
Joint learning and pruning of decision forests
Jean-Michel Begon, Arnaud Joly, Pierre Geurts

jm.begon@ulg.ac.be @JmBegon

Systems and Modeling, Deptartment of EE and CS, University of Liege, Belgium

Motivations

What? Is it possible to build accurate yet lightweight decision forests without
building the whole model first?

Why? Decision forests are heavy models memory-wise:
/ Number of nodes in a tree is (at worst) linear with the size of the
data;
/ number of required trees grows with the problem complexity.

What for? I Big data;
I small memory devices;
I better interpretability, less overfitting, faster prediction, . . .

How? Joint learning and pruning (JLP)

JLP’s foundation
The forest is a linear model in the “forest space” (nodes’ indicator function space):

ŷ(x) =
1

T

MX

j=1

w

j

z

j

(x)

Where
T is the number of trees
M is the total number of nodes

z

j

(x) =

(
1, if x reaches node j

0, otherwise

w

j

=

(
the prediction of leaf j ,

0, otherwise

1"

3"2"

4" 5"

6"

7"

9" 10"

8"

11" 12"

,1.2"

2.3"

,0.7" 1.5" 2.1"0.4" ,4.3"

x" x"

wT = (0 0 2.3 �1.2 0.4 0 0 0 �0.7 1.5 2.1 �4.3)
Z (x)T = (1 1 0 0 1 1 0 1 0 0 0 1)

ŷ(x) =
1

2
wT

Z (x) = �1.95

JLP iteratively deepens the model in a stagewise fashion by adding the node whose
optimal weight reduces the error the most among a pool of candidates.

JLP algorithm

Inputs: D = (x
i

, y
i

)N
i=1, the learning set; �, the learning rate; K , the node budget; A,

the tree learning algorithm; T , the number of trees
Output: An ensemble S of K tree nodes with their corresponding weights.
Algorithm:
1. S = ;; C = ;; ŷ

(0)(.) = 1
N

P
N

i=1 yi

2. Grow T stumps with A on D and add both successors of all stumps to C .
3. For k = 1 to K :

3.1 Compute:

(j⇤,w ⇤
j

) = arg min
j2C ,w2R

NX

i=1

⇣
y

i

�
⇣
ŷ

(k�1)(x
i

) + wz

j

(x
i

)
⌘⌘2

3.2 S = S [ {(j⇤,w ⇤
j

)}; C = C \ {j⇤}
3.3 y

(k)(.) = y

(k�1)(.) + �w ⇤
j

z

j

⇤(.)
3.4 Split j⇤ using A to obtain children j

l

and j

r

3.5 C = C [ {j
l

, j
r

}

4"

1"

5"

Integrated"in"the"(linear)"model"

Candidate"node"

2"

7"6" 8"

3"

9"

Δerr" 1.7" 4.6" 2.1" 17.5"5.2" 7.9"

ŷ(.) = ȳ

3.1

4"

1"

5"

Integrated"in"the"(linear)"model"

Candidate"node"

2"

7"6" 8"

3"

9"
The"
Chosen"
One"

ŷ(.) = ȳ + �w9z9(.)

3.2 – 3.3

4"

1"

5"

Integrated"in"the"(linear)"model"

Candidate"node"

2"

7"6" 8"

3"

9"

Δerr" 1.7" 4.6" 2.1" 17.5"5.2" 7.9"

The"
Chosen"
One"

ŷ(.) = ȳ

3.1

4"

1"

5"

Integrated"in"the"(linear)"model"

Candidate"node"

2"

7"6" 8"

3"

9"

11"10"

ŷ(.) = ȳ + �w9z9(.)

3.4 – 3.5

JLP versus other prepruning methods

We tested JLP on several standard datasets, starting with T = 1000 stumps and a node
budget K of 1% of the number of nodes in a forest of 1000 fully-developed extremely
randomized trees (ET).
We compared JLP to the whole forest (ET100%), a forest of 10 trees (ET1%) and a
best-first approach which grows the trees in parallel, splitting on the leaf which leads to
the largest local reduction of the total node impurity, until exhaustion of the 1% budget
(BF ).

JLP (� = 10�1.5) and other methods’ relative error with respect to the original forest.

JLP versus a L1-based postpruning method

Several postpruning exists to tackle this problem with the obvious disadvantage of
requiring the building of the whole forest.
We tested our method against the L1-based compression method (L1P) of Joly et al.
(2012) with a budget of 1% of the 1000 thousands trees. Unsurprisingly the latter tends
to produce better model at the same node constraint:

Datasets ET100% L1P JLP �

Ringnorm 2.9 ± 0.4 3.8 ± 0.4 4.5 ± 0.4 10�1.5

Twonorm 3.1 ± 0.1 5.1 ± 0.4 4.5 ± 0.3 10�1.5

Ailerons ⇥10�8 6.9 ± 0.2 4.0 ± 0.0 4.7 ± 0.1 10�0.5

Friedman1 4.9 ± 0.2 3.2 ± 0.3 5.0 ± 0.3 10�1.5

Error comparison between L1P and JLP.

Influence of the learning rate

Beside controlling the overfitting/underfitting tradreo↵, the learning rate has a practical
impact on the shape of the forest. Typically, large (resp. small) values of � favor a more
in depth (resp. in breadth) development of the forest:

Influence of the learning rate on the node distribution.

jm.begon@ulg.ac.be
https://twitter.com/JmBegon

