Design of an experimental set-up to analyse compliant mechanisms used for the deployment of a panel

Florence Dewalque, Olivier Brüls

Department of Aerospace and Mechanical Engineering
University of Liège, Belgium

14th European Conference on Spacecraft Structures, Materials and Environmental Testing
Toulouse, France
30th September 2015
OUTLINE

INTRODUCTION

EXPERIMENTAL SET-UP

FINITE ELEMENT MODEL

IDENTIFICATION OF THE PARAMETERS

VALIDATION OF THE FE MODEL

CONCLUSIONS
INTRODUCTION - TAPE SPRINGS

Definition: Thin strips curved along their width used as compliant mechanisms in replacement of common kinematic joints.

Space applications: deployment of solar panels, reflectors, antennas, masts...
Introduction - Tape Springs

Assets:
- Storage of elastic energy
- Passive and self-actuated deployment
- No lubricant
- Self-locking in deployed configuration
- Possibilities of failure limited
- Versatility

Complexity:
- Highly nonlinear
- Different senses of bending
- Buckling
- Hysteresis
Introduction - Objectives

▶ To design an experimental set-up

▶ To collect experimental data on tape springs

▶ To perform a large variety of tests (quasi-static, dynamic, small amplitude, large amplitude, ...)

▶ To evaluate the parameters required to develop a finite element model

▶ To correlate finite element models with the experimental results
EXPERIMENTAL SET-UP

Constraints:
Despite the presence of the gravity field,
- No buckling under its own weight
- Passive deployment starting from a downwards folded configuration
Experimental Set-up

Acquisition equipment:
- 3D motion analysis system (Codamotion)
- Acquisition frequency: 800 Hz
- Triangulation of active markers (precision $\sim 0.3 \text{ mm}$)
- Force plate under the support (Kistler)
EXPERIMENTAL SET-UP

Deployment tests:
Initial downwards folding in opposite sense
EXPERIMENTAL SET-UP

Positions: (superposition of 50 curves)

- Displacement along the x-axis [mm]
- Displacement along the z-axis [mm]
- Vertical force [N]

Vertical force:
Deployment tests

Reproducibility of the experimental results: for 170 tests with 4 pairs of tape springs

On the positions:

- Relative SD. $< 1\%$ for the peak amplitudes

- Relative SD. \uparrow for the peak times
FINITE ELEMENT MODEL

- Shells for tape springs and rod
- Rigid interfaces
- Big interfaces clamped (fixation support not represented)
- Structural damping in the tape springs
- Nonlinear dynamic analyses
- Generalised-α method
- Low numerical damping
- Automatic time stepping procedure
- SAMCEF software
FINITE ELEMENT MODEL

Unknown parameters:

- Thickness t and Young’s modulus E of the tape springs

Why?
- Small thickness (~ 0.14 mm)
- Tape springs cut out from a common measuring tape
- Composite (metallic layer + coating + plastic)
- Non uniformity

Strategy of identification: Quasi-static three points bending tests
FINITE ELEMENT MODEL

Unknown parameters:

- Structural damping ε

Why?

- Various sources (material, connections, air resistance, acoustic effects, ...)
- Important parameter to capture the physical behaviour

Strategy of identification: Small amplitude vibration tests

Source: Dewulque, Rochus, Bruls, Importance of structural damping in the dynamic analysis of compliant deployable structures, Acta Astronautica 2015
IDENTIFICATION OF t AND E

Three points bending tests:

Use of an optimisation algorithm coupled to a FE model to determine t and E fitting the experimental results

Exp. relative SD. $< 5\%$

$\Delta(exp - num) < 14\%$
Identification of the Structural Damping

Small amplitude vibration tests:

Hypothesis: Exponential decay of the oscillations $Z \exp(-\varepsilon \omega t)$

\Rightarrow Can be represented by a Kelvin-Voigt model in the FE model
IDENTIFICATION OF \(\varepsilon \)

Small amplitude vibration tests: (510 tests in 11 sessions)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Max. diff.</th>
<th>Relative SD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>0.509 %</td>
<td>0.288 %</td>
<td>20.67 %</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>0.100 s</td>
<td>0.003 s</td>
<td>0.919 %</td>
</tr>
</tbody>
</table>

Challenging measurements:

- Sensitivity to the assembly procedure
- Non-uniformity of the samples cut out from the same measuring tape
- Thermal effects within a session of tests
Validation of the FE model

Deployment tests: comparison with the experimental results
VALIDATION OF THE FE MODEL

Deployment tests: comparison with the experimental results

Displacement along the x-axis [mm]

<table>
<thead>
<tr>
<th>t exp− t num</th>
<th>max(t exp) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Displacement along the z-axis [mm]

<table>
<thead>
<tr>
<th>A exp− A num</th>
<th>max(A exp) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak max. x</th>
<th>Peak min. x</th>
<th>Peak max. z</th>
<th>Peak min. z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Peak number [−]

<table>
<thead>
<tr>
<th>Peak number</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A exp− A num</th>
<th>max(A exp) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
VALIDATION OF THE FE MODEL

Experimental

Numerical
CONCLUSIONS

- Design of an experimental set-up
- Acquisition of experimental data by the means of a 3D motion analysis system
- **Good reproducibility** of the deployment tests
- Identification of the FE parameters based on 3PBT and small vibrations (no use of the deployment tests)
- **Fair correlation** of the FE model ($\Delta < 15\%$)
- Good **basis for a prediction** of the behaviour in space environment
Conclusions

Perspectives:

▶ Perform experimental tests in equal sense
▶ Add markers on the set-up
▶ Improve the numerical model
 ▶ Investigate other damping models
 ▶ Represent the fixation support in the FE model
THANK YOU FOR YOUR ATTENTION

Design of an experimental set-up to analyse compliant mechanisms used for the deployment of a panel

Florence Dewalque, Olivier Brüls

Department of Aerospace and Mechanical Engineering
University of Liège, Belgium

14th European Conference on Spacecraft Structures, Materials and Environmental Testing
Toulouse, France
30th September 2015