Computational & Multiscale Mechanics of Materials

Probabilistic prediction of the quality factor of micro-resonator using a stochastic thermo-mechanical multi-scale approach

Wu Ling, Lucas Vincent, Nguyen Van-Dung, Paquay Stéphane, Golinval Jean-Claude, Noels Ludovic

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework. Experimental measurements provided by IMT Bucharest (Voicu Rodica, Baracu Angela, Muller Raluca)

The problem

MEMS structures

- Are not several orders larger than their micro-structure size
- Parameters-dependent manufacturing process
 - Low Pressure Chemical Vapor Deposition (LPCVD)
 - Properties depend on the temperature, time process, and flow gas conditions
- As a result, their macroscopic properties

can exhibit a scatter

- Due to the fabrication process (photolithography, wet and dry etching)
- Due to uncertainties of the material
- •

The problem

- Application example
 - Poly-silicon resonators
 - Quantities of interest
 - Eigen frequency
 - Quality factor due to thermoelastic damping $Q \sim W/\Delta W$
 - Thermoelastic damping is a source of intrinsic material damping present in almost all materials

The problem

- Material structure: grain size distribution
 SEM Measurements (Scanning Electron Microscope)
 - Grain size dependent on the LPCVD temperature process
 - 2 µm-thick poly-silicon films

Deposition temperature: 580 °C

Deposition temperature: 650 °C

Deposition temperature [°C]	580	610	630	650
Average grain diameter [µm]	0.21	0.45	0.72	0.83

SEM images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Monte-Carlo for a fully modelled beam

- The first mode frequency distribution can be obtained with
 - A 3D beam with each grain modelled
 - Grains distribution according to experimental measurements
 - Monte-Carlo simulations

Considering each grain is expensive and time consuming
 Motivation for stochastic multi-scale methods

Motivations

- Multi-scale modelling
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)

Length-scales separation

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading To be statistically representative: Size of the meso-scale volume element larger than the characteristic length of the microstructure

Motivations

For structures not several orders larger than the micro-structure size

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading Meso-scale volume element no longer statistically representative: Stochastic Volume Elements*

Possibility to propagate the uncertainties from the micro-scale to the macro-scale

*M Ostoja-Starzewski, X Wang, 1999

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015

X. Yin, W. Chen, A. To, C. McVeigh, 2008

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem. 2011

. . . .

A 3-scale process

Grain-scale or micro-scale	Meso-scale	Macro-scale
 Samples of the microstructure (volume elements) are generated 	Intermediate scaleThe distribution of the	Uncertainty quantification of the macro-scale quantity
Each grain has a random orientation	material property $\mathbb{P}(C)$ is defined	E.g. the first mode frequency $\mathbb{P}(f_1)$ /Quality factor $\mathbb{P}(Q)$

EMMC15 -

Content

Thermo-mechanical problems

- Governing equations
- Macro-scale stochastic finite element
- Meso-scale volume elements

From the micro-scale to the meso-scale

- Thermo-mechanical homogenization
- Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
- Need for a meso-scale random field

The meso-scale random field

- Definition of the thermo-mechanical meso-scale random field
- Stochastic model of the random field: Spectral generator & non-Gaussian mapping

From the meso-scale to the macro-scale

- 3-Scale approach verification
- Application to extract the quality factor

Content

Thermo-mechanical problems

- Governing equations
- Macro-scale stochastic finite element
- Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor

Thermo-mechanical problem

- Macro-scale stochastic finite element method
 - Meso-scale material properties subjected to uncertainties
 - Elasticity tensor $\mathbb{C}_M(\boldsymbol{\theta})$,
 - Heat conductivity tensor $\kappa_M(\theta)$, and
 - Thermal expansion tensors $\alpha_M(\theta)$

in the sample space $\theta \in \Omega$

$$\begin{bmatrix} \mathbf{M}(\rho_{\mathbf{M}}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\theta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\theta\mathbf{u}}(\boldsymbol{\alpha}_{\mathbf{M}}, \mathbb{C}_{\mathbf{M}}) & \mathbf{D}_{\theta\theta}(\rho_{\mathbf{M}}C_{\nu\mathbf{M}}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\theta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\mathbb{C}_{\mathbf{M}}) & \mathbf{K}_{\mathbf{u}\theta}(\boldsymbol{\alpha}_{\mathbf{M}}, \mathbb{C}_{\mathbf{M}}) \\ \mathbf{0} & \mathbf{K}_{\theta\theta}(\boldsymbol{\kappa}_{\mathbf{M}}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\theta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\theta} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\theta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\theta\mathbf{u}}(\boldsymbol{\theta}) & \mathbf{D}_{\theta\theta} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\theta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\boldsymbol{\theta}) & \mathbf{K}_{\mathbf{u}\theta}(\boldsymbol{\theta}) \\ \mathbf{0} & \mathbf{K}_{\theta\theta}(\boldsymbol{\theta}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\theta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\theta} \end{bmatrix}$$

- Defining the random properties at the meso-scale by
 - Using micro-scale information (SEM, XRD, images)
 - Homogenization method

Thermo-mechanical problem

- Meso-scale Volume Elements (VE)
 - Micro-scale material properties
 - Elasticity tensor \mathbb{C}_m ,
 - Heat conductivity tensor κ_m , and
 - Thermal expansion tensors $lpha_m$ defined on each phase/heterogeneity

- Length scales separation assumptions
 - VE small enough for the time for strain wave to propagate in the SVE to remain negligible
 - VE small enough for the time variation of heat storage to remain negligible

$$\begin{bmatrix} \mathbf{M}(\rho_{\mathrm{m}}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\vartheta\mathrm{u}}(\boldsymbol{\alpha}_{\mathrm{m}}, \mathbb{C}_{\mathrm{m}}) & \mathbf{D}_{\vartheta\vartheta}(\rho_{\mathrm{m}}\mathcal{C}_{\upsilon\mathrm{m}}) \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathrm{u}\mathrm{u}}(\mathbb{C}_{\mathrm{m}}) & \mathbf{K}_{\mathrm{u}\vartheta}(\boldsymbol{\alpha}_{\mathrm{m}}, \mathbb{C}_{\mathrm{m}}) \\ \mathbf{0} & \mathbf{K}_{\vartheta\vartheta}(\boldsymbol{\kappa}_{\mathrm{m}}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathrm{u}} \\ \boldsymbol{F}_{\vartheta} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}} & \mathbf{K}_{\mathbf{u}\theta} \\ \mathbf{0} & \mathbf{K}_{\theta\theta} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\theta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\theta} \end{bmatrix}$$

Transition from meso-scale BVP realizations to the meso-scale random properties

Stochastic thermo-mechanical homogenization

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor

Thermo-mechanical homogenization

Down-scaling

$$\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_{\mathrm{m}} d\omega \\ \\ \boldsymbol{\nabla}_{\mathrm{M}} \boldsymbol{\vartheta}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\nabla}_{\mathrm{m}} \boldsymbol{\vartheta}_{\mathrm{m}} d\omega \\ \\ \boldsymbol{\vartheta}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \frac{\rho_{\mathrm{m}} C_{v\mathrm{m}}}{\rho_{\mathrm{M}} C_{v\mathrm{M}}} \boldsymbol{\vartheta}_{\mathrm{m}} d\omega \end{cases}$$

Up-scaling

EMMC15 -

$$\begin{cases}
\boldsymbol{\sigma}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\sigma}_{\mathrm{m}} d\omega \\
\boldsymbol{q}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{q}_{\mathrm{m}} d\omega
\end{cases}$$

$$\begin{cases}
\boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{\partial \boldsymbol{\sigma}_{\mathrm{M}}}{\partial \boldsymbol{u}_{\mathrm{M}} \otimes \boldsymbol{\nabla}_{\mathrm{M}}} & \boldsymbol{\varepsilon}_{\mathrm{M}} = -\frac{\partial \boldsymbol{\sigma}_{\mathrm{M}}}{\partial \vartheta_{\mathrm{M}}} \\
\boldsymbol{\kappa}_{\mathrm{M}} = -\frac{\partial \boldsymbol{q}_{\mathrm{M}}}{\partial \nabla_{\mathrm{M}} \vartheta_{\mathrm{M}}}
\end{cases}$$

$$\boldsymbol{\kappa}_{\mathrm{M}} = -\frac{\partial \boldsymbol{q}_{\mathrm{M}}}{\partial \nabla_{\mathrm{M}} \vartheta_{\mathrm{M}}}$$

Consistency
 Satisfied by periodic boundary conditions

- Definition of Stochastic Volume Elements (SVEs)
 - Poisson Voronoï tessellation realizations
 - SVE realization ω_j
 - Each grain ω_i is assigned material properties

 - Defined from silicon crystal properties
 - Each set \mathbb{C}_{m^i} , $\kappa_{\mathbf{m}^i}$, $\alpha_{\mathbf{m}^i}$ is assigned a random orientation
 - Following XRD distributions
- Stochastic homogenization
 - Several SVE realizations
 - For each SVE $\omega_j = \cup_i \omega_i$

$$\mathbb{C}_{\mathrm{m}^i}, \kappa_{\mathrm{m}^i}, \alpha_{\mathrm{m}^i} \quad \forall i$$

Computational homogenization

Samples of the mesoscale homogenized elasticity tensors

 $\mathbb{C}_{\mathbf{M}^j}, \, \kappa_{\mathbf{M}^j}, \alpha_{\mathbf{M}^j}$

Homogenized material tensors not unique as statistical representativeness is lost*

*"C. Huet, 1990

- Distribution of the apparent mesoscale elasticity tensor \mathbb{C}_M
 - > For large SVEs, the apparent tensor tends to the effective (and unique) one

- > The bounds do not depend on the SVE size but on the silicon elasticity tensor
- > However, the larger the SVE, the lower the probability to be close to the bounds

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable —
 - Monte-Carlo simulations

 $\mathbb{C}_{\mathsf{M}^1}$ $\mathbb{C}_{\mathsf{M}^2}$ $\mathbb{C}_{\mathsf{M}^3}$

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable -
 - Monte-Carlo simulations

 No convergence: the macro-scale distribution (first resonance frequency) depends on SVE and mesh sizes

 $\mathbb{C}_{\mathsf{M}^1}$ $\mathbb{C}_{\mathsf{M}^2}$ $\mathbb{C}_{\mathsf{M}^3}$

- Need for a meso-scale random field
 - Introduction of the (meso-scale) spatial correlation
 - Define large tessellations
 - SVEs extracted at different distances in each tessellation
 - Evaluate the spatial correlation between the components of the meso-scale material operators
 - For example, in 1D-elasticity
 - · Young's modulus correlation

$$R_{E_x}(\tau) = \frac{\mathbb{E}\left[\left(E_x(x) - \mathbb{E}(E_x)\right)\left(E_x(x+\tau) - \mathbb{E}(E_x)\right)\right]}{\mathbb{E}\left[\left(E_x - \mathbb{E}(E_x)\right)^2\right]}$$

Correlation length

$$L_{E_x} = \frac{\int_{-\infty}^{\infty} R_{E_x}(\tau) d\tau}{R_{E_x}(0)}$$

- Need for a meso-scale random field (2)
 - The meso-scale random field is characterized by the correlation length L_{E_x}
 - The correlation length L_{E_x} depends on the SVE size

CM3

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor

- Use of the meso-scale distribution with stochastic (macro-scale) finite elements
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale
 - BUT we do not want to evaluate the random field from the stochastic homogenization
 for each simulation
 Meso-scale random field from a generator

Stochastic model of meso-scale elasticity tensors

- Definition of the thermo-mechanical meso-scale random field
 - Elasticity tensor $\mathbb{C}_{\mathrm{M}}(x,\theta)$ (matrix form C_{M}) & thermal conductivity κ_{M} are bounded
 - Ensure existence of their inverse
 - Define lower bounds \mathbb{C}_{L} and κ_{L} such that

$$\begin{cases} \boldsymbol{\varepsilon}: (\mathbb{C}_{M} - \mathbb{C}_{L}): \boldsymbol{\varepsilon} > 0 & \forall \boldsymbol{\varepsilon} \\ \nabla \vartheta \cdot (\boldsymbol{\kappa}_{M} - \boldsymbol{\kappa}_{L}) \cdot \nabla \vartheta > 0 & \forall \nabla \vartheta \end{cases}$$

Use a Cholesky decomposition when semi-positive definite matrices are required

$$\begin{cases} C_{\mathrm{M}}(x,\theta) = C_{\mathrm{L}} + \left(\overline{\mathcal{A}} + \mathcal{A}'(x,\theta)\right)^{\mathrm{T}} \left(\overline{\mathcal{A}} + \mathcal{A}'(x,\theta)\right) \\ \kappa_{\mathrm{M}}(x,\theta) = \kappa_{\mathrm{L}} + \left(\overline{\mathcal{B}} + \mathcal{B}'(x,\theta)\right)^{\mathrm{T}} \left(\overline{\mathcal{B}} + \mathcal{B}'(x,\theta)\right) \\ \alpha_{\mathrm{M}_{ij}}(x,\theta) = \overline{\mathcal{V}}^{(t)} + \mathcal{V}'^{(t)}(x,\theta) \end{cases}$$

- We define the homogenous zero-mean random field $\mathcal{V}'(x,\theta)$, with as entries
 - Elasticity tensor $\mathcal{A}'(x, \theta) \Rightarrow \mathcal{V}'^{(1)} \dots \mathcal{V}'^{(21)}$,
 - Heat conductivity tensor $\mathcal{B}'(x, \theta) \Rightarrow \mathcal{V}'^{(22)} \dots \mathcal{V}'^{(27)}$
 - Thermal expansion tensors $v'^{(t)} \Rightarrow v'^{(28)} \dots v'^{(33)}$

- Characterization of the meso-scale random field
 - Generate large tessellation realizations
 - For each tessellation realization
 - Extract SVEs centred on $x + \tau$
 - For each SVE evaluate $\mathbb{C}_{\mathrm{M}}(x+\tau)$, $\kappa_{\mathrm{M}}(x+\tau)$, $\alpha_{\mathrm{M}}(x+\tau)$
 - From the set of realizations $\mathbb{C}_{\mathrm{M}}(x,\theta)$, $\kappa_{\mathrm{M}}(x,\theta)$, $\alpha_{\mathrm{M}}(x,\theta)$
 - Evaluate the bounds \mathbb{C}_{L} and κ_{L}
 - Apply the Cholesky decomposition $\Rightarrow \mathcal{A}'(x, \theta), \mathcal{B}'(x, \theta)$
 - Fill the 33 entries of the zero-mean homogenous field $\mathcal{V}'(x,\theta)$
 - Compute the auto-/cross-correlation matrix

$$R_{\boldsymbol{\mathcal{V}}'}^{(rs)}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\left(\boldsymbol{\mathcal{V}}'^{(r)}(\boldsymbol{x}) - \mathbb{E}(\boldsymbol{\mathcal{V}}'^{(r)})\right)\left(\boldsymbol{\mathcal{V}}'^{(s)}(\boldsymbol{x}+\boldsymbol{\tau}) - \mathbb{E}(\boldsymbol{\mathcal{V}}'^{(s)})\right)\right]}{\sqrt{\mathbb{E}\left[\left(\boldsymbol{\mathcal{V}}'^{(r)} - \mathbb{E}(\boldsymbol{\mathcal{V}}'^{(r)})\right)^{2}\right]\mathbb{E}\left[\left(\boldsymbol{\mathcal{V}}'^{(s)} - \mathbb{E}(\boldsymbol{\mathcal{V}}'^{(s)})\right)^{2}\right]}}$$

- Generate zero-mean random field $\mathcal{V}'(x,\theta)$
 - Spectral generator & non-Gaussian mapping

Polysilicon film deposited at 610 °C

- SVE size of 0.5 x 0.5 μ m²
- Comparison between micro-samples and generated field PDFs

Polysilicon film deposited at 610 °C (3)

Comparison between micro-samples and generated random field realizations

Content

- Thermo-mechanical problems
 - Governing equations
 - Macro-scale stochastic finite element
 - Meso-scale volume elements
- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field
- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping
- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor

- 3-Scale approach verification with direct Monte-Carlo simulations
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale $\mathbb{C}_{M^1}(x) \mathbb{C}_{M^1}(x+\tau)$
 - Macro-scale beam elements of size l_{mesh}
 - Convergence in terms of $\alpha = \frac{l_{E_{\chi}}}{l_{\text{mesh}}}$

- 3-Scale approach verification ($\alpha \sim 2$) with direct Monte-Carlo simulations
 - First bending mode

Second bending mode

Quality factor

- Micro-resonators
 - Temperature changes with compression/traction
 - Energy dissipation

- Eigen values problem
 - Governing equations

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{D}_{\mathbf{u}\boldsymbol{\vartheta}}(\boldsymbol{\theta}) & \mathbf{D}_{\boldsymbol{\vartheta}\boldsymbol{\vartheta}} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\boldsymbol{\vartheta}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathbf{u}\mathbf{u}}(\boldsymbol{\theta}) & \mathbf{K}_{\mathbf{u}\boldsymbol{\vartheta}}(\boldsymbol{\theta}) \\ \mathbf{0} & \mathbf{K}_{\boldsymbol{\vartheta}\boldsymbol{\vartheta}}(\boldsymbol{\theta}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}_{\mathbf{u}} \\ \boldsymbol{F}_{\boldsymbol{\vartheta}} \end{bmatrix}$$

· Free vibrating problem

$$\begin{bmatrix} \mathbf{u}(t) \\ \boldsymbol{\vartheta}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{u_0} \\ \boldsymbol{\vartheta_0} \end{bmatrix} e^{i\omega t}$$

$$\begin{bmatrix} -K_{uu}(\theta) & -K_{u\vartheta}(\theta) & \mathbf{0} \\ \mathbf{0} & -K_{\vartheta\vartheta}(\theta) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \\ \dot{\mathbf{u}} \end{bmatrix} = i\omega \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{M} \\ \mathbf{D}_{\vartheta u}(\theta) & \mathbf{D}_{\vartheta\vartheta} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \boldsymbol{\vartheta} \\ \dot{\mathbf{u}} \end{bmatrix}$$

- Quality factor
 - From the dissipated energy per cycle

•
$$Q^{-1} = \frac{2|\Im\omega|}{\sqrt{(\Im\omega)^2 + (\Re\omega)^2}}$$

- Application of the 3-Scale method to extract the quality factor distribution
 - Perfectly clamped micro-resonator
 - Different sizes easily considered
 - Meso-scale random fields
 - From stochastic homogenization
 - Generated for different deposition temperatures
 - Effect of the deposition temperature

- Application of the 3-Scale method to extract the quality factor distribution (3)
 - 3D models readily available
 - The effect of the anchor can be studied

Conclusions & Perspectives

Efficient stochastic multi-scale method

- Micro-structure based on experimental measurements
- Computational efficiency relies on the meso-scale random field generator
- Used to study probabilistic behaviors

Perspectives

- Other material systems
- Non-linear behaviors
- Non-homogenous random fields

Thank you for your attention!

