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Motivations

What? Is it possible to build accurate yet lightweight decision forests without
building the whole model first?

Why? Decision forests are heavy models memory-wise:
/ Number of nodes in a tree is (at worst) linear with the size of the
data;
/ number of required trees grows with the problem complexity.

What for? I Big data;
I small memory devices;
I better interpretability, less overfitting, faster prediction, . . .

How? Joint learning and pruning (JLP)

JLP’s foundation
The forest is a linear model in the “forest space” (nodes’ indicator function space):
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T is the number of trees
M is the total number of nodes
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ŷ(x) =
1

2
wT

Z (x) = �1.95

JLP iteratively deepens the model in a stagewise fashion by adding the node whose
optimal weight reduces the error the most among a pool of candidates.

JLP algorithm
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i=1, the learning set; �, the learning rate; K , the node budget; A,

the tree learning algorithm; T , the number of trees
Output: An ensemble S of K tree nodes with their corresponding weights.
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2. Grow T stumps with A on D and add both successors of all stumps to C .
3. For k = 1 to K :
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3.2 – 3.3

4"

1"

5"

Integrated"in"the"(linear)"model"

Candidate"node"

2"

7"6" 8"

3"

9"

Δerr" 1.7" 4.6" 2.1" 17.5"5.2" 7.9"

The"
Chosen"
One"
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3.4 – 3.5

JLP versus other prepruning methods

We tested JLP on several standard datasets, starting with T = 1000 stumps and a node
budget K of 1% of the number of nodes in a forest of 1000 fully-developed extremely
randomized trees (ET).
We compared JLP to the whole forest (ET100%), a forest of 10 trees (ET1%) and a
best-first approach which grows the trees in parallel, splitting on the leaf which leads to
the largest local reduction of the total node impurity, until exhaustion of the 1% budget
(BF ).

JLP (� = 10�1.5) and other methods’ relative error with respect to the original forest.

JLP versus a L1-based postpruning method

Several postpruning exists to tackle this problem with the obvious disadvantage of
requiring the building of the whole forest.
We tested our method against the L1-based compression method (L1P) of Joly et al.
(2012) with a budget of 1% of the 1000 thousands trees. Unsurprisingly the latter tends
to produce better model at the same node constraint:

Datasets ET100% L1P JLP �

Ringnorm 2.9 ± 0.4 3.8 ± 0.4 4.5 ± 0.4 10�1.5

Twonorm 3.1 ± 0.1 5.1 ± 0.4 4.5 ± 0.3 10�1.5

Ailerons ⇥10�8 6.9 ± 0.2 4.0 ± 0.0 4.7 ± 0.1 10�0.5

Friedman1 4.9 ± 0.2 3.2 ± 0.3 5.0 ± 0.3 10�1.5

Error comparison between L1P and JLP.

Influence of the learning rate

Beside controlling the overfitting/underfitting tradreo↵, the learning rate has a practical
impact on the shape of the forest. Typically, large (resp. small) values of � favor a more
in depth (resp. in breadth) development of the forest:

Influence of the learning rate on the node distribution.
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