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Abstract

In Bohmian mechanics, the nodes of the wave function play an important role in
the generation of chaos. However, so far, most of the attention has been on moving
nodes; little is known about the possibility of chaos in the case of stationary nodes.
We address this question by considering stationary states, which provide the sim-
plest examples of wave functions with stationary nodes. We provide examples of
stationary wave functions for which there is chaos, as demonstrated by numerical
computations, for one particle moving in 3 spatial dimensions and for two and
three entangled particles in two dimensions. Our conclusion is that the motion
of the nodes is not necessary for the generation of chaos. What is important is
the overall complexity of the wave function. That is, if the wave function, or
rather its phase, has complex spatial variations, it will lead to complex Bohmian
trajectories and hence to chaos. Another aspect of our work concerns the av-
erage Lyapunov exponent, which quantifies the overall amount of chaos. Since
it is very hard to evaluate the average Lyapunov exponent analytically, which is
often computed numerically, it is useful to have simple quantities that agree well
with the average Lyapunov exponent. We investigate possible correlations with
quantities such as the participation ratio and different measures of entanglement,
for different systems and different families of stationary wave functions. We find
that these quantities often tend to correlate to the amount of chaos. However, the
correlation is not perfect, because, in particular, these measures do not depend on
the form of the basis states used to expand the wave function, while the amount
of chaos does.

1 Introduction

A dynamical system is chaotic if it displays high sensitivity to initial conditions. In
classical mechanics, this manifests itself by an exponential divergence of initially nearby
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trajectories in phase space. In quantum mechanics, the unitary evolution of the wave
function preserves distances in Hilbert space and therefore prevents high sensitivity to
initial conditions, so that there is no chaos in this sense. Instead, quantum chaos refers
to other generic features of quantum systems, such as energy spectra exhibiting level
repulsion or ergodic eigenstates [1]. For example, quantum systems whose classical limit
is chaotic display those signatures of quantum chaos. This paper does not concern
quantum chaos, but rather chaos appearing in the framework of Bohmian mechanics.
Bohmian mechanics is an alternative to standard quantum mechanics which describes
actual point-particles moving under the influence of the wave function [2–5]. Since
there are actual trajectories, one can investigate their chaotic properties in the same
way as in classical mechanics, bearing in mind that for Bohmian mechanics the relevant
dynamical space is configuration space instead of phase space [6, 7]. There is a large
body of literature on chaos in Bohmian mechanics, see e.g. [8, 9] for an overview. In
particular, it has been shown that chaos can be obtained for a Bohmian system even
though the corresponding classical system exhibits no chaos [9–12]. This is not so
surprising, considering the fact that in Bohmian mechanics the dynamics is entirely
determined by the wave function. Even though the (quantum) Hamiltonian determines
the evolution of the wave function, the wave function generically leads to a chaotic
dynamics for the point-particles. It has also been shown that Bohmian chaos does not
necessarily correspond to quantum chaos [13, 14]. The study of chaos provides further
insight into the nature of the Bohmian trajectories, which is particularly important
in view of the fact that the details of the Bohmian trajectories can be revealed by
experiments [15, 16]. Establishing chaos usually also implies ergodicity, which means
uniqueness of the quantum equilibrium distribution. This adds further evidence for its
use as a measure of typicality [17, 18].

Previous studies have shown that nodes of the wave functions (i.e., points where
the wave function is zero) play an important role in the generation of chaos [13,19–28].
In particular, the amount of chaos usually tends to increase with the number of nodes
[19, 24]. Perhaps the most detailed study is in [13, 25, 26, 28]. There it was shown
that for 2-d systems, the presence of a so-called X-point near the node gives rise to
chaos [13, 25, 26]. Most of these works concern the study of moving nodes. Little is
known about the presence of chaos in the case of stationary nodes.

The aim of the paper is to further investigate the generation of chaos in the case of
stationary nodes. The simplest examples of wave functions with stationary nodes are
stationary states, i.e., wave functions of the form ψ(x, t) = e−iEt φ(x) (since the density
|ψ|2 is stationary the nodes must be stationary as well).1 We show with various examples
(concerning different Hamiltonians and wave functions) that motion of the nodes is
not necessary to generate chaos (contrary to what seems to be claimed in [23]). More
precisely, we give examples of stationary wave functions for which numerical simulations

1It might be possible to have a non-stationary state which admits stationary nodes. It would
be interesting to see if such states allow for chaotic motion. We have found no example of such a
wave function. For this question, we considered the Coulomb potential for which the excited energy
eigenstates all have a node at the origin. However, we were unable to find a superposition of such states
that has no other nodes.
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show that the Bohmian dynamics is chaotic (as quantified by the maximal Lyapunov
exponent) for one particle moving in a harmonic potential in 3 spatial dimensions in
section 4, and for two and three entangled particles in a 2-d square box and in a 2-d
harmonic potential respectively in sections 5 and 6. This shows that the nodes do not
need to move in order to generate chaos. What is important is the overall complexity of
the wave function, or rather its phase. Since the Bohmian velocity is proportional to the
gradient of the phase, a phase which has complex variations over space will determine
a complex velocity field and hence a complex dynamics, possibly leading to chaotic
motion.

Stationary states were considered before in a number of papers [19,29,30]. In [29,30],
examples of 4-d systems were considered (corresponding to two particles in 2-d) for which
there is chaos. It was argued that chaos was not possible for a stationary state in 3-
d [29]. However, as we will explain in section 2, the argument in [29] is not correct. This
will also be illustrated by the examples in section 4. Since a stationary state leads to
an autonomous Bohmian dynamics, the Poincaré-Bendixson theorem2 implies that the
lowest possible dimension for which chaos is possible for a stationary state is three (cf.
section 2). In [19], it was claimed that a particular stationary state for a particle in 3-d
yields chaos in certain regions of configuration space. However, as we explain in section
2, this claim is unfounded as in this case, there are constants of motion which make the
motion regular.

On the other hand, moving nodes are of course no guarantee for chaos either. In
section 3, we give some simple examples.

Another aspect of our work concerns the average Lyapunov exponent, which quanti-
fies the overall amount of chaos. Since it is very hard to evalute the average Lyapunov
exponent analytically, which is often computed numerically, it is useful to have simple
quantities that agree well with the average Lyapunov exponent. In sections 4 and 6, we
compare the average Lyapunov exponent with the participation ratio. The participation
ratio (PR), recall in section 2.4, measures how much a state is “delocalized” in a given
basis, i.e., from how much basis states the state is made up. Clearly, generically, the
more terms in a superposition, the more complex the Bohmian motion and hence the
more possibility of chaos. The PR is a widely used measure of delocalization of wave
functions in the context of quantum chaos [31]. A quantum chaotic system will typi-
cally be characterized by an ergodic wave function with large PR, increasing linearly
with the system size (dimension of the Hilbert space). In section 6, we also compare
the average Lyapunov exponent to different measures of entanglement. We consider
the Meyer-Wallach measure of entanglement, the geometric measure of entanglement
and the three-tangle, which we define in section 2.4. For separable (i.e., non-entangled)
states, the dynamics of the different particles is decoupled and thus the possibility of
chaos is the same as in the single-particle case. Hence, entanglement usually increases
the complexity of the Bohmian dynamics.

We find that these measures often tend to relate to the amount of chaos. However,

2The Poincaré-Bendixson theorem states that if a trajectory is confined to a closed, bounded region
of the plane, with no fixed points, then it must approach a closed orbit, hence it cannot be chaotic.

3



there are shortcomings of these measures. For starters, these measures do not depend
on the form of the basis states used to expand the wave function, while the amount of
chaos does. In addition, the participation ratio does not depend on the relative phases
that appear in the coefficients of the expansion terms in that basis.

In appendix A, we give details about how we quantify chaos as well as how we
computed the Lyapunov exponent. In appendix B, we recall the energy eigenstates for
the considered systems.

2 General considerations

For simplicity, we put the masses and charges of the particles as well as ~ equal to one.

2.1 Bohmian mechanics

Bohmian mechanics describes actual point-particles moving under the influence of the
wave function [2–5]. Denoting the particle positions by xk, k = 1, . . . , n, and the
configuration by x = (x1, . . . ,xn), the dynamics is given by the guidance equation

dx

dt
= vψ(x, t), (1)

where the velocity field vψ = (vψ1 , . . . ,v
ψ
n ) is given by

vψk (x, t) =
~
mk

=
(
∇kψ(x, t)

ψ(x, t)

)
=

~
mk

∇kS(x, t), (2)

with ψ = |ψ|eiS and mk the mass of the k-th particle. The wave function ψ satisfies the
usual Schrödinger equation. This theory reproduces the predictions of standard quantum
theory provided that for an ensemble of systems all with the same wave function, the
particle configuration is distributed according to |ψ(x, 0)|2. This will be the case for
typical initial configurations of the universe [4, 5].

2.2 Stationary states

If the spectrum is non-degenerate then the energy eigenstates can be chosen real and
the Bohmian particles do not move (since then S = 0). So in order to allow for chaos
we need to consider a degenerate spectrum. We will consider stationary superpositions
of the form

ψ(x, t) = e−iEtφ(x) = e−iEt
∑
i

φi(x), (3)

where the energy eigenstates φi are eigenstates of a complete set of commuting observ-
ables so that they constitute an orthonormal basis of the Hilbert space.

We will consider two types of states φi. The first type is of the form

φ(x) = f(x)g(y)h(z), (4)
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with x = (x, y, z) and f , g and h real functions. Such states will be considered for
the 3d harmonic oscillator (φ3d

nx,ny ,nz
). We will also consider systems in 2-d such as the

particle in a 2d-box (φbox
nx,ny

) and the 2d harmonic oscillator (φ2d
nx,ny

). In that case the
z-coordinate should be dropped. The second type is of the form

φ(x) = f(r)g(θ)eimϕ, (5)

where (r, θ, ϕ) are spherical coordinates, with θ the polar angle and ϕ the azimuthal
angle, and f and g real. These states are eigenstates of the angular momentum operator
L̂z = −i∂φ with eigenvalue m. Such states will be considered for the 3d harmonic

oscillator (φsph
k,l,m). The explicit expressions of the states are given in appendix B. In

terms of spherical coordinates the guidance equation reads

dr

dt
=
∂S

∂r
,

dθ

dt
=

1

r2
∂S

∂θ
,

dϕ

dt
=

1

r2 sin2 θ

∂S

∂ϕ
. (6)

For systems in two dimensions and using polar coordinates (r, ϕ), one should put θ =
π/2, like for the 2d harmonic oscillator (φpol

nr,nl
).

2.3 Constants of motion

For chaotic motion to be possible, the number of dimensions needs to be at least 3. This
follows from the Poincaré-Bendixson theorem [32]. For a non-stationary dynamics this
number needs to be at least 2 (since such a dynamics is equivalent to a stationary one
by introducing an independent variable τ , treating time as a dependent variable t(τ)
and introducing the equation of motion dt/dτ = 1). For a stationary wave function
the velocity field is stationary too. Hence for such a state we need at least 3 spatial
dimensions for chaos to be possible.

Constants of motion reduce the effective number of degrees of freedom. For example,
for states of the form (5), the phase does not depend on r and θ and hence the guidance
equation (6) implies that r and θ are constant. The only effective degree of freedom is
ϕ. The possible trajectories are circles [3] and there is no chaos.

There are a couple of types of constant of motion that we will encounter. The first
type arises for a superposition of the form

ψ(x1, . . . , xn, t) = f1(x1)g1(x2)χ1(x3, . . . , xn, t) + f2(x1)g2(x2)χ2(x3, . . . , xn, t), (7)

with x1, . . . , xn Cartesian coordinates, and where fi and gi, i = 1, 2, are real. For such
a wave function, the guidance equations for x1 and x2 are of the form

dx1
dt

= (f1∂x1f2 − f2∂x1f1)g1g2
=(χ∗1χ2)

|ψ|2 ,
dx2
dt

= (g1∂x2g2 − g2∂x2g1)f1f2
=(χ∗1χ2)

|ψ|2 . (8)

Dividing these velocity components and separating the variables x1 and x2, we obtain

f(x1)
dx1
dt

= g(x2)
dx2
dt
, (9)
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with

f =
f1f2

f1∂x1f2 − f2∂x1f1
, g =

g1g2
g1∂x2g2 − g2∂x2g1

. (10)

Integration over time yields the constant of motion

C(x1, x2) = F (x1)−G(x2), (11)

with dF (x1)/dx1 = f(x1) and dG(x2)/dx2 = g(x2).
In [19], two energy eigenstates of the form φbox

nx,ny ,nz
+ iφbox

ny ,nz ,nx
where considered for

a particle in a square box. It was claimed that for (nx, ny, nz) = (3, 2, 1), the dynamics
was regular, while for (nx, ny, nz) = (103, 102, 101), the dynamics was chaotic in certain
regions. However, there are two independent constants of motion of the form (11)
which depend on different pairs of coordinates, so that there is only one effective degree
of freedom and there cannot be chaos, regardless of the choice of quantum numbers
(nx, ny, nz).

For spherical coordinates, we can have similar constants of motion (examples are
found in [33]). For example, consider a superposition of the form

ψ(r1, θ1, ϕ1, . . . , rn, θn, ϕn, t) = f1(r1)g1(θ1)χ1(ϕ1, . . . , t) + f2(r1)g2(θ1)χ2(ϕ1, . . . , t),
(12)

where fi and gi are real, i = 1, 2. The guidance equations for r1 and θ1 are of the form

dr1
dt

= (f1∂r1f2 − f2∂r1f1)g1g2
=(χ∗1χ2)

|ψ|2 ,
dθ1
dt

=
1

r21
(g1∂θ1g2 − g2∂θ1g1)f1f2

=(χ∗1χ2)

|ψ|2 .

(13)
In this case, there is the constant of motion

C(r1, θ1) = F (r1)−G(θ1), (14)

with dF (r1)/dr1 = f(r1) and dG(θ1)/dθ1 = g(θ1), and

f =
1

r21

f1f2
f1∂r1f2 − f2∂r1f1

, g =
g1g2

g1∂θ1g2 − g2∂θ1g1
. (15)

Finally, consider a superposition of the form

ψ(x1, . . . , xn, t) = f1(x1)f2(x2)f2(x3)χ1(x4, . . . , xn, t)

+ f2(x1)f1(x2)f2(x3)χ2(x4, . . . , xn, t) + f2(x1)f2(x2)f1(x3)χ3(x4, . . . , xn, t), (16)

with x1, . . . , xn Cartesian coordinates, and where f1 and f2, are real. One can show
similarly as above that there is the constant of motion

C(x1, x2, x3) = F (x1) + F (x2) + F (x3), (17)

with dF (x)/dx = f(x) and

f =
f1f2

f1∂xf2 − f2∂xf1
. (18)
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It is often reported that for a stationary state, the energy of the Bohmian particles

E(x, t) =
∑
k

|vψk (x, t)|2
2

+ V (x) +Q(x, t) (19)

is a constant of motion, see e.g. [29, 30]. The quantity V is the usual potential energy
and Q is the quantum potential, defined as Q = −∑k∇2

k|ψ|/2|ψ|. It appears as an
extra potential in Newton’s equation

d2xk
dt2

= −∇k(V +Q), (20)

which follows from taking the time derivative of the guidance equation. Along a tra-
jectory, we have that dE/dt = ∂Q/∂t, so that E is generically not conserved. For a
stationary state ψ(x, t) = e−iEtφ(x) it is conserved, since |ψ| and hence Q are time-
independent. However, we also have that E takes the same value for all possible trajec-
tories, namely E = E. Hence this is a trivial constant of motion and it does not reduce
the effective number of degrees of freedom. Therefore the Poincaré-Bendixson theorem
does not exclude the possibility of chaos. In section 4, we will provide some examples
of stationary states in 3-d that lead to chaos.

2.4 Participation ratio and measures of entanglement

In this section, we present simple quantities which we will compare to the average
Lyapunov exponent later on.

First, given a decomposition ψ =
∑N

i=1 ciφi in an orthonormal basis φi, i = 1, . . . , N ,
the participation ratio (PR) [34] is defined by

PR(ψ) =
1∑N

i=1 |〈φi|ψ〉|4
=

1∑N
i=1 |ci|4

. (21)

It quantifies the number of basis states on which the state ψ is delocalized. The PR is
equal to 1 when ψ is a basis element φi and takes the maximum value N when ψ is an
equally weighted superposition of all the basis states.

For many-particle systems, entanglement will couple the dynamics of the different
particles. So the entanglement will generically play a role in the generation of chaos.
Here, we will consider three measures of entanglement: the Meyer-Wallach measure
(Q), the geometric measure (EG) and the three-tangle (τ3). For 3-qubit states, the
Meyer-Wallach measure of entanglement Q(ψ) ∈ [0, 1] is defined by [35]

Q(ψ) =
1

3

3∑
k=1

2(1− trρ̂2k), (22)

with ρ̂k the reduced density matrix for the k-th qubit. It is the average of the linear
entropies 2(1− trρ̂2k) of each qubit [35].
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The geometric measure of entanglement EG(ψ) ∈ [0, 1[ is defined as [36]:

EG(ψ) = 1− max
|φ〉 sep.

|〈φ|ψ〉|2, (23)

where the maximum is taken over all possible separable (i.e. non-entangled) states. It
can be interpreted as the distance of a state |ψ〉 to the set of separable states.

For a three-qubit state

|ψ〉 =
∑

i,j,k=0,1

cijk|ijk〉, (24)

with |ijk〉 the basis states, the three-tangle is defined as [37]:

τ3(ψ) = 4|d1 − 2d2 + 4d3|, (25)

with

d1 = c2000c
2
111 + c2001c

2
110 + c2010c

2
101 + c2100c

2
011,

d2 = c000c111c011c100 + c000c111c101c010 + c000c111c110c001

+ c011c100c101c010 + c011c100c110c001 + c101c010c110c001,

d3 = c000c110c101c011 + c111c001c010c100.

It can be interpreted as the amount of entanglement between one qubit and the re-
maining two qubits not accounted for by the amount of entanglement between pairs of
qubits. All these entanglement measures vanish if the state ψ is separable. Conversely,
when the measure vanishes this implies that the state ψ is separable in the case of the
first two measures, but not in the case of the three-tangle.

3 States with moving nodes and no chaos

As we will show in the next section, one can have wave functions with stationary nodes
that give rise to chaotic Bohmian trajectories. Conversely, having (arbitrarily many)
moving nodes is no guarantee for chaos, as we will illustrate here with some examples.
A more complex mechanism is required, as for example discussed in [25, 26] for two
dimensional systems.

In one spatial dimension, a non-stationary state will generically have moving nodes,
but the Bohmian motion will not be chaotic due to the Poincaré-Bendixson theorem.

For two or three dimensions, consider the superposition of two stationary states of
the form

ψ(x, t) = c1e
−iE1tφ1(x) + c2e

−iE2tφ2(x), (26)

where the ci, i = 1, 2, are complex numbers and where the φi are of the form (4), i.e.
a real function that is separable in the Cartesian coordinates. Such states generically
have moving nodes (considering states φi with different energies). However, there are
two constants of motion of the type (11) in the case of three dimensions and one in
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the case of two dimensions. These constants of motion reduce the effective number of
degrees of freedom so that, again as a consequence of the Poincaré-Bendixson theorem,
the Bohmian motion can not be chaotic.

For the final example, consider again superpositions of the form (26), but now with
the φi of the form (5), i.e., φi(r, θ, ϕ) = fi(r, θ)e

imiϕ, with the fi real. The number of
nodes of the functions fi grows with the energy. As such, we could construct states
with an arbitrary number of moving nodes. These nodes move in circles around the
z-axis with a constant angular velocity. This is because the state becomes stationary in
a rotating frame, with angular frequency

ω =
E1 − E2

m2 −m1

. (27)

Namely, if we introduce the variable ϕ′ = ϕ+ ωt, then the state (26) reads

ψ(r, θ, ϕ) = ψ′(r, θ, ϕ′, t) = e−i(E1+m1ω)t+im1ϕ′
(
c1f1(r, θ) + c2f2(r, θ)e

iϕ′(m2−m1)
)
. (28)

So in the rotating frame the state is stationary and the Bohmian motion reduces to the
autonomous dynamics

dr

dt
=
∂S ′

∂r
,

dθ

dt
=

1

r2
∂S ′

∂θ
,

dϕ′

dt
=

1

r2 sin2 θ

∂S ′

∂ϕ′
+ ω, (29)

where S ′ is the phase of ψ′. In two dimensions this implies that the Bohmian motion
can not be chaotic because of the Poincaré-Bendixson theorem (as was noted before
in [38]). The same conclusion holds for three dimensions since in this case there is also
a constant of motion of the form (14) for r and θ.

4 Single particle in 3-d

We have already mentioned that for a stationary state in 2-d, the motion can not be
chaotic. Therefore we need to consider at least three dimensions. We will consider sta-
tionary superpositions ψ = e−iEtφ = e−iEt

∑
i φi of three and four orthogonal degenerate

energy eigenstates φi of the form (4) or (5). As shown in the previous section, there is
no chaos for superpositions of only two such states.

4.1 Superposition of three eigenstates: examples of chaotic
motion

For the harmonic oscillator we can consider the complete set of energy eigenstates
φ3d
nx,ny ,nz

(x, y, z), cf. (65), or φsph
k,l,m(r, θ, ϕ), cf. (67). These states are respectively of

the form (4) and (5). For each choice, we will consider a superposition of three states
that gives rise to chaotic Bohmian motion.

As a first example, consider the superposition

φsph(r, θ, ϕ) = φsph
0,3,1(r, θ, ϕ) + eiπ/3φsph

0,3,0(r, θ, ϕ) + eiπ/7φsph
1,1,0(r, θ, ϕ) (30)

9



with energy 9/2. This state has nodal lines, which are however difficult to find ana-
lytically. Figure 1 illustrates a typical Bohmian trajectory for this wave function. The
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Figure 1: (a) Bohmian trajectory for a particle with wave function (30) and initial
position (r, θ, ϕ) = (6.6969, 2.38696,−0.249865). (b) Poincaré section in the plane z = 0.
(c) Evolution of h(x0, T ) as a function of time for the trajectory depicted in (a).

trajectory starting outside the bulk of the wave packet moves towards it and eventually
moves inside it. The Poincaré section in the plane z = 0 shown on the middle panel of
figure 1 indicates that the dynamics is not regular. This is confirmed by the Lyapunov
exponent h ≈ 0.06 (see the right panel of figure 1).

As a second example, consider now the stationary state

φ3d(x, y, z) = φ3d
1,1,1(x, y, z) + eiπ/3φ3d

3,0,0(x, y, z) + eiπ/7φ3d
1,2,0(x, y, z), (31)

which also has energy 9/2. In this case there is a nodal plane at x = 0. In the limit of x
going to zero, the velocity does not blow up but rather becomes tangential to the plane
x = 0. The Bohmian trajectories do not cross this plane, they tend to be repelled by it.
The other nodal lines are given by{

(x, y, z) : x = ±
√

3

2
+ sin

(π
7

)
− 2y2 sin

(π
7

)
, y 6= 0,

|y| ≤ 1

2

√
3 + 2 sin(π/7)

sin(π/7)
, z =

(1− 2y2)[3 cos(π/7)−
√

3 sin(π/7)]

6
√

2y

}
. (32)

These nodal lines end in the plane x = 0. A typical Bohmian trajectory for this system is
illustrated in figure 2. The trajectory first spirals around a nodal line. When the particle
arrive at the end of the nodal line, the trajectory continues freely until it reaches the
vicinity of another nodal line. Such behavior has been reported before [19,22]. Most of
the Poincaré section in the plane z = 0 is composed of regions where the points look
randomly distributed which constitutes a strong clue that the motion is chaotic. This is
confirmed by the calculated Lyapunov exponent which is again approximately equal to
0.06. The right panel of figure 2 illustrates the exponential divergence of two initially
close trajectories.
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Figure 2: (a) Bohmian trajectory for a particle with wave function (31) and initial
position x0 ≡ (x, y, z) = (−2.212756,−1.97466, 0.179963). It spirals around the nodal
lines, which are plotted in red (gray in grayscale) (b) Poincaré section in the plane
z = 0. (c) z-component of the trajectories starting at x0 (black) and x0 + (0, 10−6, 0)
(red dashed). The divergence is exponential. However, since the Lyapunov exponent is
0.06, this becomes visible to the naked eye only at around t = 300.

4.2 Chaos and participation ratio

We have shown that the Bohmian trajectories of 3-d systems with stationary states may
be chaotic. We now study the effect of the particular form of the wave function on the
amount of chaos. We will consider the harmonic oscillator and stationary wave functions
of the form

φ(x;α, β) =
4∑
i=1

ci(α, β)φsph
ki,li,mi

(x), (33)

where ci(α, β) = |ci(α)|eiχi(β), so that the amplitude and the phase of the coefficients ci
are functions of respectively α and β. The quantum numbers ki, li,mi are chosen such
that φ(x;α, β) is a stationary state. We also assume the states to be normalized (i.e.,∑

i |ci|2 = 1). While this does not affect the Bohmian velocity field, it will be important
when considering the participation ratio. In order to quantify the amount of chaos, we
compute the average Lyapunov exponent h̄ over 150 different initial positions, uniformly
distributed in a cube of edge length 10 centred around the origin. The trajectories used
in the determination of the Lyapunov exponent were computed from t = 0 to t = 5 ·104.

Consider first the states

φ(x;α, β) = N (α)[cos(α)φsph
1,3,0(x) + ei(β+π/3) sin(α)φsph

1,3,1(x)

+ ei(2π cos(β)+π/5) cos2(α)φsph
2,1,−1(x) + ei(−2β+π/7) sin2(α)φsph

2,1,0(x)], (34)

with α ∈ [0, π/2], β ∈ [0, 2π] and N (α) a normalization constant. The energy of these
states is 13/2.
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Figure 3: (a) and (b) Average Lyapunov exponent h̄ as a function of α for Bohmian
trajectories for respectively the states φ(x;α, 0) of energy 13/2 and φ′(x;α, 0) of energy
17/2. The average h̄ is performed over 150 initial positions. The error bars correspond
to the standard deviation of the Lyapunov exponent over different trajectories. (c) h̄ as
a function of β for the state φ(x; π/4, β). (d) Participation ratio as a function of α for
the states φ(x;α, 0) and φ′(x;α, 0).

Taking β = 0, so that the phases of the coefficients are fixed, we have

φ(x;α, 0) = N (α)[cos(α)φsph
1,3,0(x) + eiπ/3 sin(α)φsph

1,3,1(x)

+ eiπ/5 cos2(α)φsph
2,1,−1(x) + eiπ/7 sin2(α)φsph

2,1,0(x)]. (35)

Figure 3(a) shows the average Lyapunov exponent as a function of α. For α = 0 and
α = π/2, φ(x;α, 0) is a superposition of only two eigenstates and thus the Bohmian
trajectories are regular, cf. section 2.3. This agrees with the calculated value of h̄ which
is zero. h̄ is maximum around α = π/10 and then decreases as α increases.

In order to investigate the effect of the choice of eigenstates in φ(x;α, β) on the
chaotic behavior of the Bohmian trajectories, we also compute the average Lyapunov

12



exponent for the stationary state

φ′(x;α, 0) = N (α)[cos(α)φsph
2,3,2(x) + eiπ/3 sin(α)φsph

2,3,−1(x)

+ eiπ/5 cos2(α)φsph
3,1,1(x) + eiπ/7 sin2(α)φsph

3,1,0(x)], (36)

which has energy 17/2. This state differs from φ(x;α, 0) only in the quantum numbers
of the four eigenstates in terms of which it is constructed. Figure 3(b) shows the average
Lyapunov exponent for some values of α. Just as before, for α = 0 and α = π/2, h̄
should vanish. For φ′(x;α, 0), h̄ reaches the maximal value approximately equal to 0.2
near α = π/4.

Although the states φ(x;α, 0) and φ′(x;α, 0) have the same coefficients in their de-
composition in the basis of eigenstates of the harmonic oscillator, the evolution of the
average Lyapunov exponent is significantly different. For both wave functions, h̄ takes
a maximum value of around 0.2 but for a different value of α. So, in particular, a
small increase of the energy of the wave function does not necessarily lead to a greater
amount of chaos in the Bohmian trajectories. For instance, one can see by comparing
figures 3(a) and 3(b) that for α = π/10, h̄ is more than twice as high for φ(x;α) as for
φ′(x;α, 0), even though the energy of the latter wave function is higher. When α = π/4
this situation is reversed.

In order to bring to light the effect of the choice of phases of the coefficients, we
consider the states φ(x; π/4, β), where the amplitudes of the coefficients are fixed and
the phases may vary. Figure 3(c) illustrates the average Lyapunov exponent for some
values of the parameter β. The average Lyapunov exponent takes values between 0.07
and 0.16. Thus, h̄ is quite sensitive to the choice of the relative phase of the coefficients.
The dependence on β also looks rather complicated.

Let us now compare the average Lyapunov exponent with the participation ratio
(PR) (21). It is immediately clear that the PR has two shortcomings, which make that
it can not agree perfectly with the average Lyapunov exponent. First, the PR does not
depend on the particular form of the basis states. Therefore, it takes the same value for
the wave functions φ(x;α, 0) and φ′(x;α, 0) (cf. 34 and 36). Figure 3(d) shows the PR
for these states as a function of α. The PR shows a good qualitative agreement with
the average Lyapunov exponent h̄ for the wave function φ′(x;α, 0), but a bit less so for
φ(x;α, 0). For both φ(x;α, 0) and φ′(x;α, 0), the PR reaches a minimum for α = 0 and
α = π/2, just as h̄ (whose theoretical value is zero). The PR has a maximum at α = π/4
as does the average Lyapunov exponent for the wave function φ′(x;α, 0). However, for
the wave function φ(x;α, 0) the maxima of h̄ and PR do not coincide. And while the
PR is symmetric around α = π/4, like h̄ for φ′(x;α, 0), h̄ for φ(x;α, 0) is not.

The second shortcoming of the PR is that it does not depend on the phases of the
coefficients ci. As we have seen, with the wave functions φ(x; π/4, β), the amount of
chaos strongly depends on the value of the phases, cf. figure 3(c).

Therefore, in order to characterize the amount of chaos in Bohmian trajectories,
a simple measure of superposition such as the PR is not enough. One needs to take
into account the particular form of the eigenstates that appear in the superposition as
well as their relative phases, since both influence the complexity of the wave function.
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Nevertheless, generically, the PR gives the general trend of the value of the Lyapunov
exponent.

5 Two-particle systems

In this section we study the Bohmian trajectories of systems of two particles whose
wave functions are stationary entangled states. We focus our attention on 2-d systems.
Our interest lies of course with entangled states, since for such states the motion of one
particle depends on the position of the other particle, unlike for a separable state. We
give three examples of wave functions for which there is chaotic motion.

5.1 Superpositions with 2 single-particle basis states

Using two single-particle basis states φ1 and φ2, the most general two-particle state
reads

φ2p
2 (x1,x2) = c1φ1(x1)φ1(x2) + c2φ1(x1)φ2(x2) + c3φ2(x1)φ1(x2) + c4φ2(x1)φ2(x2) (37)

where the superscript denotes the number of particles and the subscript the number
of single-particle basis states involved in the superposition. For states φi(x, y) of the
form (4) there are two constants of motion of the form (11) (even for a non-stationary
superposition)3, so that the effective number of degrees of freedom is 2 and no chaos is
possible.

Consider states of the form (37), but now with the φi(r, ϕ) of the form (5)). Unlike
the case where they are of the form (4), such states generically do not seem to yield
constants of motion, so that chaotic motion may be possible. As an example, consider
the harmonic oscillator with single-particle energy eigenstates φpol

nr,nl
(r, ϕ), cf. (61), and

the wave function

φ2p
2 (x1,x2) = φpol

1,1(x1)φ
pol
1,1(x2) + eiπ/3φpol

1,1(x1)φ
pol
2,0(x2)

+ eiπ/5φpol
2,0(x1)φ

pol
1,1(x2) + eiπ/7φpol

2,0(x1)φ
pol
2,0(x2). (40)

Figure 4 illustrates a typical set of trajectories for this system. The Lyapunov exponent
takes a value h ≈ 0.17, which indicates chaos.

3This follows from the fact that one can write φ2p2 in two different ways in the form (7), namely

φ2p2 (x1,x2) = φ1(x1) (c1φ1(x2) + c2φ2(x2)) + φ2(x1) (c3φ1(x2) + c4φ2(x2)) (38)

and
φ2p2 (x1,x2) = φ1(x2) (c1φ1(x1) + c3φ2(x1)) + φ2(x2) (c2φ1(x1) + c4φ2(x1)) . (39)

Since the φi(x, y) are of the form (4), there are two constants of motion of the form (11) for (x1, y1)
and (x2, y2).
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Figure 4: (a) Bohmian trajectories for a system of two particles for
the entangled wave function (40) and initial configuration (x1, y1, x2, y2) =
(2.37166,−0.374916,−0.522219, 2.99893). The black dashed curve corresponds to the
trajectory of particle 1 and the red curve to that of particle 2. (b) Evolution of h(x0, T )
as a function of time for the trajectory depicted in (a).

5.2 Superpositions with 3 single-particle basis states

As we have seen in the previous section, stationary superpositions of only two single-
particle basis states φi(x, y) of the form (4) cannot give rise to chaos. For superpositions
using three such states, we show that chaos is possible. We give 2 examples for states
of the form

φ2p
3 (x1,x2) = c1φ1(x1)φ1(x2) + c2φ2(x1)φ2(x2) + c3φ3(x1)φ3(x2), (41)

one for the harmonic oscillator and one for the square box. Generically such states do
not yield constants of motion.

As a first example, we consider the state

φ2p
3 = φ2d

1,1φ
2d
1,1 + eiπ/3φ2d

2,0φ
2d
2,0 + eiπ/7φ2d

0,2φ
2d
0,2 (42)

for the 2d harmonic oscillator with the energy eigenstates φ2d
nx,ny

given in (59). Figure 5(a)
illustrates a typical pair of Bohmian trajectories for this system. Again, the trajectories
start outside the bulk of the wave packet move towards it and eventually move inside
it. The Lyapunov exponent is h ≈ 0.08, so that the motion is chaotic.

As a second example, we consider the state

φ2p
3 = φbox

7,1 φ
box
7,1 + eiπ/3φbox

1,7 φ
box
1,7 + eiπ/7φbox

5,5 φ
box
5,5 (43)

for the 2d square box with the eigenstates φbox
nx,ny

given in (56). Figure 5(b) shows a
typical set of Bohmian trajectory for this system. We obtain the rather large value
of around 25 for the Lyapunov exponent. This example also illustrates the non-local
character of Bohmian mechanics. Although the particles are always in different regions
of the box, their trajectories strongly influence each other which allows chaotic motion
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Figure 5: (a) and (b) Bohmian trajectories for a system of two particles respectively
for the entangled wave functions (42) and (43), and with initial configuration re-
spectively (x1, y1, x2, y2) = (3.29867, 3.97517, 3.15679,−3.75662) and (x1, y1, x2, y2) =
(0.666891, 0.584026, 0.193745, 0.747208). The black dashed curve corresponds to the
trajectory of particle 1 and the red curve to that of particle 2.

(remember that for a 2-d system with stationary wave function, the Bohmian trajectories
are always regular). Actually, the amount of chaos would not change if we moved one
particle in a box arbitrarily far away.

6 Three-particle systems

In this section, we consider 3-particle systems in 2-d and investigate the amount of chaos
for different entangled states.

6.1 Superpositions with 2 single-particle basis states

First we consider superpositions formed using two different single-particle states φi.
These states can be seen as three-qubit states. We focus our attention on the states

φ3p
GHZ(x1,x2,x3) = c1φ1(x1)φ1(x2)φ1(x3) + c2φ2(x1)φ2(x2)φ2(x3), (44)

φ3p
W(x1,x2,x3) = c1φ1(x1)φ2(x2)φ2(x3) + c2φ2(x1)φ1(x2)φ2(x3) + c3φ2(x1)φ2(x2)φ1(x3),

(45)
which belong respectively to the Greenberger-Horne-Zeilinger (GHZ) and the W entan-
glement classes [39].

For states φi(x, y) of the form (4), there are 5 independent constants of motion of
the form (11), for φ3p

GHZ. The states φ3p
W lead to 3 constants of motion of the form (11)

for (x1, y1), (x2, y2) and (x3, y3), and 2 of the form (17) for (x1, x2, x3) and (y1, y2, y3).
In both cases, the constants of motion make that there is no chaos, despite the entan-
glement. This remains true even if the states are non-stationary (and thus have moving
nodes).
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For states φi(r, ϕ) of the form (5), the state φ3p
GHZ gives two independent constants

of motion of the form (11) for (r1, r2) and (r2, r3). If we introduce the variable ϕ =
ϕ1 + ϕ2 + ϕ3, then the wave function depends on this variable and r1, r2 and r3. So
in terms of the variables ϕ, ϕ2, ϕ3, r1, r2, r3, the Bohmian dynamics for ϕ, r1, r2, r3 is
independent of ϕ2 and ϕ3. The two constants of motion imply that the dynamics
for ϕ, r1, r2, r3 is regular. Furthermore, the dynamics of ϕ2 and ϕ3 only depends on
ϕ, r1, r2, r3, and therefore there is no chaos.

For states φi(r, ϕ) of the form (5), the state φ3p
W leads to one constant of motion of the

type (17) for (r1, r2, r3) and trajectories can be chaotic. Indeed, consider the harmonic
oscillator and the state

φ3p
W = φpol

3,1φ
pol
4,0φ

pol
4,0 + eiπ/3φpol

4,0φ
pol
3,1φ

pol
4,0 + eiπ/7φpol

4,0φ
pol
4,0φ

pol
3,1 . (46)

The Lyapunov exponent is approximately equal to 0.12, which indicates chaos. A par-
ticular set of trajectories is shown in figure 6.
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Figure 6: Bohmian trajectories for a system of three particles in a 2-d har-
monic potential for the entangled wave function (46) and initial configuration x0 ≡
(x1, y1, x2, y2, x3, y3) = (1.40802,−3.0515, 0.97766, 1.33025,−1.971814, 1.64945). The
black dashed curve corresponds to the trajectory of particle 1, the red curve to that
of particle 2 and the blue one to that of particle 3. (b) x3-component of the trajectories
starting at x0 (black) and x0 + (0, 10−6, 10−6, 0, 0, 0)/

√
2 (red dashed).

6.2 Superpositions with 3 single-particle basis states

In the previous section we have seen that the states (44) and (45) do not lead to chaos
for states using two states φi(x, y) of the form (4). Chaos is possible for states that are
formed using three such states. More precisely, we consider the states

φ3p
3 (x1,x2,x3) = c1φ1(x1)φ1(x2)φ1(x3) + c2φ2(x1)φ2(x2)φ2(x3) + c3φ3(x1)φ3(x2)φ3(x3).

(47)
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In the case of the harmonic oscillator, we consider

φ3p
3 = φ2d

3,1φ
2d
3,1φ

2d
3,1 + eiπ/3φ2d

4,0φ
2d
4,0φ

2d
4,0 + eiπ/7φ2d

2,2φ
2d
2,2φ

2d
2,2. (48)

The Lyapunov exponent is approximately 0.19, so that there is chaos. Figure 7(a) shows
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Figure 7: (a) and (b) Bohmian trajectories for a system of three particles respectively
for the entangled wave functions (48) and (49), and with initial configuration respectively
(x1, y1, x2, y2, x3, y3) = (−2.98281,−1.92732, 2.84168,−0.12871,−2.43547,−0.292984)
and (x1, y1, x2, y2, x3, y3) = (0.383739, 0.882733, 0.464473, 0.481246, 0.616311, 0.586823).
The black dashed curve corresponds to the trajectory of particle 1, the red curve to that
of particle 2 and the blue one to that of particle 3.

a particular set of trajectories for this system.
As a second example, consider the square box and the state

φ3p
3 = φbox

5,5 φ
box
5,5 φ

box
5,5 + eiπ/3φbox

7,1 φ
box
7,1 φ

box
7,1 + eiπ/7φbox

1,7 φ
box
1,7 φ

box
1,7 (49)

which has the same coefficients as the state (48). A typical set of Bohmian trajectories
is shown in figure 7(b). Just as in the two-particle case, the particles move in different
quadrants of the box. The Lyapunov exponent is approximately 25, so that there is
chaos.

6.3 Chaos and entanglement

In this section we explore the relation between the average Lyapunov exponent and
entanglement measures. Here, we consider three measures of multipartite entanglement:
the Meyer-Wallach measure Q (22), the geometric measure EG(23) and the three-tangle
τ3 (25). These entanglement measures vanish if the state ψ is separable. In that case,
the motion of the Bohmian particles is uncorrelated. Conversely, when the measure
vanishes this implies that the state ψ is separable in the case of the first two measures,
but not in the case of the three-tangle.

These measures will not fully agree with the average Lyapunov exponent, as they do
not depend on the choice of the basis states |0〉 and |1〉 (just like the participation ratio),
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while this influences the possibility of chaos, as we have seen before. In addition, note
that entanglement is not sufficient to imply chaos. As a simple example, consider real
wave functions. The wave function can be arbitrarily much entangled, but the Bohmian
configuration is static, so that there is no chaos.

In the following, we will consider stationary states belonging to the W entanglement
class, i.e. states that are related by an invertible local operation to the W state |W〉 =
(|001〉+ |010〉+ |100〉)/

√
3. These states can be parametrized as follows

|W(a, b, c)〉 =
√
a|001〉+

√
b|010〉+

√
c|100〉+

√
1− (a+ b+ c)|000〉, (50)

where a, b, c ≥ 0, a+ b+ c ≤ 1, and |0〉 and |1〉 are single-particle basis states [39]. We
will take 〈x|0〉 and 〈x|1〉 to be the eigenstates φpol

nr,nl
(r, ϕ) of the 2-d harmonic oscillator.

For these states, the three-tangle vanishes for all values of a, b and c. Since the amount
of chaos generically varies with the choice of coefficients, this measure will not correlate
with the amount of chaos.

We consider first the following one-parameter family of states

|W(a, 1/2− a, 1/2)〉 =
√
a|001〉+

√
1/2− a|010〉+

√
1/2|100〉, (51)

with 〈x|0〉 = φpol
4,0(x) and 〈x|1〉 = φpol

3,1(x) and a ∈ [0, 1/2], which have energy 15.
Figure 8 shows from left to right the average Lyapunov exponent h̄ (computed from
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Figure 8: Plots for the state (51). (a) Average Lyapunov exponent h̄ as a function of
a. (b) Meyer-Wallach measure of entanglement (Q) (black) and geometric measure of
entanglement (EG) (red dashed) as a function of a. (c) Participation ratio for these
states as a function of a.

300 trajectories), the Meyer-Wallach and geometric measure of entanglement and the
participation ratio as a function of the parameter a. For the states (51), the three-
tangle and the geometric measure of entanglement are independent of a; they have the
value of 0 and 1/2 respectively. The average Lyapunov exponent h̄ varies with a, is
maximal at a = 1/4 and minimal at a = 0 and a = 1/2. Both the participation ratio
and the Meyer-Wallach measure of entanglement have the same general behavior as h̄
with respect to a. This agreement in behavior can be understood by noticing that the
states |001〉, |010〉 and |100〉 from which |W(a, 1/2− a, 1/2)〉 is constructed have similar
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spatial variations. For a = 0 and a = 1/2, |W(a, 1/2−a, 1/2)〉 has only two terms, with
one particle decoupling from the others, which explains why the Lyapunov exponent is
minimal for these values.

Now consider the other one-parameter family of stationary states

|W(a, 1/4, 1/4)〉 =
√
a|001〉+

√
1/4|010〉+

√
1/4|100〉+

√
(1/2− a)|000〉, (52)

with again 〈x|0〉 = φpol
4,0(x) and 〈x|1〉 = φpol

3,1(x) and a ∈ [0, 1/2], which have energy 15.
Figure 9(a) shows h̄, (c) the Meyer-Wallach and geometric measures of entanglement
and (d) the participation ratio as a function of a. The lower value of h̄ for a = 0 may
originate from the fact that the third particle decouples from the other ones. The lower
value of h̄ for a = 1/2 may come from the fact that then the state is of the form (45)
and as mentioned before admits then one constant of motion. These properties do not
exclude chaos but reduce the possible amount of chaos. The agreement of h̄ with the
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Figure 9: (a) and (b) respectively display the Lyapunov exponent h̄ for the states
|W(a, 1/4, 1/4)〉 of energy 15 and |W′(a, 1/4, 1/4)〉 of energy 21 given by Eq. (52). (c)
Meyer-Wallach measure of entanglement (Q) (black) and geometric measure of entan-
glement (EG) (red dashed) as a function of a. (d) Participation ratio for these states as
a function of a. Q, EG and PR are equal for both states.
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Meyer-Wallach and geometric measures of entanglement or the participation ratio is
not as good as in the previous example. The Meyer-Wallach measure and the geometric
measure of entanglement are monotonously increasing functions of a, unlike h̄ which has
a maximum. The participation ratio reaches a maximum, just like h̄, but its maximum
is reached for a different value of a. The discrepancy between the Lyapunov exponent
and the measures of complexity of the wave function originates from the fact that the
former depends on the particular form of the terms in the superposition, while the latter
do not. In this case, unlike in the previous example, not all terms have the same form
due to the presence of the term proportional to |000〉.

As a last example, we consider the state (52) with 〈x|0〉 = φpol
4,2(x) and 〈x|1〉 =

φpol
3,3(x), a ∈ [0, 1/2]. We denote this state as |W′(a, 1/4, 1/4)〉. It has energy 21,

which is higher than the energy of |W(a, 1/4, 1/4)〉. The Lyapunov exponent h̄ for
this state, plotted in figure 9(b), qualitatively displays the same behavior as in the
case of |W(a, 1/4, 1/4)〉. However, it is interesting to see that for most values of a,
|W(a, 1/4, 1/4)〉 gives higher values of h̄, despite the fact that this state has lower en-
ergy than |W′(a, 1/4, 1/4)〉. So, just as we have already seen before in section 4.2,
increasing the energy of the system does not necessarily lead to a higher amount of
chaos in the Bohmian trajectories. Similar fluctuations as a funtion of the mean energy
where observed in [24].

In summary, not all measures of entanglement lead to a reasonable agreement with
the amount of chaos. For the family of states (50), the three-tangle vanishes whereas the
Bohmian trajectories display variable amount of chaos as a function of the parameters.
Similarly, the geometric measure of entanglement of the states (51) is constant while
the Lyapounov exponent varies as a function of the parameter a. The best agreement is
obtained for the Meyer-Wallach measure of entanglement. However, even this measure
will not always be suitable. For example, for the state φ3p

GHZ (see Eq. (44)), Q(φ3p
GHZ) =

2(1 − |c1|4 − |c2|4), while the Bohmian trajectories are regular for any c1, c2 as shown
in section 6.1. (Actually, also the three-tangle is non-zero in this case: τ3(φ

3p
GHZ) =

4|c1|2|c2|2.)

7 Conclusion

We considered stationary states for a single particle in a 3-d harmonic potential and two
and three entangled particles in a 2-d harmonic potential and 2-d box for which there
is chaotic Bohmian motion. This shows that moving nodes are not necessary for chaos.
Rather the overall complexity of the wave function is important. As such, this provides
strong evidence that Bohmian trajectories are typically chaotic, whether the nodes are
stationary or not.

We also studied how well the amount of chaos, as measured by the average Lyapunov
exponent, correlates with the participation ratio and different measures of entanglement
(three-tangle, geometric measure of entanglement and Meyer-Wallach measure of entan-
glement). We found that these quantities often tend to correlate to the amount of chaos.
However, they do not depend on the form of the basis states used to expand the wave
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function. In addition, the participation ratio does not depend on the relative phases of
the expansion coefficients of the state in the chosen basis. Since the amount of chaos
does depend on these factors, there cannot be full agreement between these measures
and the amount of chaos.
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A Quantifying chaos

Many tools have been developed in order to probe and quantify chaos of a dynamical
system [40]. Here, we explain the methods used in this paper for 3d Bohmian trajecto-
ries. Chaos means that the trajectories are highly sensitive to the initial position [32].
More precisely, there will be chaos if trajectories exponentially diverge within small
times. That is, if for initial positions x0 and x̃0, initially separated by a small distance
d0, we have

|d(t)| ≡ |x(t)− x̃(t)| = d0e
h(x0,x̃0)t, h(x0, x̃0)t� 1, (53)

with h(x0, x̃0) > 0.
The amount of chaos is quantified by the Lyapunov exponents [32], given by

h(x0, e0) = lim
t→∞

(
lim
d0→0

1

t
ln

( |d(t)|
d0

))
, (54)

where d0 is the initial distance between two trajectories starting at x(t0) = x0 and
x̃(t0) = x0 + d0e0 with e0 a unit vector and |d(t)| is the distance between these two
positions as a function of time. While this quantity depends on e0, it can attain at
most three different values (which corresponds to the number of dimensions of the
configuration space). It can be shown that for almost all directions, i.e. almost all
e0, the maximal value is obtained [32].

In order to numerically compute the Lyapunov exponent, we use the procedure [32,
41] illustrated in figure 10. Starting from two initial positions x0 and x̃0 at time t0
separated by a distance d0, we numerically integrate the trajectories up to some time
t0 + ∆t to obtain d(t0 + ∆t) = x̃(t0 + ∆t)− x(t0 + ∆t). Then we repeat the procedure
with initial positions x(t0 + ∆t) and x(t0 + ∆t) + d0e(t0 + ∆t), where e(t0 + ∆t) is the
unit vector in the direction of d(t0 + ∆t). So the separation between these positions is
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rescaled to d0 every ∆t. We repeat this N times. For large total time T = N∆t, the

Figure 10: In order to numerically compute the Lyapunov exponent, the distance be-
tween two initially close trajectories is rescaled every ∆t.

maximal Lyapunov exponent is then in good approximation given by

h(x0, T ) ≈ 1

T

N∑
k=1

ln

( |d(t0 + k∆t)|
d0

)
. (55)

A positive value of h(x0) indicates that the dynamics is (strongly) chaotic, while h(x0) ≤
0 indicates that the trajectories stay close together in the sense that they do not diverge
exponentially.

The Lyapunov exponent defined in (54) quantifies the amount of chaos for particular
trajectories. In order to probe the amount of chaos for an ensemble of trajectories all
with the same wave function, one has to sample the initial position and, for every point,
compute the Lyapunov exponent. Then one can either plot a map of these exponents
or compute the spatial average. The former method may distinguish regions in space
that lead to chaotic motion and regions that do not. However, for simplicity we just
presented averages in this work.

While the discussion was so far restricted to a 3-dimensional system, it straightfor-
wardly generalizes to a many-particle system whose configuration space is n-dimensional.

We benchmarked this method of computation of the Lyapunov exponent by com-
puting h(x0) for the Hénon-Heiles Hamiltonian, as was also done in [41]. We also
computed the Lyapunov exponent of Bohmian trajectories for the systems studied in
references [23,24]. In both cases, our results were in good agreement. In order to assess
the validity of our results, we checked the agreement between the Lyapunov exponents
computed for different values of d0, e0 and ∆t.

There is another way to qualitatively probe the chaotic behavior of a dynamical sys-
tem which consists in computing a Poincaré section, also called a section of surface [32].
The Poincaré section is obtained by considering the points of intersection of an n-d
trajectory x(t) with a hyperplane of dimension n − 1. Regions in the Poincaré section
that display a regular pattern of points indicate a regular part of the trajectory. Regions
where the points are densely and randomly distributed, indicate a chaotic part of the
trajectory.
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B Energy eigenstates for the considered systems

In this appendix, we recall the energy eigenstates and eigenvalues for the potentials we
consider in the paper. In the 2-d case these are the harmonic oscillator potential and
the square box potential. In the 3-d case this is the harmonic oscillator potential.

B.1 2-d systems

B.1.1 Square box potential

For a particle moving in a square box with sides of length one [42], the energy eigenstates
are

φbox
nx,ny

(x, y) = 2 sin(nxπx) sin(nyπy) (56)

with the ni = 1, 2, . . . (i = x, y) and have energy

Enx,ny =
π2

2

(
n2
x + n2

y

)
. (57)

These eigenstates are real and there is some degeneracy. States φn1,n2 and φn2,n1 have
the same energy. Moreover, there may be some accidental degeneracy as for example
for the states φbox

5,5 and φbox
7,1 , or φbox

7,4 and φbox
8,1 .

B.1.2 Harmonic oscillator potential

For the harmonic oscillator [23, 42], the Hamiltonian is given by

Ĥ2d =
1

2
(p̂2x + p̂2y) +

1

2
(x̂2 + ŷ2), (58)

which simply corresponds to the sum of the Hamiltonians of two 1-d harmonic oscillators
with the same frequency in the x and y direction.

The eigenstates of Ĥ2d can be constructed as products of eigenstates of the 1-d
harmonic oscillator and are given by

φ2d
nx,ny

(x, y) =
1√

π2nx+nynx!ny!
e−(x

2+y2)/2Hnx(x)Hny(y), (59)

where Hn(x) are the Hermite polynomials. These states have energy

E2d
nx,ny

= nx + ny + 1, (60)

which is (nx + ny + 1)-fold degenerate. The states φ2d
nx,ny

(x, y) are real.
Alternatively, one can use energy eigenstates that are also eigenstates of the z-

component of angular momentum L̂z [42, 43]. In polar coordinates, the common eigen-

states of Ĥ2d and L̂z are given by

φpol
nr,nl

(r, ϕ) = Nnr,nl
r|nr−nl|e−r

2/2L|nr−nl|
n (r2)ei(nr−nl)ϕ, (61)

24



with

Nnr,nl
=

√
n!

π(n+ |nr − nl|)!
(62)

and with n = min(nl, nr). The energy eigenvalue is

Epol
nr,nl

= nr + nl + 1 (63)

and the L̂z eigenvalue is (nr − nl) with ni = 0, 1, 2, . . . (i = r, l). Again, the energy
Epol
nr,nl

is (nr + nl + 1)-fold degenerate.

B.2 3-d systems

B.2.1 Harmonic oscillator

The Hamiltonian corresponding to a particle in a 3-d isotropic harmonic potential is

Ĥ3d =
1

2
(p̂2x + p̂2y + p̂2z) +

1

2
(x̂2 + ŷ2 + ẑ2), (64)

which corresponds to the sum of the Hamiltonians of three 1-d harmonic oscillators with
the same frequency in the x, y and z direction.

The eigenstates of Ĥ3d are simply product of eigenstate of the 1d harmonic oscilla-
tor [42]

φ3d
nx,ny ,nz

(x, y, z) =
e−(x

2+y2+z2)/2Hnx(x)Hny(y)Hnz(z)√
π2nx+ny+nznx!ny!nz!

(65)

where Hn(x) are the Hermite polynomials. These states have energy

E3d
nx,ny ,nz

= nx + ny + nz +
3

2
. (66)

The energy E3d
nx,ny ,nz

is (n + 1)(n + 2)/2-fold degenerate, with n = nx + ny + nz. The

states φ3d
nx,ny ,nz

(x, y, z) are real.

Alternatively, one can use states that are also eigenstates of L̂2 and L̂z:

φsph
k,l,m(r, θ, ϕ) = Nk,l

(
r√
2

)l
e−r

2/2L
l+1/2
k

(
r2
)
Y m
l (θ, ϕ), (67)

with

Nk,l =

√√
1

4π

22k+2kl+3k!

(2k + 2l + 1)!!
. (68)

The energy is

Esph
k,l = n+

3

2
, (69)

where n = 2k + l. The l quantum number can take the value l = 0, 2, . . . , n − 2, n if n
is even and l = 1, 3, . . . , n− 2, n if n is odd, and m = −l,−l + 1, . . . , l − 1, l [44].
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