Joint learning and pruning of decision forests

Jean-Michel Begon, Arnaud Joly, Pierre Geurts

Systems and Modeling, Deptartment of EE and CS, University of Liege, Belgium

Motivations

- Is it possible to build accurate yet lightweight decision forests without What? building the whole model first?
- Decision forests are heavy models memory-wise: Why?
 - \propto Number of nodes in a tree is (at worst) linear with the size of the data;
 - \propto number of required trees grows with the problem complexity.
- Big data; What for?
 - small memory devices;
 - better interpretability, less overfitting, faster prediction, ...
 - How? Joint learning and pruning (JLP)

JLP versus other prepruning methods

We tested JLP on several standard datasets, starting with T = 1000 stumps and a node budget K of 1% of the number of nodes in a forest of 1000 fully-developed extremely randomized trees (ET).

We compared JLP to the whole forest $(ET_{100\%})$, a forest of 10 trees $(ET_{1\%})$ and a best-first approach which grows the trees in parallel, splitting on the leaf which leads to the largest local reduction of the total node impurity, until exhaustion of the 1% budget (BF).

JLP's foundation

The forest is a linear model in the "forest space" (nodes' indicator function space):

JLP iteratively deepens the model in a stagewise fashion by adding the node whose optimal weight reduces the error the most among a pool of candidates.

JLP versus a L1-based postpruning method

JLP algorithm

Inputs: $D = (x_i, y_i)_{i=1}^N$, the learning set; λ , the learning rate; K, the node budget; A, the tree learning algorithm; T, the number of trees **Output:** An ensemble S of K tree nodes with their corresponding weights. **Algorithm:**

1. $S = \emptyset;$ $C = \emptyset;$ $\hat{y}^{(0)}(.) = \frac{1}{N} \sum_{i=1}^{N} y_i$

Grow T stumps with \mathcal{A} on D and add both successors of all stumps to C. 3. For k = 1 to K:

3.1 Compute:

 $(j^*, w_j^*) = \operatorname*{arg\,min}_{j \in \mathcal{C}, w \in \mathbb{R}} \sum_{i=1}^N \left(y_i - \left(\hat{y}^{(k-1)}(x_i) + wz_j(x_i) \right) \right)^2$ **3.2** $S = S \cup \{(j^*, w_j^*)\}; \quad C = C \setminus \{j^*\}$ 3.3 $y^{(k)}(.) = y^{(k-1)}(.) + \lambda w_i^* z_{j^*}(.)$ **3.4** Split j^* using \mathcal{A} to obtain children j_l and j_r 3.5 $C = C \cup \{j_l, j_r\}$

Several postpruning exists to tackle this problem with the obvious disadvantage of requiring the building of the whole forest.

We tested our method against the L1-based compression method (L1P) of Joly et al. (2012) with a budget of 1% of the 1000 thousands trees. Unsurprisingly the latter tends to produce better model at the same node constraint:

Datasets	ET _{100%}	L1P	JLP	λ
Ringnorm	2.9 ± 0.4	3.8 ± 0.4	4.5 ± 0.4	$10^{-1.5}$
Twonorm	3.1 ± 0.1	5.1 ± 0.4	4.5 ± 0.3	$10^{-1.5}$
Ailerons $ imes 10^{-8}$	6.9 ± 0.2	4.0 ± 0.0	4.7 ± 0.1	$10^{-0.5}$
Friedman1	4.9 ± 0.2	3.2 ± 0.3	5.0 ± 0.3	$10^{-1.5}$

Error comparison between L1P and JLP.

Influence of the learning rate

Beside controlling the overfitting/underfitting tradreoff, the learning rate has a practical impact on the shape of the forest. Typically, large (resp. small) values of λ favor a more in depth (resp. in breadth) development of the forest:

Learning rate

