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Background: Ensemble of randomized trees

3 Good classification method
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Background: Ensemble of randomized trees for feature
selection

3 Good classification method useful for feature selection
𝜑1 𝜑𝑀 𝜑2 

… 

Importance of variable Xm for an ensemble of NT trees is given by:

Imp(Xm) =
1
NT

∑
T

∑
t∈T :v(t)=Xm

p(t)∆i(t)

where p(t) = Nt/N and ∆i(t) is the impurity reduction at node t:

∆i(t) = i(t)− NtL

Nt
i(tL)− Ntr

Nt
i(tR)

Variable ranking by tree-based methods
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e.g. Sum of entropy reduction at each node where the variable
appears.
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Ensemble of randomized trees

I Improve standard classification and regression trees by reducing
their variance

I Many examples: Bagging (Breiman, 1996), Random Forests (Breiman,

2001), Extremely randomized trees (Geurts et al., 2006)

I Standard Random Forests: bootstrap sampling + random
selection of K features at each node
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Background: Feature relevance (Kohavi and John, 1997)
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Given an output Y and a set of input variables V , X ∈ V is
I relevant iff ∃B ⊆ V such that Y ⊥6⊥ X |B .
I irrelevant iff ∀B ⊆ V : Y ⊥⊥ X |B
I strongly relevant iff Y ⊥6⊥ X |V \ {X}.
I weakly relevant iff X is relevant and not strongly relevant.

A Markov boundary is a minimal size subset M ⊆ V such that
Y ⊥⊥ V \M|M.
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Background: Feature selection (Nilsson et al., 2007)
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Two different feature selection problems:
I Minimal-optimal: find a Markov boundary for the output Y .
I All-relevant: find all relevant features.
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Random forests, variable importance and feature selection
Main results

In asymptotic conditions : infinite sample size and number of trees

I K = 1: Unpruned totally randomized trees solve the all-relevant
feature selection problem.

I K > 1: In the case of stricly positive distributions, non random
trees always find a superset F of the minimal-optimal solution
which size decreases with K.
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Motivation

Our objective: Design more efficient feature selection procedures
based on random forests

I We address large-scale feature selection problems where one can
not assume that all variables can be stored into memory

I We study and improve ensembles of trees grown from random
subsets of features
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Random subspace for feature selection

Simplistic memory constrained setting: We can not grow trees with
more than q features

Straightforward ensemble solution: Random Subspace (RS)

Train each ensemble tree from a random subset of q features

1. Repeat T times:

1.1 Let Q be a subset of q features randomly selected in V
1.2 Grow a tree only using features in Q (with randomization K )

2. Compute importance Impq,T (X ) for all X

Proposed e.g. by (Ho, 1998) for accuracy improvement, by (Louppe and
Geurts, 2012) for handling large datasets and by (Draminski et al., 2010,
Konukoglu and Ganz, 2014) for feature selection

Let us study the population version of this algorithm.
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RS for feature selection: study

Asymptotic guarantees:
I Def. deg(X ) with X relevant is the size of the smallest B ⊆ V

such that Y ⊥6⊥ X |B
I K = 1: If deg(X ) < q for all relevant variables X : X is relevant iff

Impq(X ) > 0
I K ≥ 1: If there are q or less relevant variables: X strongly

relevant ⇒ Impq(X ) > 0
Drawback: RS requires many trees to find high degree variables

E.g.: p = 10000, q = 50, k = 1⇒ (p−k−1
q−k−1)

(pq)
= 2.5 · 10−5. In average, at least

T = 40812 trees are required to find X .
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Sequential Random Subspace (SRS)

Proposed algorithm:

1. Let F = ∅

2. Repeat T times:

2.1 Let Q = R ∪ C , where:
I R is a subset of min{αq, |F |} features randomly taken from F
I C is a subset of q − |R| features randomly selected in V \ R

2.2 Grow a tree only using features in Q
2.3 Add to F all features that get non-zero importance

3. Return F

↵q
F

Q

...

R C

V \ F

Compared to RS: fill α% of the memory with previously found relevant
variables and (1− α)% with randomly selected variables.
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SRS for feature selection: study

Asymptotic guarantees: similar as RS if all relevant variables can fit
into memory.

Convergence: SRS requires much less trees than RS in most cases.
For example,

X1 X2 X3 X4 X5

Numerical simulation
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Experiments: results in feature selection
Dataset: Madelon (Guyon et al., 2007)

I 1500 samples (|LS|=1000, |TS|=500)
I 500 features whose 20 relevant features (5 features that define Y , 5

random linear combinations of the first 5, and 10 noisy copies of the first 10)
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Experiments: results in prediction
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After 10000
trees/iterations:

I RF (K = max): 0.81
I RF (K = q): 0.70

I RS : 0.68
I SRS: 0.84
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Conclusions

Future works on SRS:
I Good performance of SRS are confirmed on other datasets but

more experiments are needed.
I How to dynamically adapt K and α to improve correctness and

convergence?
I Parallelization of each step or of the global procedure

Conclusion:
In most cases, accumulating relevant features speeds up the
discovery of new relevant features while improving the accuracy.
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