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Abstract

We consider a robotic ow shop model in which a single robot is responsible for the

transportation of parts between machines. For reasons of simplicity, when the shop is to

produce a large number of identical parts, the robot usually performs repeatedly a �xed

sequence of activities. This sequence of activities is called a 1-unit cycle if each execution

of the sequence results in the production of exactly one part. It has been conjectured

that 1-unit cycles yield optimal production rates for 3-machine robotic ow shops. We

establish the validity of this conjecture.

keywords : cyclic scheduling, sequencing, automated manufacturing, ow shop.



1 Introduction

In recent years, technology advances and worldwide competition have stimulated many

manufacturers to invest in highly automated manufacturing systems. However, some of

the issues arising in the planning and control of such systems are not extremely well

understood yet. An example of this phenomenon is provided by the consideration of the

impact of material handling systems (MHS) on the e�ci ency of automated facilities.

Classical scheduling models often ignore the constraints imposed by material handling

operations (transfers, loading, unloading), thereby implicitly assuming that the MHS

does not constitute a bottleneck or a limited resource (as an example, transportat ion

times are assumed to be zero between the machines of a classical ow shop model). On

the other hand, in automated environments, material handling is usually performed by

exible devices, such as robots or automated guided vehicles, which share a h igh degree

of integration with the workstations. As a consequence, the performance of the system is

directly a�ected by material handling activities. Therefore, the material handling system

must be explicitly taken into account in scheduling models of automated facilities. This

point has been recently stressed by several researchers. In particular, one of the areas in

which interesting research problems have emerged is the scheduling of robotic ow shops:

see e.g. Asfahl [1985], Crama [1995], Sethi et al. [1992], van de Klundert [1996].

For our purpose, a robotic ow shop may be viewed as a line of machines and in-

put/output devices in which materials handling is performed by a single robot. In order

to simplify control, the robot is often restricted in practice to perform a �xed sequence

of elementary activities (load machine M

i

, move to machine M

j

, unload it, ...) which is

repeated a large number of times until all parts of a given type have been produced (see

e.g. Asfahl [1985]). This sequence of activities is called a 1-unit cycle if each execution of

the sequence results in the production of exactly one part. From a theoretical point of

view, 1-unit cycles are known to yield suboptimal throughput rates in most production

settings. However, Sethi et al. [1992] conjectured that, in 3-machine no-bu�er robotic

ow shops, 1-unit cycles yield optimal throughput rates when all the parts to be produced

are identical. Hall et al. [1993] and Sriskandarajah et al. [1994] provided some evidence

for this conjecture. Their approach could conceivably be generalized to produce more

elements of evidence, but it is { by nature { computationally burdensome and provides

little insight into the conjecture.

In this paper, we present a complete proof of the conjecture. Our approach is based on

a novel, compact representation of the state space of the cell, which allows us to capture

the relevant features of all possible sequences of robot moves while reducing the number

of cases to be considered in the proof.

In the next section, we de�ne more precisely the robotic ow shop scheduling problems

that we want to address. In this discussion we pay special attention to issues concerning

the consequences of restricting the set of allowable sequences of robot activities. In Section

3, we present the state space graph model that facilitates our analysis of the conjecture.

In Section 4 we prove the conjecture. Section 5 provides a brief discussion of our results

and outlines future research directions.
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Figure 1: A 3-machine robotic cell (line layout)

2 Robotic ow shops

2.1 Overview of the model

We �rst describe our model of a robotic ow shop (Crama [1995], Hall et al. [1993] and

van de Klundert [1996] provide a more complete description of this and other models). A

robotic ow shop consists of m machines M

0

to M

m

, an input device denoted I or M

0

, an

output device denoted O or M

m+1

, and a robot. The parts to be produced enter the ow

shop at the input device, are successively processed on machines M

1

;M

2

; : : : ;M

m

, in this

order, and are �nally delivered at the output device (see Figure 1). The robot performs

two types of tasks. On the one hand, it transports the parts from machine t o machine.

On the other hand, it loads the parts onto the machines for processing and unloads them

after processing. We assume that there are no bu�ers or storage facilities between the

machines, as is often the case in modern, lean production environments. Thus, at any

instant, each part is located either at the input device, or at the output device, or on a

machine , or is being handled by the robot. Further, the machines M

1

to M

m

as well as

the robot can only handle one part at a time. Each machine starts processing as soon as

it is loaded, but remains idle after it has processed a part until the robot has unloaded

it and loaded it again with the next part. This situation is akin to that encountered in

traditional ow shop scheduling with blocking (see Hall and Sriskandarajah [1996]).

Let us further specify the behavior of the robot. In order to model travel times, we

adopt a simple and often used model in which the robot is assumed to move at constant

speed along a linear track, see e.g. Figure 1. For i; j 2 f0; : : : ; m + 1g; i 6= j, let �

i;j

> 0

denote the amount of time required by the robot to travel from machine M

i

to machine

M

j

. Then, the assumption of constant speed means that, for 0 � i < j � m+1, the time

�

i;j

required by the robot to travel from machine M

i

to machine M

j

satis�es the following

condition:

�

i;j

= �

j;i

=

j�1

X

k=i

�

k;k+1

: (1)

Let us now turn to the handling and processing requirements of the parts. We denote

by �

i

the amount of time required by the robot to load or unload machine M

i

, for i =

2



0; : : : ; m+1, and by p

i

the processing time of each part on machi ne M

i

, for i = 1; : : : ; m.

Observe that we assume these handling and processing times to be independent of the

part. In other words, all parts are identical.

Finally, we assume that there are in�nitely many parts to be produced and that the

objective of the problem is to minimize the long run average cycle time (see below for

de�nitions). These assumptions are meant to model a common situation in contempor ary

manufacturing, in which manufacturers often produce medium-size batches of identical

products.

In the sequel, we denote by RFIP this robotic ow shop scheduling problem with

identical parts. To understand the di�culties linked to the presence of the robot in this

setting, let us briey review the complexity of some related scheduling problems for tra-

ditional (non robotic) no-bu�er ow shop. If there are only two machines and n (distinct)

parts, then the part input sequence that minimizes makes pan can be computed e�ciently

by a classical algorithm of Gilmore and Gomory [1964]. As observed by McCormick et

al. [1994], it follows from a result of Papadimitriou and Kanellakis [1980] that minimiz-

ing cycle time is strongly NP-Complete when there are three or more machines in the

shop. Observe, however, that if all parts have identical processing requirements, then the

part input sequencing problem vanishes and ow shop scheduling problems become trivial

regardless of the number of machines.

Unfortunately, the same conclusion cannot be drawn in the case of a robotic ow shop.

Even if all parts are identical, there still remains to determine the optimal sequence of

robot moves, that is the order in which the robot should serve the machines. The resulting

RFIP problem is highly non trivial and appears to be intere sting both from a theoretical

and from a practical point of view.

2.2 Activities, robot move sequences and schedules

Let us examine more closely the sequence of tasks performed by the robot.

De�nition 1 For i = 0; : : : ; m; the sequence of robot moves

1) unload M

i

,

2) travel from M

i

to M

i+1

,

3) load M

i+1

,

is called (robot) activity i and is denoted by A

i

.

It should be clear that the sequence of moves performed by the robot while processing

a batch of parts can be completely described by the corresponding sequence of robot

activities (see Sethi et al. [1992]). Conversely, the question arises of which sequences of

activities represent executable sequences of robot moves.
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De�nition 2 An in�nite sequence of activities A

i

0

; A

i

1

; : : : is called a feasible robot move

sequence if, for i = 1; : : : ; m� 1; each of A

i�1

and A

i+1

occurs exactly once between any

two consecutive occurences of A

i

.

Together, the conditions in the aforementioned de�nition imply that the robot never

has to unload an empty machine and never has to load a machine that is already loaded.

For obvious reasons of simplicity and practicality, researchers as well as practitioners

have often focussed on cyclic sequences of robot activities, namely sequences that can be

obtained by iterating a �xed, �nite sequence of activities. Let us denot e by �

l

the l-fold

repetition of sequence �, where l 2 lN [ f1g.

De�nition 3 For k 2 lN, a k-unit cycle is a �nite sequence � of robot activities in which

each of A

0

; A

1

; : : : ; A

m

occurs exactly k times, and such that the robot move sequence �

1

generated by � is feasible.

Notice that, in particular, exactly k parts are produced (i.e., are unloaded at the

output device) during each execution of a k-unit cycle. Simplest and most thoroughly

studied among k-unit cycles are the 1-unit cycles. From the previous de�nition, we see

that a 1-unit cycle is a permutation of the activities A

0

; A

1

; : : : ; A

m

. Interestingly, the

converse statement is also true.

Lemma 1 Every permutation of the activities A

0

; A

1

; : : : ; A

m

is a 1-unit cycle.

Proof. See Lieberman & Turksen [1981], Sethi et al. [1992].

One-unit cycles will be our main object of study in forthcoming sections. As a matter

of fact, the purpose of this paper is to establish the optimality of 1-unit cycles for the

3-machine robotic ow shop problem with identical parts. In order to procee d with a

precise statement and a proof of this result, however, we �rst need to introduce a few

more de�nitions.

De�nition 4 A schedule for the RFIP problem is a function S(A

i

; t) that assigns a

starting time to the t-th execution of activity A

i

, for i = 0; : : : ; m and t 2 lN. The long

run average cycle time of S is equal to

lim sup

t!1

S(A

m

; t)

t

:
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We are not going to dwell here on the characterization of feasible schedules, which we

assume to be intuitively clear (see e.g. van de Klundert [1996] for a formal de�nition). Let

us simply observe that every such feasible schedule S yields, i n a natural way, a feasible

robot move sequence �: we say that � is the sequence implied by S. The converse relation

must be more carefully de�ned: indeed, several schedules may very well imply the same

sequence of moves. Let us t herefore introduce a special category of schedules:

De�nition 5 The active schedule associated with a robot move sequence � is the unique

schedule S implying � in which the robot starts all moves and load/unload operations as

early as possible and performs them as qu ickly as possible, i.e. S is the unique schedule

such that, for every other schedule T implying �, S(A

i

; t) � T (A

i

; t) for all i = 0; : : : ; m

and t 2 lN.

Notice that, in an active schedule, we can assume that the robot never executes any

unnecessary move, such as travelling around the shop while waiting for a machine to

�nish processing. It is not di�cult to see that the active schedule associated wit h a

sequence � has minimum long run average cycle time among all schedules implying �.

This observation motivates our next de�nition:

De�nition 6 The long run average cycle time of a robot move sequence � is the long

run average cycle time of the associated active schedule. The long run average cycle time

c(�) of a k-unit cycle � is the long run average cycle time of the in�nite sequence �

1

generated by �.

We are now ready to give a formal statement of the conjecture proposed by Sethi et

al. [1992].

Conjecture 1 In a 3-machine no-bu�er robotic ow shop with identical parts, the min-

imum long run average cycle time is achieved by a 1-unit cycle.

The main goal of this paper is to provide a proof of Conjecture 1. For this purpose, it

will be useful to consider �rst a slightly weaker version of the conjecture, which we state

as follows:

Conjecture 2 In a 3-machine no-bu�er robotic ow shop with identical parts, there is a

1-unit cycle that minimizes the long run average cycle time over the set of k-unit cycles,

for all k 2 lN.

To understand why Conjecture 2 is easier to handle than Conjecture 1, let us now

introduce the concept of periodic schedule:
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De�nition 7 For k 2 lN, a schedule S is called k-periodic if there exists a constant

C 2 lR (called the cycle time of S) such that, for every i 2 f0; : : : ; mg and for every t 2 lN,

S(A

i

; t+ k)� S(A

i

; t) = kC.

Obviously, the average long run cycle time of a periodic schedule is achieved and is

equal to its cycle time C. On the other hand, van de Klundert [1996] proved:

Lemma 2 For every k-unit cycle �, the long run average cycle time of � exists and is

achieved by the cycle time of a k-periodic schedule.

Proof. See Theorem 2.3 in van de Klundert [1996].

Conjecture 2 simply expresses that, among all long run cycle times that can be obtained

by inde�nitely repeating a single sequence of robot moves, the minimum is achieved by

the cycle time of a 1-unit cycle. This statement is interesting in several respects. First,

as already mentioned, 1-unit cyles are especially attractive from a practical point of view

because of their conceptual simplicity and their ease of implementation. Moreover, Crama

and van de Klundert [1994] proved that, for id entical parts, the optimal 1-unit cycle can

be found in time polynomial in m, viz. the number of machines. Finally, Conjecture 2

will provide a convenient stepping-stone toward a proof of Conjecture 1.

We now proceed with a brief survey of previous work related to the conjectures.

2.3 Previous results

Sethi et al. [1992] showed that, when the shop consists of only two machines, i.e. when

m = 2, then there is a 1-unit cycle that achieves minimum cycle time among all possible

robot move sequences. Their reasoning is based on a state-space representat ion of the

problem. For 3-machine robotic shops, Sethi et al. [1992] established that, among 1-unit

cycles, one of the following four pyramidal cycles always is optimal (the term `pyramidal'

is introduced and motivated by Crama and van de Klunder t [1994]):

1. (A

0

; A

1

; A

2

; A

3

), to be called the uphill cycle,

2. (A

0

; A

2

; A

3

; A

1

),

3. (A

0

; A

1

; A

3

; A

2

),

4. (A

0

; A

3

; A

2

; A

1

) to be called the downhill cycle.

(This observation is generalized to arbitrary values of m by Crama and van de Klundert

[1994].) These four pyramidal 1-unit cycles will also turn out to play an important role

throughout the analysis required to prove the conjectures; see Section 4.

Hall et al. [1993] and Sriskandarajah et al. [1994] established some special cases of

Conjecture 2. Namely, they showed that, in a 3-machine ow shop, the minimum cycle
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time achievable by 1-unit cycles does not exceed the minimum cycle time achieved by

2-unit cycles and certain types of 3-unit cycles. Their proof relies on the enumeration of

these sh ort cycles and on the numerical solution of an integer programming formulation

of the cycle time minimization problem.

Finke et al. [1996] proved that 1-unit cycles are optimal when there is a unit-capacity

output bu�er available at each machine. On the other hand, several generalizations of

Conjecture 2 are known to be invalid. For instance, the conjectur e does not hold for

non-identical parts (Hall et al. [1993]), nor when �nite upper bounds are imposed on

the time that each part can spend on each machine (Lei [1995], Kats [1995]). Also, the

conjectures only bear on ow shops in which the travel time of the robot is modelled by

Equation 1. Indeed, Hertz [1995] provided an instance of a 3-machine robotic ow shop

in which the travel times satisfy the triangle inequalit ies (�

i;j

� �

i;k

+ �

k;j

for all i; j; k)

without satisfying Equation 1, and for which 1-unit cycles are not optimal.

3 A state space graph model

For notational convenience, we restrict our analysis to the special case of RFIP where

the travel time between consecutive machines is constant: �

i;i+1

= � > 0 for i = 0; : : : ; m

and where all load/unload operations are instantaneous: �

i

= 0 for i = 0; : : : ; m+ 1. All

our results can be generalized in a straightforward manner to the general RFIP model

described in Section 2, at the expense of heavier notations (see Section 5).

We also assume from now on that the robot only executes active schedules: clearly, as

far as proving the conjectures is concerned, this assumption can be made without loss of

generality.

Our proofs are based on a state space graph model of the robotic ow shop which we

now proceed to explain. Observe �rst that, in order to completely specify the state of a

robotic ow shop at any given instant, it is su�cient to communicate the fol lowing pieces

of information:

1) for each machine, whether it is loaded or not;

2) for the robot, whether it is carrying a part or not;

3) for each machine, the remaining processing time of the part loaded on the machine,

if there is one;

4) the position of the robot.

Formally, a shop state for a 3-machine ow shop is a vector (v

1

; v

2

; v

3

; w; r

1

; r

2

; r

3

; pos)

where v

i

is 1 if machine M

i

is loaded and v

i

is 0 otherwise, w is 1 if the robot is carrying

a part and w is 0 otherwise, r

i

denotes the remaining processing time on machine M

i

and pos indicates the position of the robot (i = 1; 2; 3). We denote by F the set of all

feasible shop states. (Since we will not use them explicitly, we do not enumerate the

conditions that must be ful�lled by a feasible shop state: for instance, (v

1

; v

2

; v

3

; w) must
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be in f0; 1g

4

, r

i

= 0 when v

i

= 0, etc.) The evolution of the robotic ow shop can now

be viewed as tracing a `trajectory' of shop states in F (see Sethi et al. [1992]).

Rather than dealing directly with the (uncountable) set F , we will �nd it more con-

venient to handle a �nite, condensed version of this set. If (v

1

; v

2

; v

3

; w; r

1

; r

2

; r

3

; pos) is

a feasible shop state, then the triple v = (v

1

; v

2

; v

3

), w hich only speci�es whether each

machine is loaded or not, will be called the L/U state of the ow shop. Notice that every

vector v 2 f0; 1g

3

is a feasible L/U state. In order to know the evolution of the ow shop

through time, it is only necessary to know the sequence of L/U states that are succesively

encountered: this is actually equivalent to knowing the full sequence of robot moves, from

which the associated ac tive schedule can be deduced (see Section 2.2).

In order to facilitate the presentation of the proof, we de�ne two special sets of shop

states associated with each L/U state v 2 f0; 1g

3

. One set, denoted e(v) (`entering state

v'), contains all shop states that can possibly arise when the r obot has just loaded a

machine and the L/U state has thereby switched to v. Formally:

e(v) =

[

i=1;2;3;4

v

i�1

=0;v

i

=1

f(v; w; r; pos) 2 F jw = 0; r

i

= p

i

; pos = M

i

g

(where the conditions v

0

= 0, v

4

= 1 and r

4

= p

4

are considered to be identically ful�lled,

by convention).

Let us briey comment on this de�nition. Consider a shop state (v; w; r; pos) 2 e(v).

If r

i

= p

i

for some index i � 3, then it must be the case that the robot has just loaded

a part on machine M

i

(since the remaining processing time on M

i

is p

i

). Notice that

this can only occur if v

i�1

= 0, v

i

= 1, w = 0 and pos = M

i

(meaning that the robot is

located at M

i

). On the other hand, if w = 0 and pos = M

4

, then the robot is located at

the output device and is not car rying any part. Since we only consider active schedules,

we can conclude that the robot has just unloaded a part at the output device, so that v

3

must be equal to 0.

The second set of shop states associated with v is denoted l(v) (`leaving state v'). It

contains all shop states for which the L/U state is currently v, but could instantaneously

switch to another state due to the unloading of some machine (poss ibly the input device):

l(v) =

[

i=0;1;2;3

v

i

=1;v

i+1

=0

f(v; w; r; pos) 2 F jw = 0; r

i

= 0; pos = M

i

g

(where the conditions v

0

= 1, v

4

= 0 and r

0

= 0 can be disregarded).

To interpret this de�nition, consider a shop state (v; w; r; pos) 2 l(v) and assume that,

for some index i � 0, there holds v

i

= 1, v

i+1

= 0, w = 0, r

i

= 0 and pos = M

i

. Then,

the robot can start executing activity A

i

right away; namely, machine M

i

has completely

processed a part, machine M

i+1

is available and the robot is ready to unload M

i

.

We are now ready to describe the state space graph G to be used in the proof of the

conjecture (see Figure 2). The vertices of G are the 16 sets e(v); l(v) for v 2 f0; 1g

3

. For
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each v, we draw an arc from e(v) to l(v). Moreover, for ea ch v 6= w, we draw an arc

from l(v) to e(w) if the ow shop can leave the L/U state v and enter the L/U state w

without going through any other intermediate L/U state. Each such arc can be viewed as

representing the (unique) activity which transforms the L/U state v into the L/U state

w.

t

e(1; 0; 1)

t

e(1; 1; 0)

t

l(1; 0; 1)

t

e(1; 0; 0)

t

l(1; 1; 0)

t

l(1; 0; 0)

t

e(1; 1; 1)

t

l(1; 1; 1)

t

l(0; 0; 0)

t

e(0; 0; 0)

t

l(0; 1; 1)

t

l(0; 0; 1)

t

e(0; 1; 1)

t

l(0; 1; 0)

t

e(0; 0; 1)

t

e(0; 1; 0)
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Figure 2: The state space graph

From the preceding discussion, it should be clear that there is a one-to-one corre-

spondence between robot move sequences and directed walks in G. In addition, there is a

one-to-one correspondence between k-unit cycles and directed closed walks in G consisting

of 8k arcs. Therefore, in the sequel, we do not distinguish between robot move sequences

and directed walks on the one hand, or between k-unit cycles and closed walks of length

8k on the other hand.

Let us introduce some shorthand notations. We will often omit parentheses and
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commas when refering to L/U states: for example, we write 101 for the L/U state

(1; 0; 1). Furthermore, we use the shorthand 101 011 to denote the sequence of L/U

states ((1; 0; 1); (0; 1; 1)) or, alternatively, a sequence of successive shop states in the sets

e(1; 0; 1), l(1; 0; 1), e(0; 1; 1) and l(0; 1; 1) (the precise meaning will always be clear from

context). We use `/' as logical `or'; e.g., 111/010 means L/U state 111 or L/U state

010. As before, �

l

denotes a sequence consisting of l repetitions of the sequence � (where

possibly l = 0 or l =1).

For instance, with these notations, the four pyramidal 1-unit cycles introduced in

Section 2.3 can be represented as follows:

1. 000 100 010 001 (the uphill cycle),

2. 010 110 101 100,

3. 001 101 011 010,

4. 011 111 110 101 (the downhill cycle).

The corresponding directed cycles are easily identi�ed in Figure 2.

In the next section, we are going to examine more closely the structure of G and of its

directed walks and to derive properties which will enable us to prove Conjectures 1 and

2.

4 Proofs of the conjectures

4.1 Preliminary results

We start with a few important observations which will greatly simplify the analysis of

closed walks in G and which will thereby enable us to prove the conjectures.

Consider �rst the set e(0; 0; 1). For any shop state in this set, the remaining processing

times are necessarily (0; 0; p

3

) and the robot is idle at M

3

. In particular,

Observation 1 je(0; 0; 1)j = 1.

Similarly, for any shop state in l(1; 0; 0), the robot must be positioned at M

1

and the

remaining processing times are (0; 0; 0). Therefore, we have

Observation 2 jl(1; 0; 0)j = 1.

Remark 1 There is a certain symmetry in these two observations. If the parts were to

ow through the shop in the reverse direction, e(0; 0; 1) would take the role of l(1; 0; 0) and

vice versa. We do not exploit this symmetry in the remainder of the analysis, although we

think observations of this type could be helpful, e.g. in proving the optimality of 1-unit

cycles for m-machine robotic ow shops.
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The interpretation of Observations 1 and 2 is clear: when the shop enters the L/U state

001 or leaves the L/U state 100, the shop state is completely and uniquely determined,

and we know everything there is to know about it. These obse rvations are helpful in

that they allow to reduce the number of robot move sequences to be considered in the

analysis: indeed, any sequence that leads the shop into one of the L/U states 001 or 100

can be considered as losing all memory from previous st ates and starting anew from the

current state. This informal discussion will now be turned into precise statements.

Lemma 3 For all k � 1, if e(0; 0; 1) appears in an optimal k-unit cycle, then there exists

an optimal s-unit cycle (for some s � k) in which e(0; 0; 1) appears exactly once.

Proof. Let � be a k-unit cycle (or equivalently, a directed closed walk of G) containing

several occurences of e(0; 0; 1). Decompose � into � = (e(0; 0; 1); �; e(0; 0; 1); �; e(0; 0; 1)),

where �

�

= (e(0; 0; 1); �; e(0; 0; 1)) and �

�

= (e(0; 0; 1); �; e(0; 0; 1)) are two subsequences

of �, and � does not contain e(0; 0; 1). Then, �

�

and �

�

are themselves s- and t-unit

cycles, for appropriate values of s and t. Moreover, Observation 1 implies that c(�

�

) (that

is, the cycle time of �

�

) depends only on �, but not on the remainder of �. Similarly, the

cycle time c(�

�

) of �

�

depends only on � . From the optimality of �, we conclude now that

c(�) = c(�

�

) = c(�

�

) (otherwise, deleting the subsequence with longest cycle time would

improve �). In particular, �

�

is an opt imal cycle.

Exactly the same reasoning holds for l(1; 0; 0).

Lemma 4 For all k � 1, if l(1; 0; 0) appears in an optimal k-unit cycle, then there exists

an optimal s-unit cycle (for some s � k) in which l(1; 0; 0) appears exactly once.

Proof. See proof of Lemma 3.

Now, consider a �xed optimal k-unit cycle �. As a consequence of Lemma 3 and

Lemma 4, we can distinguish between four mutually exclusive and collectively exhaustive

cases:

Case 1. Neither e(0; 0; 1) nor l(1; 0; 0) occurs in �.

Case 2. l(1; 0; 0) occurs (exactly once) in �, but e(0; 0; 1) does not.

Case 3. e(0; 0; 1) occurs (exactly once) in �, but l(1; 0; 0) does not.

Case 4. Both e(0; 0; 1) and l(1; 0; 0) occur (exactly once) in �.

11



In Subsections 4.2-4.5, we consider successively each of these four cases. In each case,

we exhibit a 1-unit subcycle of � with optimal cycle time. Interestingly, the 1-unit cycles

that arise in this way are the four pyramidal cycles identi�ed in Section 2.3.

This case analysis will be further simpli�ed by the next dominance result, which

shows that the long run cycle time cannot increase when we replace a subsequence

(101 011 010 110) by the downhill pyramidal cycle (101 011 111 110).

Lemma 5 If

� = (101; 011; 010; 110; �) (2)

is an arbitrary feasible sequence of L/U states, then the sequence

�

0

= (101; 011; 111; 110; �) (3)

is also feasible and the long run average cycle time of �

0

does not exceed the long run

average cycle time of �.

Proof. The feasibility claim is obvious, so we concentrate on the comparison of cycle

times. Informally, the dominance of �

0

over � can be seen as follows: In �

0

, machine M

1

is loaded earlier and machine M

3

is unloaded later than in �, thus giving both machines

more time for processing their respective parts. Since the robot travel time is identical in

both sequences, the conclusion follows.

To establish this more formally, let us consider the execution of each sequence when

starting from some arbitrary shop state in e(0; 1; 1), say state s = (0; 1; 1; 0; 0; p

2

; ;M

2

)

(notice that for any shop state in e(0; 1; 1), the remaining time on M

2

is necessarily p

2

whereas the remaining time  on M

3

is a priori unknown). We intend to show that,

for any active schedule, the total time elapsed between s and the occurence of a �rst

shop state in l(1; 1; 0) is never larger for sequence �

0

than for sequence �. Moreover, if

(1; 1; 0; 0; r

1

; 0; 0;M

2

) is the �rst state of l(1; 1; 0) reached with � and (1; 1; 0; 0; s

1

; 0; 0;M

2

)

is the �rst state of l(1; 1; 0) reached with �

0

, then s

1

� r

1

. This is su�cient to establish

that �

0

dominates � and thus to prove the lemma.

The trajectory of the shop in the state space is represented in Table 1 (for sequence �)

and in Table 2 (for sequence �

0

). The tables are built as follows. The �rst column of each

table traces the walk performed in G. For a row labelled e(v) (resp. l(v)) the second and

the third columns complete the description of the shop state (v

1

; v

2

; v

3

; w; r

1

; r

2

; r

3

; pos)

reached in e(v) (resp. l(v)). N amely, the third column gives the position pos of the robot.

Moreover, for each machine M

i

(i = 1; 2; 3),

� if machine M

i

is not loaded, i.e. if v

i

= 0, the corresponding entry in the second column

is equal to 0;

� if machine M

i

is loaded, i.e. if v

i

= 1, the corresponding entry in the second column

12



is equal to the required processing time p

i

minus the time elapsed since the machine has

been loaded.

Therefore, a positive entry in the second column denotes remaining processing time and

is necessarily equal to r

i

for machine M

i

. On the other hand, a negative entry indicates

that the corresponding machine has �nished processing.

Finally, the fourth column displays the transition time, i.e. the amount of time elapsed

between the occurence of the shop state in the current row and the shop state in the

previous row.

state remaining processing time pos transition time

e(0; 1; 1) (0; p

2

; ) M

2

{

l(0; 1; 1) (0; p

2

� w; 0) M

3

max(�; ) = w

e(0; 1; 0) (0; p

2

� � � w; 0) M

4

�

l(0; 1; 0) (0; p

2

� 5� � w; 0) M

0

4�

e(1; 1; 0) (p

1

; p

2

� 6� � w; 0) M

1

�

l(1; 1; 0) (p

1

� �; 0; 0) M

2

max(�; p

2

� 6� � w)

Table 1: Trajectory for sequence �.

state remaining processing time pos transition time

e(0; 1; 1) (0; p

2

; ) M

2

{

l(0; 1; 1) (0; p

2

� 2�;  � 2�) M

0

2�

e(1; 1; 1) (p

1

; p

2

� 3�;  � 3�) M

1

�

l(1; 1; 1) (p

1

� w

0

; p

2

� 3� � w

0

; 0) M

3

max(2�;  � 3�) = w

0

e(1; 1; 0) (p

1

� � � w

0

; p

2

� 4� � w

0

; 0) M

4

�

l(1; 1; 0) (p

1

� 3� � w

0

; 0; 0) M

2

max(2�; p

2

� 4� � w

0

)

Table 2: Trajectory for sequence �

0

.

The total transition time between e(0; 1; 1) and l(1; 1; 0) is equal to w+6�+max(�; p

2

�

6��w) = max(w+7�; p

2

) for the sequence � and is equal to w

0

+4�+max(2�; p

2

�4��w

0

) =

max(w

0

+ 6�; p

2

) for the sequence �

0

. Since w

0

+ 6� � w + 7�, this transition time is no

larger for �

0

than for �. Moreover, when l(1; 1; 0) is reached, the remaining processing

time on machine M

1

is also no larger for sequence �

0

than for sequence �. As a lready

discussed, this is su�cient to establish the lemma.

Finally, we mention one last preliminary result.
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Lemma 6 If maxfp

1

; p

2

; p

3

g � 8�, then the sequence generated by the downhill cycle

achieves minimum cycle time among all feasible robot move sequences. If maxfp

1

; p

2

; p

3

g <

8�, then the cycle time of the downhill permutation is equal to 12�.

Proof. See Sethi et al. [1992] or Crama and van de Klundert [1994] (note that 12� is

exactly the travel time required to execute the downhill cycle).

As a consequence of Lemma 6, we only need to prove the conjectures under the as-

sumptions that p

i

< 8� for i = 1; : : : ; 3 and that the optimal cycle time is less than 12�.

These assumptions will be made in all subsequent developments .

In Subsections 4.2-4.5, we consider a �xed optimal k-unit cycle � and we proceed with

the analysis of the four cases de�ned earlier.

4.2 Case 1

Lemma 7 If neither e(0; 0; 1) nor l(1; 0; 0) occurs in the optimal k-unit cycle � (that is,

if Case 1 applies), then the downhill cycle (101 011 010 110) achieves the optimal cycle

time.

Proof. If Case 1 applies, then the L/U state 100 never arises. Since 101 is the only other

L/U state from which machine M

1

can be unloaded, the set l(1; 0; 1) must be reached

k times in the course of executing �. Consider now any two consecutive shop states in

l(1; 0; 1). When proceeding from the �rst to the next shop state, neither 100 nor 001

may arise. As can be checked from Figure 2, this only leaves two possible sequences of

L/U states between these shop states: 101 011 010 110 101 or 101 011 111 110 101. The

desired conclusion follows now from Lemma 5.

4.3 Case 2

The following observation can be made by inspection of Figure 2.

Observation 3 If l(1; 0; 0) occurs in the optimal k-unit cycle �, but e(0; 0; 1) does not

(that is, if Case 2 applies), then the sequence of L/U states following 100 in � is of the

type

100 010 110 101 (011 111=010 110 101)

k�1

: (4)

Using this observation, we can now prove:

Lemma 8 If l(1; 0; 0) occurs in the optimal k-unit cycle � but e(0; 0; 1) does not (that is,

if Case 2 applies), then the second pyramidal cycle (100 010 110 101) achieves the optimal

cycle time.
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Proof. First of all, there follows from Lemma 5 that, in the sequence (4), every oc-

curence of the subsequence (101 011 010 110) can be disregarded and only the downhill

subsequence (101 011 111 110)

k�1

needs to be considered.

We will prove the lemma by showing that the cycle time of � is at least k times the

minimum of the cycle times of 100 010 110 101 and 101 011 111 110, namely the two

pyramidal constituents of the sequence (4).

When k = 1 (that is, when � is the second pyramidal cycle), the scenario of Table 3

materializes. In this case, the cycle time of � amounts to 6� + p

3

+ x+ w.

state remaining processing time pos transition time

l(1; 0; 0) (0,0,0) M

1

{

e(0; 1; 0) (0; p

2

; 0) M

2

�

l(0; 1; 0) (0; p

2

� 2�; 0) M

0

2�

e(1; 1; 0) (p

1

; p

2

� 3�; 0) M

1

�

l(1; 1; 0) (p

1

� x; 0; 0) M

2

max(�; p

2

� 3�) = x

e(1; 0; 1) (p

1

� x� �; 0; p

3

) M

3

�

l(1; 0; 1) (p

1

� p

3

� x� �; 0; 0) M

3

p

3

e(1; 0; 0) (p

1

� p

3

� x� 2�; 0; 0) M

4

�

l(1; 0; 0) (0; 0; 0) M

1

max(3�; p

1

� p

3

� x� 2�) = w

Table 3: Case 2, k = 1.

Consider now the case where k = 2. This case is similar to the case k = 1 until a shop

state in e(1; 0; 1) is reached for the �rst time. Then, up to state l(1; 0; 1), the scenario can

be described as in Table 4.

After l(1; 0; 1), the robot performs the downhill cycle 011 111 110 101 and comes back

to a shop state in e(1; 0; 1) with remaining processing times (�; 0; p

3

), where � � p

1

� 6�

(because the travel time of the robot after loading machine M

1

is equal to 6�). The travel

time between l(1; 0; 1) and e(1; 0; 1) amounts to 10�. Thus, the sequence of shop states

can be extended as shown in Table 4 (in the last line of this table, we have used the fact

that � � p

1

� 6� and p

1

� 8�).

So, if k = 2, we conclude from Table 4 that the cycle time of � is at least

19� + p

3

+ x + w

0

2

;

where x = max(�; p

2

� 3�) and w

0

= max(2�; p

1

� x� �).

Now, trivially, w

0

+ � = max(3�; p

1

�x) � max(3�; p

1

�p

3

�x�2�) = w, and therefore

19� + p

3

+ x + w

0

= 12� + 6� + p

3

+ x + w

0

+ �

� 12� + (6� + p

3

+ x+ w):
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state remaining processing time pos transition time

l(1; 0; 0) (0,0,0) M

1

{

e(0; 1; 0) (0; p

2

; 0) M

2

�

l(0; 1; 0) (0; p

2

� 2�; 0) M

0

2�

e(1; 1; 0) (p

1

; p

2

� 3�; 0) M

1

�

l(1; 1; 0) (p

1

� x; 0; 0) M

2

max(�; p

2

� 3�) = x

e(1; 0; 1) (p

1

� x� �; 0; p

3

) M

3

�

l(1; 0; 1) (0; 0; p

3

� w

0

) M

1

max(2�; p

1

� x� �) = w

0

.

.

.

.

.

.

.

.

.

.

.

.

e(1; 0; 1) (�; 0; p

3

) M

3

at least 10� since l(1; 0; 1)

l(1; 0; 1) (�� p

3

; 0; 0) M

3

p

3

e(1; 0; 0) (�� p

3

� �; 0; 0) M

4

�

l(1; 0; 0) (0; 0; 0) M

1

max(3�; �� p

3

� �) = 3�

Table 4: Case 2, k = 2.

This implies that, if the sequence (4) obtained for k = 2 is optimal, then so are the

sequence obtained for k = 1 and the downhill sequence.

Finally, the above conclusion applies again when k > 2, since each additional execu-

tion of the downhill sequence requires time at least 12�.

4.4 Case 3

By inspection of Figure 2, we get:

Observation 4 If e(0; 0; 1) occurs in the optimal k-unit cycle �, but l(1; 0; 0) does not

(that is, if Case 3 applies), then the sequence of L/U states following 001 in � is of the

type

001 (101 011 111=010 110)

k�1

101 011 010: (5)

We rely on this observation to prove:

Lemma 9 If e(0; 0; 1) occurs in the optimal k-unit cycle � but l(1; 0; 0) does not (that is,

if Case 3 applies), then the third pyramidal cycle (001 101 011 010) achieves the optimal

cycle time.
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Proof. The proof is very similar to the proof of Lemma 8. First of all, Lemma 5 implies

again that the sequence displayed in equation (5) can be assumed to contain only the

downhill subsequence (101 011 111 110) and not the sequence (101 011 010 110).

In case k = 1, namely when � is the third pyramidal cycle, then the scenario of Table

5 materializes and the cycle time amounts to 7� + p

1

+ w + v.

state remaining processing time pos transition time

e(0; 0; 1) (0; 0; p

3

) M

3

{

l(0; 0; 1) (0; 0; p

3

� 3�) M

0

3�

e(1; 0; 1) (p

1

; 0; p

3

� 4�) M

1

�

l(1; 0; 1) (0; 0; p

3

� 4� � p

1

) M

1

p

1

e(0; 1; 1) (0; p

2

; p

3

� 5� � p

1

) M

2

�

l(0; 1; 1) (0; p

2

� w; 0) M

3

max(�; p

3

� p

1

� 5�) = w

e(0; 1; 0) (0; p

2

� w � �; 0) M

4

�

l(0; 1; 0) (0; 0; 0) M

2

max(2�; p

2

� w � �) = v

e(0; 0; 1) (0; 0; p

3

) M

3

�

Table 5: Case 3, k = 1.

Consider now the case where k = 2. This case is identical to the case k = 1 until a

shop state in e(0; 1; 1) is reached for the �rst time. Then, the scenario can be described as

in Table 6: after leaving state e(0; 1; 1), the shop proceeds to state e(1; 0; 1) according to

the downhill cycle. At this point, let � be the remaining processing time of machine M

1

.

It must be the case that � � p

1

� 6� since the travel time of the robot after loading M

1

is exactly 6�. Moreover, the remaining processing times on M

2

and M

3

are respectively

equal to r

2

= 0 and r

3

= p

3

, since the robot just left l(1; 1; 0). From Table 6, we deduce

that the cycle time of � amounts to at least

19� + p

1

+ w

0

+ v

0

2

:

We now observe that, by de�nition of the quantities involved (see Tables 5 and 6),

w

0

� w, w + v = max(2� + w; p

2

� �) and w

0

+ v

0

= max(2� + w

0

; p

2

� �). Therefore,

w

0

+ v

0

� w + v and

19� + p

1

+ w

0

+ v

0

� 19� + p

1

+ w + v

= 12� + (7� + p

1

+ w + v):

The latter inequality implies that, if � is optimal, then so are the third pyramidal cycle

(k = 1) and the downhill cycle.
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When k > 2, the same conclusion applies (see the proof of Lemma 8) since each addi-

tional repetition of the downhill cycle requires time at least 12�.

state remaining processing time pos transition time

e(0; 0; 1) (0; 0; p

3

) M

3

{

l(0; 0; 1) (0; 0; p

3

� 3�) M

0

3�

e(1; 0; 1) (p

1

; 0; p

3

� 4�) M

1

�

l(1; 0; 1) (0; 0; p

3

� 4� � p

1

) M

1

p

1

e(0; 1; 1) (0; p

2

; p

3

� 5� � p

1

) M

2

�

.

.

.

.

.

.

.

.

.

.

.

.

e(1; 0; 1) (�; 0; p

3

) M

3

at least 9� since e(0; 1; 1)

l(1; 0; 1) (0; 0; p

3

� 2�) M

1

max(2�; �) = 2�

e(0; 1; 1) (0; p

2

; p

3

� 3�) M

2

�

l(0; 1; 1) (0; p

2

� w

0

; 0) M

3

max(�; p

3

� 3�) = w

0

e(0; 1; 0) (0; p

2

� w

0

� �; 0) M

4

�

l(0; 1; 0) (0; 0; 0) M

2

max(2�; p

2

� w

0

� �) = v

0

e(0; 0; 1) (0; 0; p

3

) M

3

�

Table 6: Case 3, k = 2.

4.5 Case 4

By inspection of Figure 2, we deduce:

Observation 5 If both e(1; 0; 0) and l(0; 0; 1) occur in the optimal k-unit cycle � (that is,

if Case 4 applies), then the sequence of L/U states occuring between 100 and 001 is either

of the type 100 010 001 or of the type 100 010 110 101 (011 111=010 110 101)

a

011 010 001

for some a 2 lN. Moreover, the sequence of L/U states occuring between 001 and 100 in

� is either of the type 001 000 100 or of the type 001 101 (011 111=010 110 101)

b

100 for

some b 2 lN.

Lemma 10 If both l(0; 0; 1) and e(1; 0; 0) occur in the optimal cycle k-unit � (that is, if

Case 4 applies), then one of the pyramidal cycles achieves the optimal cycle time.

Proof. From Observation 5 and from Lemmas 3-5, we deduce that � must be of one of

the following four types:

100 010 001 000 (6)
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100 010 110 101 (011 111 110 ; 101)

k�2

011 010 001 000 (7)

100 010 001 101 (011 111 110 101)

k�1

(8)

100 010 110 101 (011 111 110 101)

a

011 010 001 101 (011 111 110 101)

b

(9)

where a; b 2 lN and a+ b = k�2. Observe that the sequence (6) corresponds to the uphill

cycle and that its cycle time is equal to 8� + p

1

+ p

2

+ p

3

.

Suppose next that k = 2 and that � is the sequence (7). This sequence is described

in Table 7. From this table, we see that the total execution time of � amounts to

14� + p

1

+ p

3

+ w + x + y + z; (10)

which is at least 20� + p

1

+ p

3

. It must be the case that p

1

� 4� and p

3

� 4�, otherwise

the downhill sequence would have smaller cycle time than �. Thus, x = 2� and y = � and

the total execution time of � is equal to

17� + p

1

+ p

3

+w + z = 8� + p

1

+max(2�; p

2

� 2�) + 9� + p

3

+max(�; p

2

� 3�):(11)

From the proofs of Lemma 8 and Lemma 9 (see Tables 3 and 5 respectively), there follows

that the right-hand side of (11) is the sum of the cycle times of the second and third

pyramidal cycles. Therefore, these two cycles must be op timal when � is.

Suppose next that � is the sequence (7) obtained when k = 3. This sequence is

described in Table 8. Its total execution time is equal to 26� + p

1

+ p

3

+ w + x + y + z,

that is 12� plus the execution time of the sequence (7) obtained when k = 2 (see (10)).

Therefore, the downhill cycle, the second pyramidal cycle and the third pyramidal cycle

are all optimal when � is.

When � is given by (7) and k > 3, the analysis is similar, since each additional

execution of the downhill schedule requires 12� time units. This takes entirely care of the

case where � is the form (7).

Consider next the case where � corresponds to the sequence (8). If k = 1, then the

travel time required by � is at least 12�, as is easily checked (see also Theorem 4 in Sethi

et al. [1992]). Hence, � is dominated by the downhill cycle. If k = 2, then the execution

of � requires 20� time units for robot moves only, plus p

2

time units for processing a part

on machine M

2

between states 010 and 001, p

1

time units for processing on machine M

1

between states 101 and 011, and p

3

time units for processing on machine M

3

between

states 101 and 100. Thus, in total, t he execution time of � is at least 20� + p

1

+ p

2

+ p

3

,

and � is dominated by the downhill cycle (whose cycle time is 12�) and by the uphill cycle

(whose cycle time is 8� + p

1

+ p

2

+ p

3

).

Increasing k by one in (8) adds 12� to the execution time of � and hence cannot reduce

the cycle time.

Finally, let us consider the case where � is of the form (9). If a = b = 0, then the

total travel time is already 24� and if a = 1; b = 0, then it is 36�. So, in both cases, �
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state remaining processing time pos transition time

e(1; 0; 0) (p

1

; 0; 0) M

1

{

l(1; 0; 0) (0; 0; 0) M

1

p

1

e(0; 1; 0) (0; p

2

; 0) M

2

�

l(0; 1; 0) (0; p

2

� 2�; 0) M

0

2�

e(1; 1; 0) (p

1

; p

2

� 3�; 0) M

1

�

l(1; 1; 0) (p

1

� w; 0; 0) M

2

max(�; p

2

� 3�) = w

e(1; 0; 1) (p

1

� � � w; 0; p

3

) M

3

�

l(1; 0; 1) (0; 0; p

3

� x) M

1

max(2�; p

1

� � � w) = x

e(0; 1; 1) (0; p

2

; p

3

� � � x) M

2

�

l(0; 1; 1) (0; p

2

� y; 0) M

3

max(�; p

3

� � � x) = y

e(0; 1; 0) (0; p

2

� � � y; 0) M

4

�

l(0; 1; 0) (0; 0; 0) M

2

max(2�; p

2

� � � y) = z

e(0; 0; 1) (0; 0; p

3

) M

3

�

l(0; 0; 1) (0; 0; 0) M

3

p

3

e(0; 0; 0) (0; 0; 0) M

4

�

l(0; 0; 0) (0; 0; 0) M

0

4�

e(1; 0; 0) (p

1

; 0; 0) M

1

�

Table 7: Case 4, k = 2.

is dominated by the downhill cycle. If a = 0 and b = 1, consider the trajectory of shop

states, starting from the (unique) sh op state in l(1; 0; 0). Notice that � is identical to the

sequence (7) obtained for k = 2 up to the L/U state 101. Therefore, refering to Table 7,

we deduce that 8�+w+x+y+z time units elapse between the �rst shop state in l(1; 0; 0)

and the �rst state in e(0; 0; 1). From there on, the travel time of the robot amounts to 18�

until the shop state returns to l(1; 0; 0). Moreover, the robot must wait for p

1

time units

at machine M

1

between states 101 and 011, and p

3

time units at machine M

3

between

states 101 and 100. Putting all these elements together, we see that a complete execution

of � requires at least time 26� + p

1

+ p

3

+ w + x + y + z, that is 12� plus the execution

t! ime of the sequence (7) obtained for k = 2 (see expression (10)). There follows again

that � is dominated by the downhill cycle as well as by the second and third pyramidal

cycles.

Each additional execution of the downhill sequence (which arises when increasing a or

b by 1) requires at least 12� time units and cannot reduce the cycle time.

As a side-remark, we notice that, if � is chosen so that k is as small as possible

among all optimal k-unit cyles, then the statement of Lemma 10 can be rephrased more

precisely: namely, in that case, the reader can easily verify that the uphill pyramidal cycle
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(6) achieves the optimal cycle time. In this sense, Lemmas 7-10 establish a one-to-one

correspondence between the four cases described in Section 4.1 and the four pyramidal

cycles.

state remaining processing time pos transition time

e(1; 0; 0) (p

1

; 0; 0) M

1

{

l(1; 0; 0) (0; 0; 0) M

1

p

1

e(0; 1; 0) (0; p

2

; 0) M

2

�

l(0; 1; 0) (0; p

2

� 2�; 0) M

0

2�

e(1; 1; 0) (p

1

; p

2

� 3�; 0) M

1

�

l(1; 1; 0) (p

1

� w; 0; 0) M

2

max(�; p

2

� 3�) = w

e(1; 0; 1) (p

1

� � � w; 0; p

3

) M

3

�

l(1; 0; 1) (0; 0; p

3

� x) M

1

max(2�; p

1

� � � w) = x

e(0; 1; 1) (0; p

2

; p

3

� x� �) M

2

�

l(0; 1; 1) (0; p

2

� 2�; p

3

� x� 3�) M

0

2�

e(1; 1; 1) (p

1

; p

2

� 3�; p

3

� x� 4�) M

1

�

l(1; 1; 1) (p

1

� 2�; p

2

� 5�; 0) M

3

max(2�; p

3

� x� 4�) = 2�

e(1; 1; 0) (p

1

� 3�; p

2

� 6�; 0) M

4

�

l(1; 1; 0) (p

1

� 5�; 0; 0) M

2

max(2�; p

3

� 6�) = 2�

e(1; 0; 1) (p

1

� 6�; 0; p

3

) M

3

�

l(1; 0; 1) (0; 0; p

3

� 2�) M

1

max(2�; p

1

� 6�) = 2�

e(0; 1; 1) (0; p

2

; p

3

� 3�) M

2

�

l(0; 1; 1) (0; p

2

� y; 0) M

3

max(�; p

3

� 3�) = y

e(0; 1; 0) (0; p

2

� � � y; 0) M

4

�

l(0; 1; 0) (0; 0; 0) M

2

max(2�; p

2

� � � y) = z

e(0; 0; 1) (0; 0; p

3

) M

3

�

l(0; 0; 1) (0; 0; 0) M

3

p

3

e(0; 0; 0) (0; 0; 0) M

4

�

l(0; 0; 0) (0; 0; 0) M

0

4�

e(1; 0; 0) (p

1

; 0; 0) M

1

�

Table 8: Case 4, k = 3.

4.6 Putting the pieces together : : :

We are �nally ready to establish the validity of Conjecture 2.

Theorem 1 In a 3-machine no-bu�er robotic ow shop with identical parts, there is a

pyramidal 1-unit cycle that minimizes the long run average cycle time over the set of

k-unit cycles, for all k 2 lN.
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Proof. The theorem is a consequence of Lemmas 7-10, which cover all possible cases.

We next use Theorem 1 to establish the validity of Conjecture 1:

Theorem 2 In a 3-machine no-bu�er robotic ow shop with identical parts, the minimum

long run average cycle time is achieved by a pyramidal 1-unit cycle.

Proof. Consider an instance of the robotic ow shop problem and denote by c

�

the

minimum cycle time achieved by pyramidal cycles. Consider an arbitrary feasible sequence

of L/U states, say � (or, equivalently, the corresponding sequence of activities), where �

is possibly non repetitive. Let S be the active schedule associated with � and let c(�) be

the cycle tim e of S. We want to show that c(�) � c

�

.

If � does not contain the state 100, then Lemma 7 and Lemma 9 directly imply the

claim. Thus, we may assume without loss of generality that 100 occurs in�nitely many

times and that 100 is the �rst L/U state in �. For each t 2 lN, we are now going to

introduce a k-cycle �

t

, where k = t or k = t + 1, such that �

1

1

; �

1

2

; : : : `approximate' �

more and more closely. More precisely, �x t 2 lN, denote by v = v(t) the L/U state of

the shop just before the t-th execution of activity A

3

and by w = w(t) the L/U state just

after the t-th execution of activity A

3

. Notice that (v; w) is one of the four pairs of states

(101,100), (001,000), (111,110) or (011,010). We denote by (�; v; w) the initial segment of

� ending with (v; w), i.e. the �nite sequence which is identical to � up to w. With these

notations, we let �

t

be the �nite sequence

(�; v; w) if (v; w) = (101; 100); (12)

(�; v; w; 100) if (v; w) = (001; 000); (13)

(�; v; w; 101; 100) if (v; w) = (111; 110); (14)

(�; v; w; 001; 000; 100) if (v; w) = (011; 010): (15)

In each case, the idea is simply to quickly return the shop to the L/U state 100 after

having performed (�; v; w), where `quickly' means: in constant time.

Clearly, the sequence �

1

t

generated by �

t

is feasible, so that �

t

is a t-unit cycle in

cases (12)-(13) and a (t+ 1)-unit cycle in cases (14)-(15).

We claim that the following upper bound holds for the cycle time of �

t

:

c(�

t

) �

S(A

3

; t) + 10� + p

1

+ p

2

+ p

3

t

: (16)

Let us verify this claim for case (15) (the other cases are similar). We use Observation

2 (see Section 4.1). Since �

t

starts and ends with 100, c(�

t

) is the time elapsed between
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the �rst and last occurence of l(1; 0; 0). Moreover, since �

t

is identical to � up to states

(v; w), we get:

c(�

t

) �

S(A

3

; t) + r + p

1

t+ 1

;

where r is the time required to perform the sequence of activities A

3

; A

2

; A

3

; A

0

associated

to the sequence of L/U states 011 010 001 000 100 and p

1

is the waiting time between

the end of A

0

and the start of the next activity ( which is necessarily A

1

). One easily

computes that r � 10� + p

2

+ p

3

and inequality (16) follows.

On the other hand, since �

t

is �nite, we know by Theorem 1 that c(�

t

) � c

�

. Together

with (16), this implies that

S(A

3

; t)

t

� c

�

�

10� + p

1

+ p

2

+ p

3

t

: (17)

By De�nition 7, we now obtain immediately

c(�) = lim sup

t!1

S(A

3

; t)

t

� c

�

and the proof is complete.

5 Generalizations and further research

A straightforward but rather tedious extension of the arguments presented in Section 4

shows that all our results go through without the assumptions that �

i;i+1

= � and �

i

= 0

for i = 0; : : : ; 4 (see beginning of Section 3).

A much more challenging generalization would be to extend our results to m-machine

robotic shops for m larger than three. We conjecture that the conclusion of Theorem 2

remains valid for an arbitrary number of machines, but we are presently unable to estab-

lish this claim.
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