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ABSTRACT 

 

The objective of the present contribution is to introduce nonlinear experimental and numerical tools 

and methods applicable to real-life structures. The study is illustrated using the SmallSat spacecraft 

developed by Airbus Defence and Space, which possesses several localized nonlinearities. The 

computation of nonlinear normal modes and bifurcations reveals that the satellite possesses 

complex dynamics including modal interactions, quasiperiodic oscillations and isolated resonances. 

 

1. INTRODUCTION 

 

Recent years have witnessed a great increase in the number of spacecraft measurement campaigns 

where engineers were confronted with the existence of nonlinear behavior. However, current 

practice in industry is still to ignore nonlinearities, arguably because their analysis is regarded as 

impractical. To thoroughly investigate the intrinsic features of real-world structures vibrating in 

nonlinear regimes of motion, the nonlinear analysis framework presented in Fig. 1 is adopted in this 

paper. It builds on several successive steps: 

 

1. Measure 

 

The measurement campaign usually serves two purposes. First, experimental data are used to reveal 

nonlinear behaviors or to confirm their presence. The second objective is to acquire experimental 

data sets for the identification step. Because the response of a nonlinear system does not scale with 

the amplitude of the input, data should be measured at several excitation levels. While data obtained 

at low level may help study the underlying linear model, data at high level usually capture 

nonlinearities more accurately. 

 

2. Identify a nonlinear model 

 

During this step, a nonlinear model of the structure that possesses good predictive capability is 

sought. The nonlinearities are first identified from the experimental data using techniques such as 

the restoring force surface (RFS) method [1], the reverse path method [2] or nonlinear subspace 

identification [3]. The nonlinearities are then introduced in an updated finite element model that 

describes the underlying linear structure. 

 



 
 

Fig. 1. Design cycle of nonlinear engineering structures, from measurements to design. 

 

3. Understand and uncover nonlinear phenomena 

 

The identified model is exploited for understanding the dynamics observed experimentally but also 

for uncovering nonlinear phenomena that could have been missed during the test campaign. Direct 

time integration methods can be used, such as Runge-Kutta or Newmark schemes [4], but we 

propose to exploit the bifurcation and modal analysis methodology developed in [5] for an easier 

and more thorough interpretation. 

 

4. Improve the structural design 

 

From the observations made during the previous step, the structural analyst can precisely quantify 

the impact of nonlinearities. If design modifications are necessary to achieve the requested system 

performance, we propose to utilize bifurcation tracking for the update of selected design 

parameters. 

 



The outlined design methodology is demonstrated in this paper using a spacecraft structure, whose 

description is provided in Section 2. In Section 3, experimental data are analyzed to assess the 

nonlinear behavior of the structure. The identification of a numerical model is then described in 

Section 4. Based on this model and on continuation tools, Sections 5 and 6 study the nonlinear 

normal modes and the bifurcation curves of the system, respectively. In Section 7, bifurcation 

tracking is employed to improve the design of the spacecraft. Finally, the conclusions of the paper 

are drawn in Section 8. 

 

2. DESCRIPTION OF THE SMALLSAT SPACECRAFT 

 

The SmallSat structure was conceived by EADS-Astrium (now Airbus Defence and Space) as a 

low-cost platform for small satellites in low earth orbits [6]. It is a monocoque tube structure which 

is 1.2 m in height and 1 m in width. It is composed of eight flat faces for equipment mounting 

purposes, creating an octagon shape. The spacecraft structure supports a dummy telescope mounted 

on a baseplate through a tripod. A prototype of the spacecraft is represented in Fig. 2(a). 

 

 
 

 

(a) 

 

(b) 

 

Fig. 2. SmallSat spacecraft. (a) Photograph; (b) schematic of the WEMS, the nonlinear vibration 

isolation device. 

 

As depicted in Fig. 2(b), a support bracket connects to one of the eight walls the so-called wheel 

elastomer mounting system (WEMS) which is loaded with an 8-kg dummy inertia wheel. The 

WEMS acts as a mechanical filter which mitigates high-frequency disturbances coming from the 

inertia wheel through the presence of a soft elastomeric interface between its mobile part, i.e., the 

inertia wheel and a supporting metallic cross, and its fixed part, i.e., the bracket and by extension 

the spacecraft. Moreover, the WEMS incorporates eight mechanical stops, covered with a thin layer 

of elastomer to prevent metal-metal impacts, and designed to limit the axial and lateral motions of 

the inertia wheel during launch. The mechanical stops account for 4 localized nonlinear connections 

(NC), with axial and lateral components for each NC, and give rise to the strongly nonlinear 

dynamical phenomena that will be studied in this paper. 

 



3. VIBRATION TEST CAMPAIGN 

 

The experimental data sets analyzed in this section were acquired during a test campaign carried out 

by Airbus Defence and Space, Siemens-LMS and the University of Liège in Stevenage, UK. It 

consisted of a series of swept-sine base excitations applied to the structure for different sweep rates 

and directions. Fig. 3 displays the raw acceleration time histories measured vertically on the 

instrument panel at 0.1 g and 1 g levels. For confidentiality reasons, clearances and displacements 

are given through dimensionless quantities throughout the paper. 

 

 
 

Fig. 3. Raw acceleration time histories measured on the instrumental panel at 0.1 g (in orange) and 

1 g (in black) base excitation levels, obtained for a frequency sweep up. 

 

At 0.1 g, the response at the instrument panel presents a single resonance, located around 56 Hz, 

which is assumed linear in view of the low level of the excitation. At 1 g, this resonance is slightly 

shifted to lower frequencies, but a second resonance appears between 20 and 30 Hz. A particular 

feature of this second resonance is that it cannot be predicted by linear modal analysis, as there 

exists no mode in this frequency range that involves a motion of the instrument panel [7]. Clearly, 

this nonlinear resonance of the instrument panel deserves further investigation, not only because it 

is intriguing but also because it is associated with the greatest response amplitude, at an important 

location due to the presence of the telescope. 

 

4. IDENTIFICATION OF A NONLINEAR MODEL 

 

The identification of the SmallSat’s NCs of the WEMS was performed by applying the RFS method 

to the experimental data. Each NC was modeled using piecewise-linear functions, i.e., a trilinear 

spring in the axial direction (elastomer in traction/compression plus two stops), a bilinear spring in 

the radial direction (elastomer in shear plus one stop) and a linear spring in the third direction 

(elastomer in shear). For illustration, the stiffness curve identified for NC1 is displayed in Fig. 4. A 

clear hardening in this connection can be observed, due to the impacts of the metallic cross with the 

mechanical stops, together with some asymmetry, which is explained by the prestress in the 

elastomers due to gravity. 

 



 
 

Fig. 4. Stiffness curve of NC1 identified with the RFS method (in black) and fitted with a trilinear 

model (in orange). 

 

To build a complete structural model of the satellite, the identified nonlinearities, i.e., the trilinear 

springs in the axial direction and the bilinear springs in the lateral direction, were integrated in a 

detailed finite element model (FEM) of the underlying linear structure comprising 150,000 degrees 

of freedom (DOFs). To avoid numerical issues, C
1
 continuity in the close vicinity of the clearances 

was enforced by regularizing the piecewise-linear functions with third-order Hermite polynomials 

polynomials. 

 

The FEM, shown in Fig. 5, consists of shell elements for the main structure, the metallic cross of 

the WEMS device and the instrument baseplate, and point masses for the inertia wheel and the 

dummy telescope. Proportional damping was considered for the main structure, and the high 

dissipation in the elastomer plots was described using lumped dashpots of coefficients axc  and latc  

for the axial and lateral directions, respectively. As shown in Table 1, the modes of the underlying 

linear structure are densely packed, and the corresponding damping ratios are all beyond 2%. 

 

To achieve tractable calculations, the linear FEM was condensed using the Craig-Bampton 

reduction technique [8]. More specifically, the FEM was reduced to 10 internal modes and 9 nodes, 

namely both sides of each nonlinear connection and the inertia wheel, but excluding DOFs in 

rotation. In total, the reduced-order model hence contains 37 DOFs. The predictions of the resulting 

nonlinear FEM were verified to be in acceptable agreement with experimental observations for the 

purpose of our study [9]. 

 



 

 

 
  

(a) (b) 

 

Fig. 5. FEM of the SmallSat. (a) Modeling of the main structure using shell elements; (b) modeling 

of the WEMS using shell elements, a point mass, linear and nonlinear springs. The linear and 

nonlinear springs are represented with squares and circles, respectively. 

 

 

Mode Natural frequency (Hz) Damping ratio (%) 

   

1 8.06 10.10 

2 9.14 8.03 

3 20.44 11.96 

4 21.60 21.04 

5 22.06 11.55 

6 28.75 6.23 

7 32.49 2.09 

8 34.78 2.23 

9 39.07 2.33 

10 40.78 2.42 

11 45.78 2.61 

12 57.76 3.13 
   

 

Table 1. Linear resonance frequencies and damping ratios computed from the numerical model. 

 

To reproduce, at least qualitatively, the experimental time series, a swept-sine excitation (0.5 

Hz/min) was applied vertically to the inertia wheel, and Newmark’s method used the developed 

model to calculate the structural response to this excitation. A sampling rate of 3000 Hz was 

selected for an accurate representation of the higher harmonics of the fundamental forcing 

frequency. The vertical acceleration of the central node on the instrument panel (P-Z) is shown in 

Fig. 6(a) for two forcing levels. It is clearly seen that the large-amplitude resonance at 29 Hz 

observed for 80 N is nonexistent at 20 N. This behavior is fully consistent with the observations 

made in Fig. 3. 

 

Fig. 6(b) depicts the vertical displacement of the node located at NC1 on the inertia wheel side 

(NC1-Z) for forcing amplitudes of 168 N, 170 N, 172 N and 174 N. If the classical jump in 

amplitude in the vicinity of the resonance can be observed in this figure, a sudden shift of the 

resonance frequency is also noticed when the forcing amplitude increases from 170 N to 172 N. 



This nonlinear phenomenon, which is not often discussed in the literature, deserves deeper 

investigations, as it is associated with a substantial variation of the resonance frequency. Finally, we 

note in all time series of Fig. 6(b) the presence of an unexpected modulation of the responses 

envelope between 30 and 31 Hz. 

 
 

 
 

(a) 

 
 

 
 

(b) 

 

Fig. 6. Time series computed from the numerical model. (a) Swept-sine response in acceleration of 

the instrument panel at P-Z for a forcing amplitude of 20f  N (in orange) and 80f  N (in 

black); (b) swept-sine response in displacement of the inertia wheel at NC1-Z for a forcing 

amplitude 168f  N (in black), 170f  N (in orange), 172f  N (in blue) and 174f  N (in 

red). 



 

If these simulations confirm the good predictive capabilities of the model and highlight new 

phenomena, an explanation of the underlying dynamical mechanisms is yet to be provided. This is 

the objective of Sections 4 and 5, which apply the NNM theory and bifurcation analysis to the 

spacecraft, respectively. 

 

5. UNDERSTANDING NONLINEAR RESONANCES THROUGH MODAL ANALYSIS 

 

Because of the presence of the nonlinearities, the model of the SmallSat has a feature typical of 

nonlinear systems: its oscillations are frequency-energy dependent. In order to assess this 

dependence, the framework of Nonlinear Normal Modes (NNMs) proposed by Vakakis et al. [10], 

and Kerschen et al. [11], is employed. The concept of NNM can be seen as a nonlinear 

generalization of the concept of Linear Normal Mode (LNM) of classical linear vibration theory: a 

NNM is a (nonnecessarily synchronous) periodic motion of the underlying conservative system. In 

order to describe a NNM, one thus has to provide an initial state for the system (displacements and 

velocities) whose free response leads to periodic oscillation of the DOFs with a dominant frequency 

 . Since the system is conservative, the total (kinetic and potential) energy level E  related to its 

state does not evolve during the simulation. 

 

A convenient tool to depict the NNMs, the Frequency-Energy Plot (FEP), consists in representing 

the evolution of the frequency   with respect to the energy level E . This procedure facilitates the 

identification of families of NNMs sharing the same qualitative properties (a global in-phase motion 

for example). The FEP depicted in Fig. 7 shows the sixth family of NNMs of the underlying 

undamped model of the SmallSat, computed with the shooting technique [12]. At low energy levels, 

the metallic cross does not interact with the mechanical stops. Consequently, the frequency of the 

NNMs does not depend on energy, and remains the same as the frequency of the linear mode. For 

larger energy levels, nonlinearities are activated. The frequency of the NNMs increases suddenly 

and rapidly, resulting from the nonsmooth and hardening nature of the nonlinearities. 

 

A closer look on frequencies above 28.8 Hz in Fig. 7 highlights another feature of nonlinear 

systems: the internal resonances (IRs), or modal interactions, between the nonlinear modes. 

Because the sixth NNM branch does not have the same dependence in energy as the other NNM 

branches, in some regions these branches can have commensurate frequencies. For example, in the 

case of a 2:1 resonance, at a given energy a solution along the branch of NNM 6 has a frequency 

which is exactly 2 times smaller than the frequency of another solution along the branch of NNM 

12. Because a solution 2 -periodic is also  -periodic, the two modes interact and the periodic 

solutions resulting from this interaction appears as a small part, termed tongue, emanating from the 

main branch, called backbone, in the FEP. When progressing along the IR, a dynamic coupling 

between the two modes is established together with an energy transfer. Four different internal 

resonances are depicted in Fig. 7, namely 2:1, 26:1, 3:1 and 9:1. 

 

The mode shapes related to NNMs computed in the linear regime and at the extremity of the 2:1 IR 

are also depicted in Fig. 7. The sixth linear mode shape mainly involves vertical motion of the 

inertia wheel. Very interestingly, on the 2:1 IR tongue, the mode shape becomes a mixing between 

the shapes of NNM6 and NNM12 until, at the extremity, the sole second harmonic remains, which 

completes a transition to NNM12. This latter NNM is associated with strong instrument panel 

motion. The nonlinear resonance observed in Fig. 3 and Fig. 6(a) can therefore be attributed to a 2:1 

modal interaction between the sixth and the twelfth modes of the spacecraft. 

 



 
 

Fig. 7. Representation of the sixth NNM on the FEP and of the mode shapes at A and B. 

 

6. UNCOVERING NONLINEAR PHENOMENA THROUGH BIFURCATION ANALYSIS 

 

The present section is dedicated to the study of the response of the satellite to harmonic excitation 

applied to the vertical DOF of the inertia wheel. More specifically, an explanation of the nonlinear 

phenomena observed in Fig. 6(b) is sought. The nonlinear frequency response curves (NFRCs) and 

bifurcation curves presented in this section are computed using a continuation procedure based on 

the harmonic balance formalism described in [5], with 5 harmonics retained.  

 
 Detection of bifurcations 

 

Fig. 8 depicts the system’s NFRCs at NC1-Z for forcing amplitudes of 155f  N. Circle and 

triangle markers denote the fold and Neimark-Sacker (NS) bifurcations, respectively, that are 

detected along the branch. A pair of fold bifurcations is found in the bending segments of the 

resonance peak, which is due to the hardening behavior of the system. A pair of NS bifurcations can 

also be observed, which means that quasiperiodic (QP) solutions may emanate in their vicinity. As a 

verification, the response to a swept-sine excitation with a forcing amplitude of 155 N computed 

with a Newmark time integration scheme is also superposed to the NFRC. Along with the fact that 

the NFRC provide accurate estimations of the displacement envelopes, as expected, one notes that 

the bifurcations are directly related to the nonlinear phenomena observed in Fig. 6(b). On the one 

hand, fold bifurcations accurately point out the location of the amplitude jump; indeed, fold 

bifurcations give rise to a change in stability of the periodic solutions. On the other hand, the 

modulation of the displacement’s envelope near 30 Hz can be explained by the creation of a branch 

of stable QP oscillations at the NS bifurcations. 

 

 

 



 
 

Fig. 8. NFRC and stability analysis for 155f  N. Comparison between the NFRC (in black) and 

the swept-sine response calculated at NC1-Z using time integration (in grey). Circle and triangle 

markers represent fold and NS bifurcations, respectively. The solid and dashed lines represent 

stable and unstable branches, respectively. 

 
 Investigation of the frequency shift 

 

As fold bifurcations are located close to resonance peaks, tracking their evolution with respect to 

other parameters such as the forcing amplitude f  or the axial damping axc  in the elastomer plots 

could reveal the mechanism of the frequency shift shown in Fig. 6(b). To this end, a tracking of the 

fold bifurcations in the codimension-2 forcing frequency-  and amplitude- f  space is performed 

using the technique developed in [5]. Fig. 9(a) represents the fold curve obtained, together with the 

NFRCs of the system for different forcing levels. Fig. 9(b) also shows the projection of this curve in 

the f -amplitude plane. Very interestingly, the fold branch first tracks the bifurcations of the main 

frequency response, and then turns back to reveal isolated response curves (IRCs), or isolas, which 

are rarely observed for such large systems. These IRCs are created around the resonance peak at a 

forcing amplitude 158f N, then expands both in frequency and amplitude, until one reaches a 

forcing amplitude 170f  N at which they merge with this resonance peak. It can be shown that 

the upper part of the IRC is stable; as a direct consequence, the merging of the IRC with the 

resonance peak leads to the sudden increase of the latter in frequency and amplitude, as highlighted 

in Fig. 6(b).  

 

Another fold curve is computed for a configuration of the SmallSat with an axial damping 85axc  

Ns/m slightly higher than its reference value 63axc  Ns/m, and represented in dashed line in Fig. 

9(b). While an increase in damping could be expected to annihilate nonlinear phenomena such as 

IRCs, it only postpones the merging to higher forcing amplitudes and does not alter the size of the 

IRCs. For this system, IRCs are thus robust and deserve a careful investigation from the structural 

engineers.  

 

Together with the explanations about the SmallSat dynamics they provide, these first results show 

that crucial information can be missed when one only performs continuation of periodic solutions. 

Obviously, a tracking in codimension-2 space is necessary in order to reveal IRCs. 
 



 
(a) 

 
 

 
 

(b) 

 

Fig. 9. Tracking of the fold bifurcations of the resonance peak. (a) Three-dimensional space. Branch 

of fold bifurcations (in orange), NFRCs computed at NC1-Z for 155f  N, 160 N, 170 N and 175 

N (in black). Circle markers depict fold bifurcations; (b) two-dimensional projection of the branch 

of fold bifurcations for 63axc  Ns/m (reference, solid line) and 85axc Ns/m (dashed line). 

 

7. NONLINEAR DESIGN THROUGH BIFURCATION ANALYSIS 

 

The QP oscillations observed in Fig. 6(b) are created and eliminated at the first and second NS 

bifurcations, respectively; tracking the evolution of NS bifurcations with respect to a design 

parameter such as the axial damping axc  could then indicate how the design of the SmallSat can be 

modified to avoid such disturbances.  



Fig. 10(a) depicts the evolution of the NS curve in the codimension-2 forcing frequency-  and 

axial damping- axc  space, to which one superimposes NFRCs computed for 63axc  Ns/m, 80 Ns/m 

and 85 Ns/m. Its projection in the axc -amplitude plane is also given in Fig. 10(b). It is interesting to 

note that increasing the axial damping up to a value of 84 Ns/m eliminates the NS bifurcations, 

while it does not significantly affect the resonance peaks. 

 
 

 
(a) 

   

 
 

(b) 

 

Fig. 10. Tracking of the NS bifurcations. (a) Three-dimensional space. Branch of NS bifurcations 

(in blue), NFRCs computed at NC1-Z for 155f  N and for 63axc  Ns/m, 80 Ns/m and 85 Ns/m 

(in black). Triangle markers depict NS bifurcations; (b) two-dimensional projection of the branch of 

NS bifurcations. 



As a verification, Fig. 11 shows the influence of axc  on a displacement response for swept-sine 

excitations. At a forcing amplitude 155f  N and for an axial damping 63axc  Ns/m, the QP 

oscillations represent the part of the response with the largest amplitude. Increasing axc  up to 85 

Ns/m eliminates the NS bifurcations which generate these disturbances, with a small impact on the 

frequency of the resonance. 

 

 
 

Fig. 11. Influence of the damping value axc  on the response at NC1-Z to swept-sine excitation, 

computed for 155f  N and for 63axc  Ns/m (reference, in grey) and 85axc  Ns/m (in black). 

 

8. CONCLUSIONS 

 

In this paper, nonlinear experimental and numerical techniques were applied to the SmallSat 

spacecraft, an industrial and complex model with several localized nonlinearities. Performing 

swept-sine excitation studies on this structure revealed three types of nonlinear phenomena, namely 

modal interactions, quasiperiodic oscillations and frequency/amplitude jumps. A nonlinear 

numerical model of the spacecraft was then exploited not only to understand the measured nonlinear 

regimes of motion, but also to uncover what additional nonlinear phenomena, such as isolated 

response curves, can be encountered in the different regimes of operation of the structure.  

 

Eventually, this process allows the structural analyst to precisely quantify the impact of nonlinearity 

and to decide whether design modifications are necessary to achieve the requested system 

performance.  
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