrCBAr →⊕
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Currently, the reasoning system has been established for the five basic projec-
tive relations only. We are working on its extension to the whole set of projective 
relations by developing a system which will combine the results of permutations 
and composition of the basic cases. 

Table 3. Permutation table of ternary projective relations between regions 

),,( CBAr  ),,(' BCAr  ),,('' CABr  ),,(''' BACr  

bf  af  bt , )( rsbt ∧ , )( lsbt ∧ , 

)( lsrsbt ∧∧  

af , )( rsaf ∧ , )( lsaf ∧ ,

)( lsrsaf ∧∧  

bt  bt  bf , )( rsbf ∧ , )( lsbf ∧ , 

)( lsrsbf ∧∧  

bf , )( rsbf ∧ , , )( lsbf ∧
)( lsrsbf ∧∧  

af  bf  af , )( rsaf ∧ , )( lsaf ∧ ;

)( lsrsaf ∧∧  

bt , )( rsbt ∧ , , )( lsbt ∧
)( lsrsbt ∧∧  

rs  ls  ls  rs  

ls  rs  rs  ls  

 
For any basic ternary relation r(A,B,C), Table 3 gives the corresponding rela-

tions resulting from permutation rules (1), (2) and (3). The similarity with the 
permutation table for three points is clear. Only for some cases, there are excep-
tions to the basic permutations for points. In those cases, the “strong” relation 
(which is the one that holds also for points) can be combined with one or both of 
leftside and rightside relations. 

The results of the composition rule (4) of the reasoning system are presented in 
Table 4. The first column of the table contains the basic ternary relations for r1 
(A,B,C) and the first row contains the basic ternary relations for r2 (B,C,D). The 
other cells give the deduced  relations. In this table, we present only 
the single relations as results. The full composition relations can be obtained by 
combinations of these single relations. For example, the result of the composition 
before(A,B,C)  before(B,C,D) is: bf , , , 

),,(3 DCAr

⊕ rs ls rsbf ∧ , lsbf ∧ , , 
.  

rsls ∧
lsrsbf ∧∧

Table 4. Composition table of ternary projective relations between regions 

 bf bt af rs ls  
bf bf, rs, ls bt, af, rs, ls  af af, rs af, ls 
bt bf bt bt, af, rs, ls bf, bt, rs bf, bt, ls 
af bf, bt, af, rs, ls bf, bt, rs, ls bt, af  bf, bt, ls bf, bt, rs 
rs bf, bt, af, rs bf, bt, af, ls bf, bt, af, ls bt, af, rs, ls bf, rs, ls 
ls bf, bt, af, ls bf, bt, af, rs bf, bt, af, rs bf, rs, ls bt, af, rs, ls 
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We will end this section by an example of application of the reasoning system. 
Given the relations before(A,B,C) and rightside(B,C,D), we find out the potential 
relations for r(A,B,D). 
• Step 1: apply (1) to the first term of the transitive relations, and (2) to the sec-

ond term (fig. 5a, b and c): 
),,(),,( BCAafterCBAbefore → ; 

),,(),,( DBCleftsideDCBrightside → . 
• Step 2: apply (4) to the following composition: 

→⊕ ),,(),,( DBCleftsideBCAafter  
           (fig 5.d) ),,( DBAbefore

),,( DBAbetween∨      (fig 5.e) 
),,( DBArightside∨      (fig 5.f) 

)),,(),,(( DBAbetweenDBAbefore ∧∨     (fig 5.g) 
)),,(),,(( DBArightsideDBAbefore ∧∨    (fig 5.h) 

)),,(),,(( DBArightsideDBAbetween ∧∨    (fig 5.i) 
)),,(),,(),,(( DBArightsideDBAbetweenDBAbefore ∧∧∨ . (fig 5.j) 

   
a. Apply (1) to bf(A,B,C) 

implies af(A,C,B). 
b. Apply (2) to rs(B,C,D)  

implies… 
c. … ls(C,B,D) 

   
d. bf(A,B,D) e. bt(A,B,D) f. rs(A,B,D) 

   
g. bf(A,B,D) bt(A,B,D) ∧ h. bf(A,B,D) ∧ rs(A,B,D) i. bt(A,B,D)∧ rs(A,B,D) 

 

 

 

j. bf(A,B,D)∧ bt(A,B,D) ∧ rs(A,B,D) 

Fig. 5. Example of application of the reasoning system between regions 
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5. Conclusion and future work 

In this paper, we have introduced a reasoning system based on ternary projec-
tive relations between points and between regions. These sets of qualitative spatial 
relations, invariant under projective transformations, provide a new classification 
of configurations between three objects based on a segmentation of the space in 
five regions. The associated reasoning system allows inferring relations between 
three objects using permutations and compositions rules. It is the first step of the 
establishment of a whole qualitative reasoning based on projective properties of 
space. 

In the future, the reasoning system has to be more formally defined; in particu-
lar the relations contained in permutation and composition tables have to be 
proved. Another issue that should be explored is the realisation of a complete 
qualitative spatial calculus for reasoning about ternary projective relations. 
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