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Abstract

Nonlinearsystemidentificationis a vastresearchield, todayattractinga greatdealof attentionin the struc-
tural dynamicscommunity. Ten yearsago,an MSSPpaperreviewingthe progressachieveduntil then[1]
concludedthat the identificationof simple continuousstructureswith localisednonlinearitieswas within
reach.The pastdecadewitnessed shift in emphasisaccommodatinghe growingindustrialneedfor afirst
generatiorof tools capableof addressingomplexnonlinearitiesn larger-scalestructures.The objectiveof
the presentpaperis to surveythe key developmentsvhich arosein thefield since2006towardsdeveloping
thesetools

1 Introduction

To addresshedemandor structuresanddeviceswith ever-increasingechnologicakndenvironmentaper-
formancesresearchersg academidary moreandmoreregularlyto takeadvantagef nonlinearphenomena
to outperformlineardesigns For instanceRef.[2] demonstrated newmechanisnior tunablerectification
that usesbifurcationsand chaos. In Ref. [3], a new strategyfor engineeringow-frequencynoiseoscilla-
torswasdevelopedhroughthe couplingof modesn internalresonanceonditions.Anotherexampleis the
cascadef parametriacesonanceproposediy Stracharetal. asa basisfor the developmenbf passivefre-
guencydividers[4]. Nonlinearityis alsoincreasinglyexploitedfor vibrationabsorptior{5, 6, 7] andenergy
harvesting8, 9, 10].

If attemptgto utilise nonlinearityaretodayfrequentin the technicalliterature,currentdesignsandmodels
in industry predominantlyremainlinear. However,nonlinearityis often encounterealuring the testsper-
formedon the first prototypeof a structure. In additionto distortedresonancesand jumps betweenhigh-
andlow-amplituderesponsesjonlinearitycangenerateomplexdynamicphenomenasuchassubharmonic
and superharmonicesonancesnodalinteractions,quasiperiodicityand chaos,with the consequencéhat
essentially-lineamodelsmay fail to predictthe structuralresponsewithin the necessaryevel of reliabil-
ity [11].

Two examplegakenfrom the aerospacesectorand for which nonlinearitieswere detectedduring ground
vibrationtestcampaignsrethe Cassini-Huygenspacecraff12] andthe Airbus A400M aircraft[13]. In the
formerexample distortedfrequencyresponseandjump phenomenarounda critical modewerereported.
Becausehis nonlinearbehaviouwasanimportantconcernasfor theintegrity of the spacecraftadditional
testswere conductedandrevealedthat nonlinearitywas causedby the appearancef gapsin the support
of the Huygensprobe. In thelatter example structuralresonanceshowingsignificantpeakskewnessvere
incorrectlyfitted by alinearmodalanalysissoftware.Differentsource®f nonlinearity,includingelastomeric
mountsandhydraulicactuatorsywereascertainedftercarefulanalysis As evidencedy thesewo examples,
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nonlinear phenomena complicate vibration test campaigns, and usuallyeregoiound investigations for
which nonlinearity must first be identified.

In 1998 and 2000, the developments in nonlinear system identification imsabdynamics conducted until
the end of the 20th century were reviewed by Adams and Allemang [14] amdaf [15], respectively. The
first book on the topic was published a couple of years later [16]. 16 28@reat many existing methods
to tackle nonlinearity detection, characterisation and parameter estimatiosuveeged [1]. The need for
a new review paper arises from the progress made during the last <€) ydach substantially advanced
the available capabilities in the identification of nonlinear mechanical systerasifially, even if there are
still significant challenges ahead of us, the first methods that can potemtifhess large-scale structures
vibrating in strongly nonlinear regimes were developed. In addition, relsees recognised the importance
of quantifying uncertainties in nonlinear system identification, which led taag# of paradigm within the
community.

The paper starts in Section 2 with a discussion on the factors which haea dnie recent progress achieved
in nonlinear system identification in structural dynamics. It is explained thareces in nonlinear theory,
computation and testing have largely contributed to this progress. In Sectoedew of the key develop-
ments which arose during the 2006 — 2016 decade is conducted. The masnoficthis literature survey is
on parameter estimation methods, classified into seven categories as sliggB&te [1], namely linearisa-
tion, time- and frequency-domain methods, time-frequency analysis, modabdse black-box modelling
and numerical model updating. Finally, concluding remarks are drawndtioBet and directions for future
research are suggested.

2 A perspective on the global progress in nonlinear mechanical vi-
brations

Two facts have arguably acted as catalysts for the progress acrassriliveear system identification field.
First, nonlinearity manifestations have been increasingly encounteredjmeers during vibration tests [11].
For instance, the linear modal analysis of two aircraft of the Airbus famdynely the A400M and the
A350XWB, was experimentally confronted with nonlinearities in elastomeritnengounts and hydraulic
actuators [13], in landing gears [17] and in the auxiliary power unit oétifeame tail-cone [18]. Second, the
pressure faced in industry to devise environment-friendly structusegreatly escalated. As an illustration,
the report of thedigh Level Group on Aviation Research in Eurdft®] deems necessary to achieve by 2050
reductions of 75 % in C®emission and 90 % in N©emission per passenger kilometre. This ambitious
goal necessarily entails the design of lighter aircraft structures fegtonew technologiess.g, composite
materials, which inevitably makes nonlinear behaviours more significant [20]

These two facts have motivated researchers in academia to make the fingpttatie apply nonlinear system
identification to real structures. These contributions mostly feaddrdéioc approaches derived to solve
specific nonlinearity modelling problems. As examples, experimental modbiseaf an engine casing
assembly and nonlinear finite element model updating of a complete airctafteermodel were carried
out in Refs. [21] and [22], respectively. The nonlinearities of stnattprototypes of full-scale satellites
were identified in Refs. [23, 24] based on typical qualification test campiéaga. Ref. [25] estimated the
variation of the natural frequencies and damping ratios of an Agustdafdshelicopter as a function of
the response level. The performance of nonlinear devices embeddegddrsteuctures was also examined,
as in Ref. [26], where a nonlinear vibration absorber was used to mitigateigh response levels of an
eleven-ton, nine-storey building subject to blast events.

Adopting a wider perspective, important advances have been achisadthe beginning of the 2000s in
the three facets of the analysis of nonlinear mechanical vibrations, naneelgytitomputation and testing.
We provide in what follows a brief review of this global progress, whiabk blearly contributed to push the
envelope in nonlinear system identification.



NON-LINEARITIES: IDENTIFICATION AND MODELLING

Theory

The theory of nonlinear dynamic systems was developed by pure mathensbiagsed on the seminal work
of Poincaé. A couple of decades ago, this theory spread across the enginegdriganks to a series of ref-
erence monographs, thoroughly characterising the different pheteoamal attractors nonlinear mechanical
systems can exhibit. Nayfeh and Mook [27] applied perturbation methodsdyg sonlinear phenomena in
single- and multi-degree-of-freedom systems. Guckenheimer and Ha@8adopted a different, geomet-
ric viewpoint, appearing as an ideal companion to the perturbation appm@@d Kuznetsov [29] published a
complete treatise on bifurcations. It is only recently that theories desdriltiedre have been fully embraced
by the structural dynamics community. For instance, for aircraft groyndmiics in Fig. 1 [30], bifurcation
theory provides valuable insight into the overall behaviour and complekityeosystem. Another example
is isolated response curves, illustrated in Fig. 2 [31], which have red@icreasing attention during the past
few years.
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Figure 1: Single-aisle aircraft bifurcation diagram [30]. Courtesy eifri8l Krauskopf, University of Auck-
land, Auckland, New Zealand.

In view of the importance of modal analysis in structural dynamics, attemptsnplete the nonlinear nor-
mal mode (NNM) theory, put forward by Rosenberg [32], Vakakid @31 Shaw and Pierre [34], have also
been made since the 2000s. Major developments include the concept dégaraplinear modes based on
a generalized Fourier series, the energy balance criterion linking NMBIs@anlinear frequency responses,
and the nonlinear phase lag quadrature criterion which indicates wheNinvibrates in isolation.

Computation

In the era of computational mechanics, commercial finite element softwareffeatively integrate in time
the governing equations of motion of nonlinear structures using,the Newmark’s method. However, the
resulting transient time series convey little information about the underlyingtstal behaviour and do not
provide a global picture of the possible regimes of motion.

By revealing competing attractors together with their nature, bifurcation sisadjfers a much better un-
derstanding of the dynamics. Two popular software, MATCONT [35] AbdO [36], have enriched the
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Figure 2: Isolated response curve situated inside the nonlinear fregresponse [31]. Courtesy of Gianluca
Gatti, University of Calabria, Rende, Italy.

nonlinear structural dynamicist’s toolbox, allowing a shift in emphasis froeratialytical analysis of low-

dimensional systems to the numerical analysis of moderately-complex systemtiserFefforts have been
undertaken to progress towards large-scale and real-world strsict8pecifically, tailored harmonic bal-
ance, shooting and collocation algorithms have been proposed foruglgprcomputing intrinsic dynamic

features, in particular NNMs and nonlinear frequency responsds.id Hlustrated in Figs. 3 and 4, where
the dynamics of a vibro-impact system [37] and of a compressor bladerf&pectively, is studied using
the harmonic balance method. Both applications gave rise to large computgtiobms. In the former

example, 200 harmonics were utilised to model accurately the nonsmooth oftheesystem, whereas, in
the latter example, NNMs were calculated from a detailed finite element model.

Recent computational developments concern the calculation of branthaagperiodic motion [39], the
effective computation of basins of attraction [40, 41], and the trackirgfofcations [42]. Noteworthy are
also the advances in the area of nonlinear model reduction, with the Gsatoa of the Craig-Bampton
substructuring technique to nonlinear systems [43, 44].
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Figure 3: Phase diagram of a vibro-impact system given by the harmafande method for different
numbers of harmonic®/, (blue: N, = 20; green: N, = 50; red: N, = 200) [37]. Courtesy of Bruno
Cochelin, Ecole Centrale de Marseille, Marseille, France.
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Figure 4: Compressor blade with friction [38]. (a) Finite element model &fiorched shape; (b) changes in
the natural frequency and modal damping depending on modal amplitudiéépent numbers of harmonics
Ny, (circles: N, = 1; squares:N, = 3; triangles: N;, = 5; diamonds: N, = 7). Courtesy of Fabrice
Thouverez, Ecole Centrale de Lyon, Lyon, France.
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Testing

Nonlinear testing demands more data and efforts than linear testipgthe measurement sampling rate
should be significantly increased to account for harmonics. Experimesgtadige had increasingly recourse
to full-field measurement methodologiesd, scanning laser vibrometry and digital image correlation) as an
aid to rapidly and very accurately capture operational deformation sleaqueidentify resonances exhibiting
nonlinear distortions [21, 45].

However, the challenges brought by nonlinear testing go largely beyatadacquisition issues and instru-
mentation. Indeed, since solutions of nonlinear systems are nonuniqueagnile unstable, new method-
ologies that can experimentally characterise competing attractrgeriodic, quasiperiodic and chaotic
attractors, and that can cope with stability changes should be deviseds heghect, the stochastic inter-
rogation method, proposed in Ref. [46], offers a systematic approattapobasins of attraction [47, 48],
as depicted in Fig. 6. Experimental continuation, the physical realisatiomrogrical continuation, ele-
gantly addresses instability issues. It exploits feedback control stratiegstabilise the measured response,
enabling both stable and unstable branches to be measured, as illustratpdbifB].

251 40 35 . — 2225 |
o 45 — = 20
§ - 15
L <10 4
5 2 50
E
)
< 15t .
g
g 5
Q
[~ 1_55 i
7 75 8 8.5 9

Forcing Frequency [Hz]

Figure 5: Experimental bifurcation diagram of an impact oscillator [49] witbrtinuous measure of stabil-
ity plotted in grey-scale. Dark tones denote a stable state; lighter tones @enatstable state. Courtesy of
Jon-Juel Thomsen, Danmarks Tekniske Universitet, Lyngby, Denmark
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Figure 6: Initial condition plots for a frequency range during the transititmcross-well motion [47]. Left
column: numerical simulation from a regular grid; centre column: numericallylabeairesults mimicking
the experimental stochastic interrogation; right column: experimental datateSy of Lawrence N. Virgin,

Duke University, Durham, NC, USA.
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3 Review of the literature on nonlinear system identification in struc-
tural dynamics over the past 10 years

It was proposed in Ref. [1] to regard the identification of nonlinear tiratmodels as a progression through
three steps, hamely detection, characterisation and parameter estimatiottinas in Fig. 7. An important
change of paradigm has blossomed over the past few years in the tipirdf$hes process, as researchers
have progressively recognised the importance of quantifying unceetin nonlinear system identification.
This has given rise to methods estimating parameters togetherwgticonfidence bounds or distributions.
In this context, the Bayesian framework put forward by Jim Beck anddiialmrators [50, 51] is currently
drawing noticeable attention in the community [52, 53, 54]. This class of methagpesaling since it can
facilitate the characterisation step by finding the optimum model within a set of etorgpmodel struc-
tures [55]. Other approaches, including nonparametric probabilistj@fbnonprobabilistic [57] methods,
have also been considered for uncertainty analysis of nonlinear nieahsystems.

1. Detection:ls there?

Ascertain if nonlinearity exists in the structural behaviaug, yes.

2. CharacterisationtVhere? What? How?

(a) Localise the nonlinearitg.g, at the joint;
(b) determine the type of nonlinearit,g, Coulomb friction;
(c) select the functional form of the nonlinearigyg, g(q, ¢) = ¢ signq).

3. Parameter estimatiohtow much?

Calculate the coefficients of the nonlinearity model and quantify their uncgsta.g, in a prob-
abilistic senseg ~ N (5.47,1).

Figure 7: Identification process for nonlinear structural models.

The aim of the present section is to review the key developments whichduteg the 2006 — 2016 decade
towards applying nonlinear system identification to complex structures. Tirefowus of this literature
survey is on parameter estimation methods. Their classification into seveonreadegamely linearisation,
time- and frequency-domain methods, time-frequency analysis, modal rsethladk-box modelling and
numerical model updating, is adopted following Ref. [1]. The subjectoofinear system identification in
structural dynamics is vast, and we stress that this paper is inevitably bogadls those areas which the
authors are most familiar with, and this of course means those areas whahttives and colleagues have
conducted research in.

3.1 Linearisation methods

There are, at least, two good reasons not to linearise the behaviomoaofiaear vibrating structure around
its operating point. First, linearised models are essentially valid for a unidus# s&citation parameters,
preventing them from being interpolataa. used to predict the structural response at lower forcing levels.
Second, they fail to predict intrinsically nonlinear phenomena, includimmbaics, jumps or modal inter-
actions. Yet, using linear system identification to model nonlinear structaepdrsisted to be a popular
solution. The reason for this is probably the maturity of linear techniquesg8860, 61], and the fact
that most standardised design and certification procedures followedustigdstill rely on linear structural
models.e.qg, flutter prediction of aircraft [17] or load analysis of coupled laune$agellite systems [62].
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In the case of random vibrations, the contributions of Schoukens amedeers provide a solid theoretical
framework to derive the best possible linear model of a nonlinear systeneast-squares optimality sense,
termed best linear approximation (BLA) [63]. The calculation of the BLA igqrened in the frequency
domain, and most frequently takes advantage of periodic excitations,Himmungtationary signals can also
be addressed [64]. An appealing asset of this approach is that thef@mlinear distortions which is not
captured by the linear model can be assessed. Using a carefully-dedettd# input frequencies, distortions
originating from odd and even nonlinearities can also be distinguishedBIA®f a wet-clutch test rig was
analysed in Ref. [65]. Fig. 8 shows another application to an F-16 figiitenaft [66], where the BLA is
represented in black. The levels of odd and even nonlinearities plotted anceblue, respectively, are seen
to be substantially larger than the noise level displayed in green. We renadukrtbther frequency-domain
linearisation method applicable to random data was introduced in 2009 byg&ataal. [67]. In this latter
paper, the nonlinear dynamics of break squeal was studied by seekimgpamodel which synthesises at
best the measured power spectral density of the nonlinear system output.
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Figure 8: Best linear approximation (BLA) of an F-16 fighter aircraftifiack), odd (in red) and even (in
blue) nonlinear distortions, and noise level (in green) [66]. Courtédplman Schoukens, Vrije Universiteit
Brussel, Brussels, Belgium.

In the case of harmonic vibrations, a classical linearisation methodologyst®in assuming that the system
of interest only responds at the excitation frequency. This single-coemdarmonic balance simplifica-
tion procedure is referred to as the describing function method in the literg@8}, and has enjoyed some
progress since 2006 [69, 70]. Recently, Wang followed a similar ré@gada propose the equivalent dy-
namic stiffness mapping technique [71], and tackled the experimental idatitifiof a metal mesh damper
element.

Finally, some authors have considered the use of time-varying models agsktiear tools, suggesting
that, by analysing nonlinear vibrations over small portions of time, linear systentification may reason-
ably well apply. Sracic and Allen pursued that idea by fitting linear time-perioadels to transient data
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recorded in response to slight perturbations superposed to sustainedi@excitations [72]. The method
was originally demonstrated using single-degree-of-freedom systeitrits bpplication to multiple degrees
of freedom followed in 2014 [73]. In Ref. [74], linear subspace tf@ation was exploited to represent
the time-varying modal properties of various nonlinear systems throughsamible of linear state-space
models. In particular, the behaviour of a seven-storey building subjabrée historical earthquake base
excitations was studied. Fig. 9 shows the time evolution of the first linearigacah&requency of the struc-
ture (left column) and of a measure of its global stiffness (right columie Jevere decrease in the two
guantities over time resulting from damaged structural members is clearly visible.
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Figure 9: First linearised natural frequency (left column) and glotifthess measure (right column) of a
seven-storey building subject to three historical earthquake basetenwtfir4]. Circle and point markers
correspond to divisions of the measured time histories into windows of 1 ante2pectively. Courtesy of
Babak Moaveni, Tufts University, Medford, MA, USA.
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3.2 Time-domain methods

The time-domain identification of nonlinear structural models exclusively relesrocessing time series,
e.g, impedance head and accelerometer raw records. In 2006, a subdiadtieof literature concern-
ing time-domain identification was surveyed [1]. Three major identification metheae distinguished,
namely restoring force surface (RFS) analysis, nonlinear autosdgeasioving average with exogenous
inputs (NARMAX) modelling, and Hilbert transform-based data decompos{poogress in this latter re-
search direction is reviewed in Section 3.4). Recent publications identiNARMAX models are mostly
due to Worden and co-workers [75, 76, 77, 78]. In general termsadmitted that applying the NARMAX
framework to large-scale structures is a difficult endeavour, as érsuifom a rapid explosion in the number
of parameters, even in the case of systems with reasonable dimension.

The RFS method, which constitutes one of the earliest identification methodo[@§i has continued to
attract attention during the past decade. Parameter estimation based ortimeeRiod is commonly re-
stricted to systems with a few degrees of freedom since it consists in the fitting of Newton’s second
law. Nevertheless, the method can still be exploited to visualise qualitativelinaanrestoring forces in
complex structures [80]. The simplicity of the RFS method and its intuitive outcariaicly explain its
success in the community. Applications of the RFS method to the identification fi@anstiffness mech-
anisms have been numerous. In Ref. [81], the prediction capabilitiesmilanear restoring force model of
two elastomer specimens were compared to rheological equations basadtmmicompression and shear
test data. The hardening-softening behaviour of an elastomagnetensisp was studied in Ref. [82], and
hardening, smooth nonlinearities in a leaf-spring-based tuned mass dangpiera robot arm were identi-
fied in Refs. [83] and [84], respectively. Piecewise characterist@®wlso estimated experimentally in a
micro-beam system [85] and a satellite structural prototype [23].

Complex damping nonlinearities have equally been addressed in the tedheareéire. For example, the
RFS and the nonlinear identification through feedback of the outputs (Nhf&€dhods were assessed in
the identification of an automotive damper [86]. The hysteresis loops otia-Béen oscillator undergoing a
stiffness degradation over time and of a shear building structure equipfied shape memory alloy damper
were characterised in Refs. [87] and [88], respectively. Hystedymamics in a frictional contact boundary
support was also analysed by Ahmadian and co-authors [89], adrs&ém 10 (a), where an hysteretic
restoring force calculated experimentally (in red) is compared with the pi@diof a Valanis model (in
blue). Finally, attention has been given to the identification of combined eldis8@pative nonlinearities,
e.g, in Refs. [80, 90, 91]. In Ref. [80], discontinuous softening stémand Coulomb friction were shown
to affect the mounting interface of a payload in an F-16 fighter. Fig. 1@¢b)cts the identified restoring
force versus the relative velocity measured across the interface jspidyd a Coulomb-type of behaviour,
including hysteresis at low velocity and stiction for negative force values.

Nonlinear subspace methods, originally proposed in the control literé@tayere first applied to mechan-
ical systems by Marchesiello and Garibaldi in 2008 [93]. The time-domaitinear subspace identification
(TNSI) method they introduced represents a major advance acrossltheldSI is a nonlinear generali-
sation of the classical time-domain linear subspace identification algorithmsl{94Jies on the feedback
interpretation of nonlinear structural dynamics discussed earlier by Adach#\llemang [95, 96], which

views nonlinearities as additional forces applied to the underlying lineaststeu The implementation of
the TNSI method builds on robust numerical tools, such as the QR and simglila decompositions, yield-
ing superior accuracy compared to competing approaches like the NBj@u@ the conditioned reverse
path (CRP) [97] techniques.

Demonstration of the TNSI method on academic structures possessing smaéoittmsmooth nonlinearities
was achieved in Refs. [93] and [98], respectively. The identificatfemammplete spacecraft structure based
on numerical data was also discussed in Ref. [99], where the confcgtatbdisation diagram was extended
to nonlinear system identification. In a recent effort, the influence ophgsical poles on the TNSI method
was analysed [100]. By interpreting nonlinear coefficients as the ratwwo-called extended frequency
response functions and performing truncated modal expansions ofiisrator and denominator, nonphys-
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Figure 10: Restoring force surface (RFS) method applied to complex dgmpiiinearities. (a) Hysteretic
restoring force in a frictional contact boundary support calculatpamentally using the RFS method (in
red) and corresponding prediction of a Valanis model (in blue) [89]urtésy of Hamid Ahmadian, Iran
University of Science and Technology, Tehran, Iran. (b) Coulonple-testoring force, including hysteresis
at low velocity and stiction for negative force values, identified in the mountitegface of a payload in an
F-16 fighter [80].
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ical modes were successfully eliminated. Fig. 11 shows the nonlinear stibilideagram computed in the
identification of an experimental multi-storey structure affected by a cubitimearity. Nonphysical poles,

which appear in black, are discriminated from physical structural mowesgng as stabilised columns of
poles.

The TNSI method is, to date, a very promising approach. Assuming anateairaracterisation of non-
linear behaviour, it can potentially tackle complex structures involving multiplatéhand outputs, strong
nonlinearities, and closely-spaced and highly-damped modes, as ndipgniogen in Ref. [99].
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Figure 11: Nonlinear stabilisation diagram computed using the time-domain nanfinbspace identifica-
tion (TNSI) method, where nonphysical poles (in black) are discriminated physical structural modes
emerging as stabilised columns (in colour) [100]. Courtesy of StefanalMarello, Politecnico di Torino,
Turin, Italy.
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3.3 Frequency-domain methods

Data processed in frequency-domain identification are more varied thae tinte domain, and can take
the form of Fourier spectra, frequency response and transmissibifitfifuns, or power spectral densities.
In Ref. [1], two methods were pointed out as promising frequency-doaggnoaches, namely the nonlin-
ear identification through feedback of the outputs (NIFO) [96] and tinelitioned reverse path (CRP) [97]
methods. In Ref. [101], a modifieH, estimator of frequency response functions (FRFs) was introduced
to enhance the performance of NIFO in the presence of process asdin@ent noise. Estimates of un-
derlying linear and nonlinear parameters of different simple numerictémsgswere shown to benefit from
this improvedH, algorithm. Parameter estimation using the NIFO method in a reduced-order \spac
also attempted in Ref. [102] and demonstrated experimentally on a clampededdraam structure. Re-
cent developments in reverse path identification include the possibility to usaditioned spectra in the
single-input case [103], and to locate nonlinear degrees of freetidfn 105]. Besides the NIFO and reverse
path techniques, the harmonic balance method was also utilised for nonlystamsdentification based on
multiharmonic [106] and multiple test [107] data.

The use of functional series, and in particular of the Volterra serie®][19another traditional way of ad-
dressing system identification in the frequency domain. The multi-dimensienatls of Volterra series are
the nonlinear generalisation of the classical impulse response of lingansysand the Fourier transform of
the kernels are most often referred to as higher-order FRFs (HQFrREgneralised FRFs (GFRFs). The
typical hindrance to Volterra identification of high-dimensional systems is¢hghigh number of parame-
ters to be estimated. In Ref. [109], orthogonalised Volterra seriesiatsuvith Kautz filters were exploited
to moderate this number in the numerical identification of a beam. HOFRFs vignates! in Ref. [110] in
the special case of a bilinear nonlinearity representing a breathing. cvaltkerra series have also formed
the basis of the new concept of nonlinear output frequency resfionstons (NOFRFs) developed during
the last 10 years or so by Billings and co-workers [111, 112]. NOHRE&sd application in linear [113]
and nonlinear [114] system identification, though their complete potentiatdavidentifying real structures
has not been fully revealed yet. We finally mention the introduction in 2010nofiléi-degree-of-freedom
extension [115] of the associated linear equations models [116], wiealekated to Volterra operators.

A frequency-domain counterpart to the time-domain nonlinear subspacickion (TNSI) method dis-
cussed in Section 3.2 was proposed in 2013 in Ref. [117]. The fregrdmmain nonlinear subspace iden-
tification (FNSI) method generalises existing linear frequency-domainpagbstechniques [118, 119] to
nonlinear mechanical systems. It possesses the same foundationslasd. & feedback interpretation of
nonlinear structural dynamics and the use of linear algebra decomposRimtessing data in the frequency
domain offers the possibility to focus on specific frequency ranges. dilig/s to substantially reduce
the computational burden involved in the identification and, in turn, to calcutaierately a great number
of nonlinear parameters. The FNSI method was applied to simple numericakpedmental systems in
Ref. [117] and to a numerical benchmark beam structure in Ref. [12A]academic experimental solar
panel assembly featuring nonlinear bolted connections and impacts wasldiessed in Ref. [121], where
cubic splines were utilised as nonlinear basis functions. The TNSI and fE®ods were compared in
the identification of a spacecraft structure in Ref. [99], both in termstihation accuracy and parameter
dispersion.

3.4 Time-frequency methods

Because nonlinear oscillations are inherently frequency-energyndepg time-frequency transformations
generally offer useful insight into the dynamics of nonlinear systems. &ggdiblished methods, such as
the wavelet and Hilbert transforms, have continued to be used duringsthedaears as nonlinear system
identification tools, and, in particular, in the identification of backbone qjrae in Refs. [122, 123, 124,
125]. Moreover, two new techniques for the decomposition of multicompaignals emerged during this
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period, namely the empirical mode decomposition (EMD) [126] and the Hilberatiim decomposition
(HVD) [127, 128].

The basic idea of EMD is to decompose the original signal into a sum of elelhsentponents, the intrinsic
mode functions (IMFs). The extraction process, termed sifting procekss on a spline approximation
of the lower and upper envelopes of the signal based on its extrema. dimdrgable to the Hilbert trans-
form, each IMF must satisfy two propertiess. the number of extrema and zero-crossings can differ by
no more than one, and, at any point, the mean value of the envelopesddefiriee local maxima and
minima should be zero. It follows that an IMF is a monochromatic signal, the amglaand frequency of
which can be modulated. Taken collectively, the Hilbert spectra of the I§ifesa complete characterisa-
tion of a multicomponent signal in terms of amplitudes and instantaneous fregsieAdirst effort to gain
fundamental understanding of EMD in nonlinear structural dynamics wae maRefs. [129, 130]. More
specifically, a one-to-one relationship between the analytically-realisedfielev dynamics of a nonlinear
system and the IMFs derived from measured time series was demonsBatastl on this theoretical link,
the slow-flow model identification method, a linear-in-the-parameters idetitiiicapproach applicable to
multi-degree-of-freedom nonlinear systems, was developed [129Hisksissed in Section 3.5, the corre-
spondence between theoretical and empirical slow flow analyses wlasrfutilised for modal identification
using the concept of intrinsic modal oscillators (IMOs). EMD was also usednjunction with perturbation
analysis for nonlinear system identification in Ref. [131].

Although similar in spirit to EMD, the HVD method is a distinct approach towardsdgosing a vibra-
tion signal into a series of monocomponents. HVD is based on the assumptbiisdtoriginal signal is
formed of a superposition of quasiharmonic functions, and that the graself each vibration component
differ. Ref. [127] proved that the instantaneous frequency of a mufjimment signal can be split into a
slowly-varying part related to the instantaneous frequency of the mompmoent with the greatest ampli-
tude, and a rapidly-varying asymmetric part. Thus, the frequency ofdhengint monocomponent can be
directly estimated through low-pass filtering of the instantaneous frequeritye complete signal. The
other monocomponents can be extracted by recursively applying thisgsr¢e the residual signal. As an
illustration, the HVD analysis of the free response of a Duffing oscillatonasve in Fig. 12. The three ex-
tracted components represent the fundamental, third and fifth harmoniooentp. The HVD method was
exploited for the identification of nonlinear systems with two degrees of émead Ref. [132], but has not
yet been applied to larger-scale structures. It found other applicatiatgictural dynamics.g, in the de-
sign of nonlinear vibration absorbers [133] and the analysis of lin€][dAnd nonlinear [135] time-varying
systems.

The EMD and HVD methods possess their own limitations and should be usedredhagre [136, 137],
but they nonetheless represent important additions to the nonlinear stfutytmamicist’s toolbox.
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Figure 12: First three harmonic components of the free response offiadooscillator as decomposed by
the Hilbert vibration decomposition (HVD) method [127]. Courtesy of Midiadman, Technion — Israel
Institute of Technology, Haifa, Israel.

3.5 Modal methods

Modal featuresi.e. natural frequencies, damping ratios and mode shapes, form the batissital linear
design strategies in engineering dynamics. They provide an effectivietaiitive way to study the structural
behaviour around resonances, which is one of the prime limiting factorsrastégrity and certification.
Experimental modal analysis of linear structures is now certainly maturé. [C88versely, nonlinear modal
identification is a quite recent research field, as confirmed by the verselated methods surveyed in 2006
in Ref. [1]. Itis today a very active area of investigation, which has vgiied important progress during
the last 10 years. This progress has been accompanied by the eneasfeficient algorithms to carry out
theoretical nonlinear modal analysis, as reviewed in Ref. [139]. Thebowation of these experimental and
numerical efforts has paved the way for innovative model updating metlasdliscussed in Section 3.7.

The code for nonlinear identification from measured response to vibr&I@NCERTO), proposed in
Ref. [25], identifies an isolated nonlinear resonance based on steppedata. Since CONCERTO relies
on a single-harmonic assumption, it adopts a linearised view of nonlinear ndeaification, and yields
equivalent natural frequencies and damping ratios which vary with thétadgof motion. The method was
applied to an helicopter in Ref. [25] and to anti-vibration mounts using medsumesmissibility functions
in Ref. [140]. Another single-mode method, closely related to CONCERT3,pwesented in Ref. [24]. In-
spired by the notching procedures applied in space industry [62], ithoridhe idea of keeping the response
amplitude constant in the vicinity of a nonlinear resonance to compute equivadelal properties function
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of the excitation level.

Unlike CONCERTO, the nonlinear resonant decay method (NLRDM) cafome multiple-mode identi-
fication by introducing nonlinear coupling terms in an otherwise linear modalesmodel of the tested
structure [141]. This method was recognised as one of the most promizitigear modal identification
approaches in the early 2000s [1]. If no further developments of thwdtieal foundations of NLRDM
were brought during the last 10 years, the method was successfullatealidsing structures of increasing
complexity, namely a two-degree-of-freedom system with freeplay [B4&hgle-bay panel structure [143],
a wing with two stores connected by means of nonlinear pylons [144],ragjgically nonlinear joined-wing
structure [145] and a complete transport aircraft [146].

The solid framework offered by the theory of nonlinear normal modesMBIN32, 33, 34] has motivated
throughout the last 10 years the development of rigorous nonlinearl idedgdification methodologies. Lin-
ear phase resonance testing, which consists in exciting the modes oftintexed a time using a multipoint,
monoharmonic forcing at the corresponding natural frequency [Iva4 first extended to nonlinear systems
in Ref. [148] following a two-step procedure. During the first step, a moilip multiharmonic excitation is
applied to isolate an individual NNM with the aid of a nonlinear phase lag gixagr criterion [148] and of

a nonlinear mode indicator function [149]. In particular, the quadrattrerion ascertains that a nonlinear
structure vibrates according to one of its underlying conservative NilBi&ery harmonic of the measured
excitations and responses are 90 degree phase-lagged. In a s&mpnthe excitation is turned off, and
the complete frequency-energy dependence of the targeted mode @eaxktrg processing free-decay data.
Fig. 13 illustrates the experimental identification of the first NNM of a nonlifseam structure at five dif-
ferent forcing levels [149]. Modal curves are represented in Bdal in a two-dimensional space spanned
by two acceleration signals. The associated modal shapes discretisvdransgeasurement locations along
the beam are plotted in Fig. 13 (b). The highest excitation level in the two platssponds to a modification
of the natural frequency from around 30 to 40 Hz. Applications of nelirpphase resonance testing to other
moderately complex structures were recently reported in the technical Ireratuhe case of a steel frame
in Ref. [150], of a circular perforated plate in Refs. [45, 151, 182 of a sliding mass with transverse
springs and dry friction in Ref. [153].

An alternative to nonlinear phase resonance, which is potentially morstradbehanges of stability and
bifurcations, is discussed in Ref. [154]. This paper exploited a cobtrekéd continuation scheme to trace
out the NNM backbone of the same sliding-mass setup as in Ref. [153]h&tepal. also performed
the tracking of nonlinear modal parameters during free-decay resp$i’s5]. To this end, they estimated
discrete-time nonlinear state-space models by combining Bayesian smoaltexpattation maximisation
algorithms. Other valuable additions to the nonlinear phase resonanaeaelp@re the energy balance
technique developed in Ref. [156], which allows to calculate the forcingiaudp necessary to excite an
NNM at a given frequency, and the concept of phase-locked loopWwed from the control literature [157].
Finally, we note that exciting nonlinear resonances opens interestinggetssn nonlinear boundary identi-
fication [158] and damage detection [159, 160, 161].

The simultaneous identification of multiple NNMs under broadband forcindivgsttempted in Ref. [162],
providing a generalisation of linear phase separation techniques [Bolonlinear systems. The proposed
methodology integrates nonlinear system identification and numerical camimudlore specifically, ac-
quired input and output data are first processed to derive an expeahstate-space model of the tested
structure. This state-space model is next converted into a modal-spaet fnroma which NNMs are com-
puted using shooting and pseudo-arclength continuation. Ref. [L&}yaed this nonlinear phase separa-
tion technique to nonlinear phase resonance testing [148] based onicalmenlinear beam data. Clearly,
multimodal nonlinear identification enables the experimentalist to save measuitemmesnwhich, in view of
the current pressure to accelerate testing campaigns, representieesigadvantage.

Multimodal nonlinear identification has also been studied in a number of pgetsgyh the direct decompo-
sition of experimental measurements into a reduced set of low-dimensiomasingystem features. These
features do not generally correspond to NNMs because of the abséstiperposition principle in non-
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linear dynamics, though they constitute some approximations of them. Thetbt@nipese approaches
is that they require no characterisation of the observed nonlinearitiethe Ipublications of Vakakis and
co-workers, the so-called intrinsic modal oscillators (IMOs) are compoyeabplying the empirical mode
decomposition (EMD) to data [164]. These oscillators synthesise bysogigon the measured time series
over different time scales, and may account for mode interactions via treing terms. The suppression
of aeroelastic instabilities was addressed in Ref. [165] using this agprBaam systems exhibiting friction
and vibro-impacts were also successfully identified in Refs. [166] a@d][tespectively. Fig. 14 displays
the first ten intrinsic mode functions (IMFs) resulting from applying EMD toederation data measured on
a vibro-impact beam [167]. Impact locations are specified using vedastied lines and the frequencies of
the different IMFs are obtained by analysing wavelet transform plots.

EMD was similarly exploited by Poon and Chang to numerically identify a twoeakegf-freedom shear-
beam building system [168]. A comparison between EMD and the zeraryltgne fast Fourier transform

is to be found in Ref. [169]. Other contributions to multimodal nonlinear ideatific by means of advanced
signal processing tools include the use of the Hilbert-Huang transfombioed with a conjugate-pair de-
composition [170], the so-called smooth decomposition [171], and the slidindow proper orthogonal

decomposition (POD) [172]. An attempt to generalise the POD towards nanlinedal analysis is finally

reported in Ref. [173], where the transformation from data to approximatid NNMs is realised in a

machine learning context.

3.6 Black-box methods

Solving a nonlinear system identification problem essentially involves selextimgdel structure based on
available prior knowledge, and processing data to estimate its parameteessikg prior knowledge.e.
performing nonlinearity characterisation, may however prove difficult inyr@rcumstances owing to the
highly individualistic nature of real nonlinearities. For instance, common jbieteeen substructures most
often feature very complex physics, including heterogeneous stick-afipvour at the microscopic level,
hysteresis, Hertzian contact and local concentrations of stresseaing. This renders virtually impossible
the specification of an accurate, physically-motivated model in terms of s@mpi nonlinear stiffness and
damping lumped elements. Black-box models, which incorporate no priorl&dges but take advantage of
a sufficiently rich and flexible mathematical structure to capture all relevaydigs in measured data, may
prove useful in these situations [174]. Typical black-box identificatigpreaches comprise nonlinear au-
toregressive moving average with exogenous inputs (NARMAX) modasydgsed in Section 3.2), artificial
neural networks, fuzzy networks, statistical learning theory andekemathods. The tutorial on natural com-
puting in Ref. [175] provides an overview of most of these differemtrapches together with an exhaustive
list of, or links to, useful references in the field.

Over the past decade, neural network-based identification has dlearined the most popular black-box
modelling technique within the structural dynamics community. Combined use oflim@ar autoregressive
with exogenous inputs (NARX) model and a neural network to identify géiocadly nonlinear steel plates
was discussed in Ref. [176]. Ref. [177] proposed an efficientegiyafor selecting the control points, or
knots, in B-spline neural network identification. Initialisation issues of aleugtworks were also addressed
by Pei and Masri in Refs. [178, 179]. In terms of applications, neugdlorks have been mostly exploited
to address dissipative systems. In Ref. [90], an experimental, tweeedgiffreedom joint element was iden-
tified using a two-layer feedforward network. A neural network-bamatput error model of a continuously
variable, electrohydraulic semi-active damper for a passenger cattesiasd in Ref. [180]. Magnetorheo-
logical dampers were also studied using feedforward and recureénbrks in Ref. [181] and using radial
basis functions networks in Ref. [182]. Finally, we note the identificatioaro&xperimental turbojet en-
gine carried out in Ref. [183] considering fuel flow rate and rotatispaled as input and output quantities,
respectively.

Recently, a new black-box model structure based on a state-spaesarfation of measured data was pro-
posed [184]. It builds on nonlinear model terms constructed as a multgridynomial combination of
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Figure 14: First ten intrinsic mode functions (IMFs) resulting from applyirvgempirical mode decomposi-
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vertical dashed lines and the frequencies of the different IMFs aegn&al by analysing wavelet transform
plots. Courtesy of Alexander F. Vakakis, University of lllinois at UrBa@Dhampaign, Urbana, IL, USA.
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the state and input variables. This approach proved successful irethtéimhtion of very diverse nonlinear
systems, including a magnetorheological damper [184], a wet-clutch dé&fend a Li-lon battery [185].
However, as usual in black-box identification, it suffers from a contbmmel increase in the number of pa-
rameters because of the multivariate nature of the representation. Attemptsréwentipe parsimony of
nonlinear state-space models by employing tensor decompaosition techniguep@ted in Ref. [186].

3.7 Model updating methods

Despite the ever-increasing sophistication of computer-aided technigdemaarticular, of the finite ele-
ment method, numerical models must still be confronted with experimental datsuasequently updated
to improve their fidelity. Joints and interfaces between substructures@velpy the best example where a
purely numerical modelling approach is bound to failure [11].

During the last decade, there has been significant progress in thdidefof nonlinearity-sensitive fea-

tures for model updating. Building upon the work of Meyer and Link [18o defined single-harmonic
frequency residuals, several researchers have developed a mmudtitia comparison between simulation
predictions and test results. The multiharmonic balance method, which cadctiiateesponse of a non-
linear system to a periodic excitation, was combined with the extended constitetation error method

for establishing a well-behaved metric for test-analysis correlation in R88]] The performance of the
proposed metric was compared with that of other metrics in Ref. [189]. Muttibaic balance was also
coupled with a signal processing tool which extracts multiharmonic frequesponses from experimental
data in Ref. [190]. Fig. 15 illustrates this latter approach by comparing thergmental and simulated har-
monic responses of a clamped-clamped beam undergoing large displéseAralternative methodology

to numerically calculate nonlinear frequency response curves explaoitgiist and pseudo-arclength con-
tinuation, as achieved in Ref. [191]. Finally, the time-domain counterparbolinear frequency responses,
i.e. Volterra kernels, was exploited for finite element model updating in Re2][19

First harmonic response (m)

L | | | ] ]
80 90 100 110 120 130 140
Excitation frequency (Hz)

Figure 15: Comparison at three excitation levels between the simulated multiharbaance response
(dashed curves) of a clamped-clamped beam undergoing large displatseand the corresponding experi-
mental response (cross markers). Courtesy of Jean-Jacques BintriCentrale de Lyon, Lyon, France.

In view of the effectiveness of modal parameters for linear model umglatietrics relying upon nonlinear
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modes and frequencies have been developed. If empirical modesasychper orthogonal modes, were
used for test-analysis correlation in the early 2000s [193, 194], namlimermal modes (NNMs) have re-
cently been proposed as a more rigorous dynamic feature [195, 19&efl [195], experimental plots of
the frequency-energy dependence of NNMs were extracted frorsurezamultimodal responses using the
wavelet transform. Assuming that the system of interest is weakly damgetthainthe effect of damping is
purely parasitic, model updating was performed through the comparisomuiitierical frequency-energy
plots constructed from the periodic orbits of the underlying conservsgiseem. Ref. [196] followed a simi-
lar philosophy, but undamped NNMs were excited in isolation using nonljtese resonance testing [148].
Other residuals utilising modal information were suggested in the civil engimgeeommunity, such as the
modal flexibility residual [197] and time-varying modal parameters [198].

Even if it complicates the model updating process significantly, the depdirtumethe traditional paradigm
to modelling systems in a deterministic manner has gained a lot of attention duringsthEOpyears. There
exists a myriad of probabilistic and nonprobabilistic methods for charactg@sid propagating uncertainty
in structural dynamicsg.g, Refs. [199, 200, 201]; their description is clearly beyond the scépleiore-
view paper. From our perspective, the stochastic framework bas@adyes’ theorem has emerged in the
community as the most prevalent approach to performing model updatingnbhear systems [53]. In
Bayesian inference, the probability distribution of the uncertain paramed@rde updated using, for ex-
ample, efficient Markov Chain Monte Carlo (MCMC) simulation technique®[Z®3]. One of the first
contributions dealing with Bayesian updating of nonlinear structural moddlsito Yuen and Beck [204].
To resolve the limitations inherent to extended Kalman filtering [205] and ad@teongly nonlinear systems
with non-Gaussian uncertainty, unscented Kalman [206] and particl@(52208, 209, 210] filters were ex-
ploited later for nonlinear system identification. Recent developments inthedese of Gaussian processes
as emulators to greatly accelerate Bayesian sensitivity analysis [21E], M&MC algorithms [212, 213],
model selection [214], online estimation [215], identification under changimbient conditions [216] and
large-scale parallelisation [217].

4 Conclusions and future research directions

This survey paper reviewed the developments in the area of nonlindansydentification in structural
dynamics achieved during the past 10 years, and emphasised thesproggalised over that period of time.
If the overview paper published in 2006 [1] concluded that the identificatfGimple continuous structures
with localised nonlinearity was a reality, we can affirm today that the identificatidhigher-dimensional
models of structures vibrating in strongly nonlinear regimes is within reacis. sigmificant progression in
the state of the art is certainly to be attributed to the better understandinglofe@rvibrations gained by
the structural dynamics community, to the utilisation of more rigorous theoretioakpts and tools, to the
increased maturity of numerical algorithms, and to the emergence of adviastimg strategies.

New nonlinear system identification methods have been developed, catisglithe progress and address-
ing some of the challenges raised in 2006:

¢ building upon the nonlinear resonant decay method (NLRDM), nonlinedairiesting has seen sub-
stantial improvement. Although it still relies on careful and time-consumingrerpatal procedures,
the identification of nonlinear modes under stepped-sine and broadiraimyfcan now be performed.

e new approaches for the decomposition of multicomponent signals, includiregrtpigical mode and
Hilbert vibration decompositions, were proposed, facilitating time-frequemalysis of nonlinear
systems of moderate to high modal density.

e nonlinear subspace identification was introduced, thereby extendingiioem of stabilisation di-
agram to nonlinear systems. Nonlinear subspace algorithms outperfomorhirear identification
through feedback of the outputs (NIFO) and conditioned reverse &P methods, which were
viewed as two of the most effective nonlinear system identification techaiguz006.
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e model updating based on Bayesian inference has been increasinfgitezkpo quantify uncertainty
in nonlinear mechanical systems.

Interestingly enough, modal testing, time-frequency analysis, subgpauédication and Bayesian inference
are commonly-used tools for linear system identification. Their nonlineargksations have therefore the
potential to be understood by practising engineers, which paves theowtheir transfer into an industrial

context. It is also clear from this discussion that nonlinear system idetitifica structural dynamics has
retained its toolbox philosophy. In view of the highly individualistic natureailmear mechanical systems,
we do not see any compelling evidence why this would change in the yearmia ¢

Despite this evident progress, nonlinear system identification remainscaltiékercise, and several impor-
tant challenges are still ahead of us:

e a number of applications require additional attention and developments. Tiusiisstance, the case
of composite materials and micro-electromechanical systems. However, thenessing need prob-
ably concerns the accurate modelling and robust identification of jointsacted subcomponents. It
is a subject of recent focus in the structural dynamics community [218,220, not least because
of the growing impact of different types of nonlinearities on their dynanincsdyding friction, micro-
and macro-slip, and gaps [166, 221, 222, 223, 224, 225].

e nonlinear structures are rarely identifi@dsitu. Practical constraints such as the absence of excitation
measurement, the time-varying nature of the problem and the estimation of perminereal time
have barely been addressed in the literature.

¢ the additional burden brought by nonlinear analysis and identificatiobeanbstantial. The resulting
efforts should therefore be carefully traded against the impact of rearliy in the decision process.

Besides pushing the capabilities of existing methods further and addressingore complex applications,
future efforts should also consider investigating the state of the art irectethresearch fields.

The electrical and control community has for a very long time driven therpssgin system identifica-
tion [226]. Traditionally, this community has concentrated its efforts on deirgoblack-box models. For
linear systems, models based on impulse responses [61] and transtesrfarj58] have become standards.
In the presence of nonlinear distortions, the nonlinear state-space mgdillimework [184, 186] has shown
great promise both in terms of flexibility and interpretability of representatidre adoption of this frame-
work in structural dynamics requires our community to abandon the clasgidatbox modelling paradigm,
undoubtedly successful for modal analysis, but too limiting for nonlingstesn identification. An attractive
compromise that should certainly deserve attention in the years to come is tlygeanweof grey-box state-
space models, incorporating prior knowledge and engineering insightdenaite the number of parameters
to estimate.

Similarly, the reward for venturing into the recent developments of the matddneing community is po-
tentially considerable. The excellent review paper by Woeteal.[175] argues for this research investment.
Among the different concepts familiar to machine learning researcher§ébssian process model struc-
ture [227] and the estimation of parameters through Bayesian marginalisa®iparé probably those which
should be embraced by our community in the first place.
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