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‘A mechanistic interpretation, if possible’:
How does predictive modelling causality
affect the regulation of chemicals?

François Thoreau

Abstract

The regulation of chemicals is undergoing drastic changes with the use of computational models to predict environmental

toxicity. This particular issue has not attracted much attention, despite its major impacts on the regulation of chemicals.

This raises the problem of causality at the crossroads between data and regulatory sciences, particularly in the case

models known as quantitative structure–activity relationship models. This paper shows that models establish correl-

ations and not scientific facts, and it engages anew the way regulators deal with uncertainties. It does so by exploring the

tension and problems raised by the possibility of causal explanation afforded by quantitative structure–activity relation-

ship models. It argues that the specificity of predictive modelling promotes rethinking of the regulation of chemicals.
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Humanity delegates active chemical substances to act not

in the aseptic space of a laboratory but in a living laby-

rinth whose topology varies in time, where partial and

circumstantial causalities are so intertwined that they

escape any a priori intelligibility. (Bensaude-Vincent

and Stengers, 1996: 263, quoted by Barry (2005: 57))

Introduction

The regulation of chemicals is undergoing drastic
changes with the use of computational models to pre-
dict toxicity. In the EU, many chemical compounds
(those produced between 1 and 10 tonnes/year) will
fall under the scope of the registration, evaluation,
authorisation, and restriction of chemicals (REACH)
regulation by 2018.1 Within this framework, industrials
have to demonstrate the safety of a chemical prior to its
market release. They have a major stake in developing
predictive modelling acceptance for regulatory pur-
poses, insofar as it significantly decreases the costs of
toxicity experimentations. For this reason, the use of
modelling and data-intensive techniques, such as for
regulatory purposes, is increasingly routinised and stan-
dardised by regulators, the European Commission, and

the Organisation for Economic Co-operation and
Development (OECD) alike, but also by national regu-
latory authorities. The use of modelling for regulatory
purposes especially occurs through the development and
implementation of ‘QSAR models’ (quantitative struc-
ture–activity relationship) (European Commission,
2006). Recently, the European Commission endorsed
predictive modelling as valid regulatory evidence,
hence defining an unprecedented legal use of ‘Big
Data’. So far, this particular issue has not attracted
much attention, despite its major impacts on the regula-
tion of chemicals.

There is a major stake in showing the ability of
QSAR models to answer regulatory issues. For this
purpose, ‘causality’ is pursued as a privileged option
in order to answer the problem of control (Illari and
Russo, 2014: 5), i.e. grounding policy decisions
in knowledge as firmly established as possible.
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Could predictive modelling establish causal explan-
ations? If so, how are QSAR models negotiated?
In return, how does that affect the decision-making
process in the regulation of chemicals? To explore
these questions, we focus on one of the guidelines pro-
vided by the OECD. This particular guideline requires,
in order to use QSAR models for regulatory purposes,
a ‘mechanistic interpretation, if possible’. The ‘mechan-
istic interpretation’ refers to the imputation of a
directed causality between a substance and its toxic
activity. However, the ‘if possible’ points to a specific
tension around the very possibility of carrying out such
a causality stricto sensu, and it calls to enlarge the scope
to other, larger forms of causality. This question mat-
ters when it comes to the use of modelling for the regu-
lation of chemicals, because depending on which sort of
causality will be enforced from a regulatory viewpoint,
the requirements regarding the data generation and
processing will diverge. Hence, ‘the data’ will not be
the same according to whether a ‘mechanistic interpret-
ation’ turns out to be possible.

In this paper, we unfold this tension and suggest that
a ‘mechanistic interpretation’ seems to require a purifi-
cation of the model, i.e. a directed causal explanation
within the model itself. When the model proves unable
to deliver it, then another sense of ‘causality’ emerges
from actual regulation practice: that of regulatory
authorities who strive to establish the conditions of val-
idation for QSAR models to become workable for regu-
latory purposes. Whereas the first understanding refers
to a causality in abstracto, which would be valid every-
where and every time (a ‘de-contextualisation’),
the second refers more to a situated or contextual caus-
ality (a ‘re-contextualisation’) (Leonelli, 2014). What is
interesting and to be learned from this case is
that models are not fixed, immutable scripts that
impose themselves on every situation. They cannot be
expected to ‘speak truth to power’, as science used to
(Hoppe, 1999). At least, QSAR models further chal-
lenge some previous achievements in boundary
making between science and policy by reshaping the
kind of evidence generated for regulating (Worth
et al., 2014). In this respect, QSAR models open up a
space for political negotiation: it all depends on which
model you use for studying which material to what ends
and purposes. Commenting on guidelines produced by
the OECD, we explore the kind of causality enacted in
scientific and regulatory practices with QSAR
modelling.

In so doing, this study will contribute to the growing
field of critical data studies, which aim mostly at not
taking ‘data’ as given but instead as inserted at the
locus of social, technical, and political configurations,
considering the differences data make or can make in
such configurations (Dalton and Thatcher, 2014).

Conversely, it will also analyse the notion of causality
as it is at play with QSAR models and regulation pro-
cesses, hence providing insights into the philosophy of
computing and information (Floridi, 2011; Illari and
Russo, 2014).

This paper relies on fieldwork I conducted between
January and June 2015 within the framework of an
experimental research project aiming to question the
relevance of QSAR models for nanomaterials.2 As
part of this project, I attended several scientific meet-
ings during which the construction of relevant data to
feed a QSAR simulation was discussed (i.e. choice of
reference substances, of physicochemical descriptors,
and of relevant parameters). I conducted 12 semi-
structured qualitative interviews between February
and May 2015, with scientists developing experimental
QSAR models for nanomaterials (Ecole des Mines
Saint-Etienne) and a scientist from the Joint Research
Center (JRC) of the European Commission; researchers
working in the French industry (Sanofi in pharmaceut-
icals, Arkema in chemistry and materials); national
regulators from the French regulatory authority
(Agence nationale de sécurité sanitaire de l’alimenta-
tion (ANSES)), as well as international regulators
from the European Chemical Agency (ECHA), from
the OECD. All interviews were conducted orally,
either through face-to-face meetings or through phone
calls (on an average length of 1 h each). Each interview
was recorded and integrally transcribed. Some of the
people I interviewed are members of a QSAR manage-
ment group that was set up by the OECD in order to
coordinate the development and implementation of
QSAR models and to promote its regulatory accept-
ability. All in all, the choice of interviewees was
meant to provide me with a satisfying overview of dif-
ferent expectations and uses regarding QSAR models
(scientists, industrials, policy-makers). Although the
interview protocol slightly differed according to my
interlocutors, depending on their profession and rela-
tion to QSAR models, I nonetheless provide a repre-
sentative interview protocol in Appendix 1.

In the following, I start by describing QSAR models
and their definition. Then, I situate their use within
current regulatory frameworks for chemical com-
pounds (REACH) and the proliferating guidance pro-
vided by the OECD for an accurate use of QSAR
models. Relying on my fieldwork, I come down to the
central problem of causality. One of the OECD’s guide-
lines requests ‘a mechanistic interpretation, if possible’.
This recommendation appears to suggest more than
establishing a correlation between the structure of a
chemical compound and its toxicity, but also some
sort of causal relationship between them. This problem
is particularly interesting to look at, as it is central to
the kind of science that models can deliver, thus
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redefining the kind of knowledge regulators deal with in
decision-making processes. Furthering this analysis
about causality, I then explore the hypothesis according
to which models do not and cannot have the pretention
to ‘tell the reality’ but rather to tell ‘a reality’. As such,
they challenge the paradigm of ‘evidence-based’ regu-
lation and the classic role of science as ‘speaking true to
power’. By requiring some forms of re-contextualisa-
tion, QSAR models call for an enlarged notion of caus-
ality, which affects the very practice of regulating.

QSAR models

QSAR models are usually defined as ‘mathematical
relationships between one or more quantitative meas-
ures of chemical structure (or physicochemical proper-
ties) and a biological activity’ (Worth and Cronin,
2004: 703). In other words, QSAR models rest on the
hypothesis that a link could be drawn between the
description of a compound’s structure and its ‘bio-
logical activity’, namely its potential toxic effects on
the body or the environment. Therein lies an assump-
tion that the toxic activity of a particular virtual chem-
ical could be interpolated from the activity of another
actual substance with similar physicochemical descrip-
tors. As such, QSAR models are expected to draw a
correlation between these two elements.

It takes many diverse processes to build and use
QSAR models.3 To start with, it is important to give
a clue about how QSAR models work in practice. The
practitioner who wishes to predict the toxicity of a com-
pound will have to choose a set of reference substances
that share some descriptors, such as some features of
the molecular structure, or its form. On this set of ref-
erences, existing data must be provided, namely first-
hand datasets issued from experimental protocols on
the chosen particular substances. In the case of
QSAR, datasets are physically distributed over a wide
range of research centres and institutions, although
they are often integrated (imported and duplicated) in
widespread QSAR interfaces such as the OECD
Toolbox or REACH (see below).4 The second step is
to characterise the compounds about which the predic-
tion will be formulated – these would have this or that
shape, this or that feature, and could henceforth be
linked with the set of references under several shared
aspects.

Then, there is diverse QSAR software that allows for
running analysis on these datasets to gather insights
into the toxic activity of those new compounds. Some
of the software is developed by private companies to fit
their R&D purposes. Others are developed by a lively
developer community that spans way beyond industry,
including non-profit organisations such as Lhasa
(which develops Derek, a widely used Open Source

QSAR software specifically directed towards predicting
toxicity).5 Finally, regulators draft some specifications
that integrate specific requirements for operating
QSAR models for regulatory purposes and outsource
the actual development of the software to private firms
through public market procedures. For example, the
OECD Toolbox – arguably the main, if not the only
big enterprise of its kind – delegates the technical work
to the Laboratory of Mathematical Chemistry in
Bulgaria.6 The software will perform the prediction
per se, i.e. gathering clues from existing data about
the toxicity of a future molecule or chemical com-
pound, based on a set of various criteria (its physico-
chemical description, but also its envisioned use and
with respect to some specific effects). For this reason,
the conditions of validation of the prediction lie with
the software. A substantial form has to be filled out
prior to running the simulation that specifies all these
elements. This form elicits the conditions under which
the model can be adequately used for regulatory
purposes.7

QSAR models are widely spread in industrial and
regulatory domains and sporadically used by non-
governmental organisations. For instance, they have
become routinely integrated in the practices of big
pharmaceutical corporations since the late 1970s and
early 1980s. Nowadays, these firms use QSAR insights
for a ‘pre-development’ screening. For these firms,
QSAR mostly helps them identify ‘red flags’ or areas
one would not want to get into. For example, if a
QSAR analysis shows that a virtual molecule could
have genotoxicity, then the company will consider
that over the infinity of potential molecules that could
potentially be developed industrially; this particular
one will not be worth the high costs of actual develop-
ment. Models are taken up in a flux economy of chem-
istry – less and less in the linear development of a single
molecule at a time, but instead in bulk processes of
production through high-throughput and massive
screening techniques (Manly et al., 2001). Barry
(2005) showed that a start-up named ArQule used
such screening methods as a way to generate added
value, and it would then sell the promising molecules
for further development to big corporations from the
pharmaceutical sector (62).

Regulators somehow have to keep pace with such
evolutions, and it is no surprise that regulatory bodies
also use QSAR models to orient the decision-making
processes. The American Environmental Protection
Agency (EPA) developed and strengthened the first
applications of QSAR models for regulatory purposes.
It would carry this work out in cases in which data
gathered from animal experimentation were already
available to accurately delimit the restrictive conditions
under which models could be used for regulation
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(Demortain and Boullier, 2015). At the EU level, the
European Commission took up the EPA’s approach to
models in 2007 through the enforcement of the
REACH regulation. REACH frames QSAR models
as an alternative to animal testing and expensive
in vitro experimentations (European Commission,
2007). The directive operates within an overall frame-
work in which the burden of proof (demonstrating that
a substance is innocuous) belongs to industrials, not to
the regulators – the ECHA together with the national
regulatory bodies. The European Commission eases
this demanding task for industrials that operate under
resource constraints, just as the EPA does, which is the
reason it strived to develop QSAR approaches in the
first place (National Research Council, 2007).

In this respect, the demands for modelling differ sig-
nificantly depending on whether it fits industrial or
regulatory purposes. Industrials seek to avoid unneces-
sary spending in synthesising molecules or developing
new chemicals that will not make it to the market,
whereas regulators (OECD, ECHA) seek to determine
if a chemical is safe enough for market authorisation.
For this reason, QSAR has been routine for quite some
time in R&D processes, whereas their use is still being
consolidated in the regulatory domain. Industrials have
to demonstrate the innocuity of a substance prior to
market authorisation. In so doing, they have more
and more incentives to use predictive modelling tech-
niques, most often in addition to other evidence regard-
ing a particular compound.

However, it would be a mistake to consider those
two domains (industry and regulation) as strictly sepa-
rated when it comes to QSAR models. Industrials have
put know-how, research, and guidance into the devel-
opment of those models for regulators. But as options
are decided upon for regulating chemicals, industrials
also learn to align to these choices, i.e. by running the
same software and criteria of evaluation as the regula-
tors. As one scientist from a regulatory body puts it: ‘Of
course they evaluate their own chemicals beforehand
because they know the way in which it’s going to be
evaluated’. Therefore, the use and development of
QSAR models in industry go hand in hand, nowadays,
with the standardisation and validation criteria from
regulatory authorities.

Operation for regulation purposes

At least three specific uses of modelling for regulatory
purposes can be distinguished. The first and main one
results from the development and adoption by the
OECD of a ‘QSAR Toolbox’. This tool centralises mul-
tiple datasets and seeks to provide means for standar-
dising the conditions under which QSAR models can be
used and evaluated. One of its main purposes, as one

member of the QSAR management group states, is to
‘fill data gaps’. QSAR models are here useful to provide
a panoramic, integrated view of the chemical’s land-
scape and to distinguish categories about which toxicity
information is lacking. This toolbox is crucial because it
standardises the means of QSAR evaluation by using
simple and widely used training sets, algorithms, and
validation groups, whereas scientific expertise used
to be over-specialised and too narrowly focused.
A member of the OECD QSAR management group
stated:

They invented the Toolbox which is a set of different

similarity measures (. . .) for which you don’t have this

experimental data. This is the change in the way of

thinking because those similarity measures are not

very complex. They are not super robust, you know

they are very basic things like simple ranges of proper-

ties, for example your substance needs to be with this

range of molecular weight or it has to have this kind of

water solubility.

Several interviewees pointed out that the OECD
Toolbox tends to be increasingly used and recognised
by some national regulatory authorities, hence standar-
dising the regulatory work.

Second, QSAR models can play a determinant role
to deliver market authorisation for substances with
potential toxicity concerns for the environment. One
of my interviewees who is well acquainted with regula-
tory practices stated that: ‘Sometimes, there is just no
analytical method for certain profiles of substances,
from which we could get some ‘‘real data’’ or which
at least appears right. If so, by lack of other means,
we will use computer modelling’ [prior to authorising]
(my translation). Later on, this person added that, in
such cases, he/she would tend to run ‘worst-case scen-
arios’. He/she added that such a possibility would be
considered only for ‘environmental effects’ and
excluded if ‘human health’ was at stake. Whenever
computer modelling is used, the validation process
will be the main focus of investigation from regulatory
authorities, which in turn drives reporting practices
from industrials (see ECHA, 2016 [2010]).

Third, in most cases, or all of them insofar as human
health is concerned, QSAR models can complement the
scientific information gathered by means of experimen-
tal testing to comply with the regulation. In such cases,
QSAR models can support or strengthen the adminis-
trative file for market authorisation. More generally,
they can be used by regulatory bodies as an informative
means to screen certain substances and identify poten-
tial threats early on, using the OECD Toolbox as a
reference (see below, interview with the ANSES,
3 February 2015).
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Because they can be used in different ways, QSAR
models can best be described as instruments that per-
form an explanatory or predictive capacity. ‘A public
policy instrument constitutes a device that is both technical
and social, that organizes specific social relations between
the state and those it is addressed to, according to the
representations and meanings it carries’ (Lascoumes and
Le Galès, 2007: 4). At least, QSAR models can be con-
sidered ‘instruments’ insofar as they are expected to
achieve public policy goals. Then, they entail a specific
technical–political dimension, which rests with their abil-
ity to meet this regulatory aim. This renders their valid-
ation processes particularly challenging.

OECD guidelines

In order to validate QSAR models, guidelines have
been developed within the framework of the OECD
and REACH. Those guidelines contribute to fulfilling
the goal of ‘promoting mutual acceptance’ of QSAR
models in general across relevant regulatory authorities
(OECD, 2007: 15).8 As such, they are situated within a
series of activities of OECD, which pertain to the stand-
ardisation of modelling processes for policy-making
purposes. This role, undertaken within the OECD
since the early 1980s, has gone hand in hand with the
definition of the OECD as an expert international insti-
tution that seeks, as a legal scholar puts it: ‘to partition
the technical aspects from the political’ (Salzman, 2005:
203). Within this system: ‘the contentious political deci-
sions over whether to approve a chemical or product
lies in the hands of regulatory agencies’ (Salzman, 2005:
203). A particularly sensitive issue within the OECD is
then the negotiation over what is to be left to member
countries and what is the domain of the OECD
intervention.

The OECD has been striving to demonstrate the regu-
latory relevance of QSAR models. For this purpose, the
OECD has been elaborating guidelines for QSAR users
and national regulatory bodies. These guidelines are cru-
cial for the assessment of the validity of QSAR models.
They were negotiated through the OECD coordination
and were mostly formulated at a landmark workshop
held in Setubal, Portugal, in 2002 (Jaworska et al.,
2003). Guidelines are only one of the coordinating ini-
tiatives undertaken by the OECD, which also established
a coordinating group on (Q)SARs, composed of mem-
bers from national regulatory bodies and international
institutions, as well as some firm representatives. The
guidelines are the following:

To facilitate the consideration of a (Q)SAR model for

regulatory purposes, it should be associated with the

following information:

1. a defined endpoint;

2. an unambiguous algorithm;

3. a defined domain of applicability;

4. appropriate measures of goodness-of-fit, robustness

and predictivity;

5. a mechanistic interpretation, if possible. (OECD,

2007: 14)

Guideline no. 2 is irrelevant for the question of
causality, because by ‘unambiguous’ it simply means
‘transparent’, in the sense that the algorithm applied
to modelling should be disclosed, which is not always
possible, such as when a patent is at stake.

Guidelines no. 1, 3, and 4 are important to fully
grasp no. 5, namely ‘a mechanistic interpretation, if
possible’, which is our main point of concern in this
paper.

Guideline no. 1 requires a ‘defined endpoint’ that
relates to the biological activity of the chemical com-
pound. Depending on which sort of impact one tries to
unfold, different endpoints need to be set for the model
to perform: ‘Endpoint refers to any physicochemical,
biological or environmental effect that can be measured
and therefore modelled’ (OECD, 2007: 14). In other
words, setting the endpoint differentiates the kind of
potential damages the model will be attempting to pre-
dict, either for ‘skin irritation’ or ‘acute fish toxicity’.9

In this respect, it is closely related to the envisioned use
of a compound in a given environment (e.g., skin
creams or soluble products), which implies the exclu-
sion, for the sake of the QSAR projection, of other
uses, other kinds of effects, or other dimensions of the
environment. Most of our interviewees indicate
that QSAR models are able to deliver sound predic-
tions on certain well-defined endpoints, but this is an
exception – for example, reproductive toxicity (the impact
on the ability of an organism to reproduce) is quite diffi-
cult to apprehend, as well as long-term exposures.

Guideline no. 3 requires delineating a domain of val-
idity. It is a matter of defining the physicochemical
descriptors that will characterise both current sub-
stances, for which data has already been generated, as
well as compounds that do not exist yet. Therefore, this
‘domain of validity’ expands from existing data to
QSAR projection and knowledge about future com-
pounds. As such, the choice of descriptors defines the
boundaries of a ‘space’, a set of coordinates that will
match various substances within the same ensemble,
hence delimiting a line inside the broad domain consti-
tuted by all chemicals. As Barry (2005: 62) points out:
‘the quality of the models depends on the volume of
chemical space they are able to operate within with
some degree of reliability’ (our emphasis). He adds
that ‘chemical space is not Euclidian or Newtonian
but instead a relational space’. Indeed, it is through
the definition of the domain of applicability that a
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link is established between different substances –
through the choice of certain descriptors over others.
QSAR models can deliver accurate projection only if
this link between current and future compounds can be
firmly established.

From within that ‘chemical space’, the toxic activity
of future chemical compounds will be interpolated from
other substances that present similar properties. This is
the very purpose of QSAR models: to delineate under
which conditions an accurate predictive ‘coverage’ of a
chemical can be assured. The OECD (2007: 35) asserts
the following rule: ‘If a (Q)SAR is based on physico-
chemical descriptors, the interpolation space (i.e. its
coverage), defined by its descriptors, should be charac-
terized’. Does this or that chemical fall under this area of
coverage that a particular model delineates? From there,
based on a few in vitro/in vivo tests, predictive modelling
intends to interpolate the potential toxicity of whole
groups or families of chemical compounds by means of
computer simulation. This is the very stake of QSAR
modelling, as one of our interviewees working in the
pharmaceutical industry puts it:

Let’s say that I have 100 molecules in mind out of

which I’ll be able to synthetise only 10. How am

I going to prioritise according to the toxic effects?

(. . .) Using models proves interesting when you select

the points about which you can predict something

accurate. That implies, on the one hand, that new

points and new molecules revolve in the same chemical

space, that is, that the model is valid. On the other hand,

we try to avoid that the model is so well trained for a

certain set of determined molecules that it can only

make predictions for the molecules inside the model.10

It is therefore an original approach, which does not
deal with all the chemicals (the whole) nor with each
chemical in itself (the part), but rather with a ‘cohort’ of
chemical compounds constituted through the choice of
descriptors. This is the particular goal of regulatory
processes known as the ‘grouping of chemicals’ or
‘read-across’ to establish such transversal categories
(OECD, 2014). To do that, they realise two distinct
operations. The first is a classical regression. It is a
correlation that can be established between two sub-
stances which are henceforth considered similar,
according to the choice of a set of descriptors. The
second is more relevant for regulatory purposes and
operates a classification. The classifying algorithms
will carry out a bulk analysis of future compounds
and assign them to a specific category according to
their properties. The specific operation will be
to include such a future entity in a group of chemicals
to which it will then belong.

Guideline no. 4 intends to establish the ‘robustness’
or ‘goodness of fit’ for QSAR models. This is precisely
the locus of trial for those models. Here, the questions
asked are: Does the model hold? Does the link hold? Is
it firmly established? In other words, what these guide-
lines propose is a list of conditions for building a robust
linkage between a substance as characterised by a
choice of descriptors and its biological activity, that is
its toxicity. To assert the strength of the link, classical
‘stress tests’ in statistics will be applied, and what will
be put to test is the model’s ‘internal performance’ and
‘external performance’ (OECD, 2007: 42). What is
interesting here is that this criterion of robustness is
in no way absolute. Instead, it refers to the quest for
a local optimum between a model that is too narrowly
focused on one very precise situation (very accurate but
not very relevant) and one that is too loosely focused
(possibly relevant but not very accurate for decision-
making purposes). The OECD stresses that a ‘suitable
balance’ must be established between those ‘two
extremes’ (OECD, 2007: 42).

In this section, I provided an overview of the inner
operation effectuated by QSAR models in general.
I showed that the main aim of a model is to classify
future substances and to establish firm correlations
between similar compounds and their toxicity. Such
models thus engage in a multi-variable setting that
depends upon the choice of one or many descriptors
and endpoints. It is understood that neither one nor
another of these descriptors encapsulates the ‘reality’
of the chemical at stake, but instead one or several of
its relevant dimensions, for the purpose of adequately
regulating the future plausible uses of that chemical.
This reveals just how much models need contextualisa-
tion in order to operate for regulatory purposes.

According to an ECHA official we interviewed, this
requirement is far from sufficiently met in current prac-
tices. This official considered that some companies
‘would not really care about the context in which they
are using this model’. He further mentioned the diffi-
culty in using endpoints that would be ‘too complex’,
such as those related to long-term exposures and/or
carcinogenic effects. Another interlocutor from the
chemistry industry stated that ‘ecotoxicity’ had to be
ruled out of the field of application of QSAR model-
ling, for the resulting ‘correlations (. . .) [we]re way too
weak’. In other words, a balance must be reached
between ambiguous predictions and actual robust
tests, and endpoints must be narrowed down to
enable regulatory decision-making. Although regula-
tion is not about certainty, it is certainly about reliabil-
ity, and that explains the trickiness of the process.
I now discuss more specifically this question of causal-
ity by examining guideline no. 5 in detail.
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The problem of causality

The use of QSAR models for regulatory purposes pre-
sents the problem of causality at the crossroads between
data and regulatory sciences. The OECD’s guideline no.
5 requests ‘a mechanistic interpretation, if possible’. This
recommendation goes a step further than establishing a
mere link, in the sense that the very structure of the
substance somehow implies the biological activity.
Of course, this is not a direct, straightforward implica-
tion, but rather an implication that is retraced back to a
chain of damages caused to the organism, from the
molecular and cellular levels to tissues and flesh.
The underlying hypothesis of this sort of causality is that

normally, in order to have [an adverse effect] on the

organism or population level, everything starts at the

molecular level; something happens at the molecular

level, then on the cellular level, then on the tissue level.

Then, you can see the impact of this on the population.

For example, if you are affecting the reproductive cap-

acity of individuals, you will see the effect on the popu-

lation later on as well, yes? (ECHA official, interview)

This is called the ‘adverse outcome pathway’, defined by
Burello (2013: 2) as ‘the result of an exposure to a mater-
ial [that] can be described as a sequence of linked events,
from a direct molecular initiating event to an adverse
outcome at a biological level of organization’. That
pathway retraces the adversity of a chemical or of a
molecule, step by step, towards organisms and popula-
tions. While this echoes the more general aim of QSAR
models (establish a link between a chemical structure
and its ‘biological activity’), here the ‘mechanistic inter-
pretation’ refers to the possibility of establishing the
pathway by which a chemical causes damage from the
tiniest elements of the body (molecules, cells) to the body
at large. To do that, it is necessary to rely on an extensive
literature review and multiple datasets and to fill gaps in
the existing knowledge. According to one ECHA official:

[OECD is] trying to put together all the mechanistic

data that we know from pharma investigations, from

different small in vitro assays that are really, you know,

just designed to detect certain features, and they are

trying to build full pathways [i.e.] full chains of reac-

tions that lead from something small at the molecular

level to something big — that show some adversity at

the organism level.

Does the toxicity derive directly from the structure?
Here, what matters is the ‘discovery of underlying
causal relationships’ (OECD, 2007: 66). Henceforth,
what is looked after is not only a predictive capability

of QSAR models but also an explanatory capability.
Although this explanatory capability is not entirely
straightforward, it derives from the possibility of scaling
up the ‘adversity’ of a particular compound to an organ-
ism. Hence, it tends to establish a precarious, long, and
complex chain of adverse events, but a chain nonethe-
less. In this sense, the kind of causality is not strictly
linear but could be said to be ‘directed’; it is more of
an indication, a view upon a sequence of events that
tends to cause adverse effects for the organism. In fact,
‘currently, we don’t havemodels that are able to emulate
full organisms, and this is something that people need to
take into account’ (interview with a member of the
OECD QSAR management group). Interestingly, the
OECD added the phrase ‘if possible’ because it sees
the evolution of these models as ‘an iterative process
involving the statistical exploration of data, hypothesis
generation, and hypothesis testing’ (interview with a
member of the OECD QSAR management group). In
other words, establishing models that perform some-
thing is an iterative procedure, which needs some refine-
ments and experimentations.11

This tension underlies the problem of control, which
is crucial for regulation processes. As I argued before,
this dimension is already present in the functioning of
QSAR models, since they formulate predictions upon
which decision-making processes can be based, which
has to do with the control of the variables (endpoint
and domain of applicability). But this problem of con-
trol is reinforced when it comes to actually delivering a
‘mechanistic interpretation’. Then what needs to be con-
formed with and aligned to the models is the world itself
(Illari and Russo, 2014). In such a configuration, models
could tell something about the future compounds them-
selves, because they would apprehend them with such
precision that their exact activity could be inferred
from their inner structure, which in turn implies that
this structure would be perfectly known and mastered.
The idea is to establish a directed causal bond between a
structure and its activity. In this perspective, a cause
could be knownwith enough precision to accurately pre-
dict one or several of its effects. This sequential perspec-
tive is challenged by the intensive use of computers, data,
and models in trying to formulate predictions.

It thus appears that guideline no. 5 is unlikely to be
met, except in some specific cases, but then at the
expense of very precisely defining the boundaries of
the material and the kind of effects examined. Hence,
modelling simulations provide guidance through com-
plex situations. As Illari and Russo (2014: 15) explain:

(. . .) simulations, whether run on computer or physical

models, are neither experimental nor observational, but

something much more complex. Scientists create an
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imitation system that is capable of having something

like experiments run on it, and use that imitation

system to probe features of the target system; it can

then be tried out in some way on the target sys-

tem—perhaps by suggesting new experiments, or by

directing new observations.

QSAR models establish correlations between
physicochemical descriptors and biological activities,
and any ‘mechanistic interpretation’ would be an inci-
dental event.

This raises the question of how to deal with uncer-
tainties in regulatory processes, and that is by no means
a new problem in itself. Yet it is interesting to unfold it
in the early stages of development of QSAR models for
regulatory purposes, before the models and their inner
indeterminacy could be ‘naturalised’ in some sort of
‘algorithmic regulation’ chimera (see Morozov, 2014).
If the notion of causality at play does play a role in this
situation, it is rather as some ‘cherry on the cake’.
Economists would call it a ‘positive externality’;
others would say ‘models with benefits’. In short, a
causal explanation is neither sufficient nor even neces-
sary for the model to perform, although it might occa-
sionally strengthen it.

When models challenge the practice of
regulating chemicals

We have seen that QSAR models tend to establish
quasi-experimental orders of relationships through cor-
relations and that a ‘mechanistic interpretation’ is not
needed in order for them to operate from a regulatory
perspective. There is a long tradition of using all sorts
of different predictive models for environmental policy
and regulation. It is understood that each case is specific
and drives different uses of different types of models.
None of them actually require absolute certainty to per-
form. As Fisher et al. (2010: 272) point out in the frame-
work of environmental regulation: ‘models cannot be
expected to deliver certainty. They cannot generate
facts and they cannot generate definitive answers’, but
they are definitely used for evaluation or assessment pro-
cesses. As other forms of regulatory-relevant knowledge,
models are simplified representations of reality, render-
ing them actionable for policy-makers.

In the realm of chemicals, this can become problem-
atic. Since the early controversies about the appropriate
evidence to mobilise in order to introduce regulatory
constraints, public institutions have adopted a language
of separation between risk ‘assessment’ and risk ‘man-
agement’, with the former related to scientific examin-
ation and the latter considered policy and, more
generally, value issues (see Jasanoff, 1987, 1990). The
choice of what counts as valid knowledge for regulatory

purposes is by definition controversial (Demortain, 2013).
In this perspective, providing a ‘mechanistic interpret-
ation’ can be seen as an attempt to provide a kind of
‘evidence’ robust enough for policy decisions. Indeed,
QSAR approaches render very explicit the fact that risk
assessment is again a matter of political choices.
Whereas dose–effect toxicology could be construed as
a stabilised black box neatly separated from policy
decisions (albeit permanent controversial), QSAR mod-
elling makes it necessary to re-ask the question of
the appropriate evidence. Choices have to be made to
produce tentative new knowledge and to reshape
the renewed problems posed by the relationship
between this new knowledge and decision-making
processes.

Within such a situation, the ways in which QSAR
models affect regulation are not unidirectional. Models
take place in a regulatory landscape that they help
shape. The OECD (2007), for instance, states that
models challenge regulatory categories: ‘A model that
gives highly accurate predictions for narrow chemical
classes that are not covered by the regulatory inventory
of interest would be of questionable value’ (40). In that
sense, what is happening is a co-production of models
and regulation, in which models take up and challenge
some pre-existing categories while affecting them. In so
doing, QSAR models also question the very basis on
which the existing regulatory system is based, as well as
the ways in which it could potentially be redefined.

QSAR models require dealing with multi-variables
relations. For this reason, they need to account for the
particular choices of one or several descriptors and of
one or several endpoints. None of these choices might
‘exhaust’ the combinatorial possibilities in the sense of
encapsulating reality as a whole (Deleuze, 1992).12 It
depends on many factors: the chemical at play; the
way it has been characterised, with its effects considered;
its further combination with other substances; the length
of exposure; unknown reactions when it is inserted into
new environments; and so on. Instead, through com-
puter modelling, what is definitely reached for is a real-
ity, not the reality (Atlan, 2011). Models, Hacking
(1983) argues: ‘are intermediaries’; they suppose that a
phenomenon is true (i.e. the toxic activity), and they
suppose that the theory they are grounded in is also
true (the structure–activity relationship). Hence, they
mediate those two orders of reality: ‘siphoning off
some aspects of real phenomena, and connecting them,
by simplifying mathematical structures, to the theories
that govern the phenomena’ (217). QSAR models, just
like everymodel, appear to be reductionist in that sense –
and this is something that theOECD itself acknowledges
clearly (OECD 2007: 15).

Models such as QSAR models acknowledge the par-
tiality of the connections they can establish between

8 Big Data & Society

by guest on September 22, 2016Downloaded from 



different worlds or milieus and potentially toxic chem-
icals. ‘Models come in varying degrees of abstraction’
and ‘can be constructed in a variety of ways’ (Morgan
and Morrison, 1999: 4). But the important point
remains that such a partiality does not prevent the
effectiveness of the model. Simply, the sort of causality
implied here has much more to do with a ‘rationale of
variation’ (Russo, 2009). However, whereas the regula-
tion of chemicals used to be grounded in ‘a model of
reality’ (Jasanoff, 1987), it might well be that each spe-
cific use of a QSAR model will produce its own specific
reality, perhaps turning the idea of ‘reality’ itself into a
moving target. There is something going on there as the
active production of complexity that renders difficult
the validation of QSAR modelling, which depends on
many variables, let alone the establishment of a causal
pathway that ties together damages to a molecule to
broader adverse effects on the organism.

Along the way, QSAR remodels not only the very
idea of ‘causality’ but also the way decision-making
needs to adjust to such tentative realities crafted by
models. Models adopt a sort of incremental approach
that tends towards the truth by approximations
(Hacking, 1983); it takes going back and forth from
the models to its effects, and therein lies the potential
truthiness of a model. ‘If there is any truth around, it
lies in the approximation, not in the background
theory’ (Hacking, 1983: 219). And here it appears
clearly that it is a form of experimental endeavour
rather than the causal application of a theory. This
experimental endeavour is well visible in the many
choices at stake in the definition of endpoints, datasets,
and other technical features of QSAR. That these
choices are connected to regulatory choices is a
reason the OECD guidelines state that they have to
be made explicit, without attempting to pre-determine
them. But it also renders more acute a boundary issue
at the heart of the public regulation of risk, in which
‘science’ and ‘politics’ are constantly intertwined.

The ‘mechanistic interpretation, if possible’ reminds
us that, insofar as possible, the best way to proceed
consists in establishing a form of causal explanation.
However, the ‘if possible’ reflects a strong tension
between the art of establishing correlations, which is
what QSAR models do, and the very possibility of
finding causal relationships between the structure of a
particle and its toxicity, as in an adverse outcome path-
way. This is why the validation process will probably
become so dramatically important in the future regula-
tion of chemicals, because it renders explicit all the fea-
tures and specifications under which the knowledge
provided by the model has been constructed as valid
for each specific situation.

QSAR modelling suggests considering an emerging
regime of evidence. At the interplay of computational

modelling and existing regulatory categories, it suggests
new institutions able to recognise a world made of irre-
gularities, or regularities that can hardly be explained in
a straightforward way, that is, meanings of causality
that are disaffiliated from certainty but, at most,
inscribed in long and complex chains of events. Barry
(2005) argues that modelling makes the modes of exist-
ence of molecules proliferate through the delimitation
of chemical spaces. To paraphrase him, I could suggest
that in the same way, by producing new groups
(through grouping of chemicals) and new families of
compounds, what could actually happen is the creation
of new ‘regulatory spaces’.

Just like chemicals, regulation as put on trial by
models will have to delineate its own ‘regulatory
space’. With this shifting regime of evidence, regulatory
bodies have to make explicit the conditions under
which they enable decision-making, such as the defin-
ition of the domain of applicability and contextualised
boundaries within which a particular decision can actu-
ally deliver what it is supposed to deliver – safety from
toxic compounds. In so doing, one can hypothesise that
the political spaces where these models are developed
and hoped to be used as relevant regulatory tools would
be different from the institutions in which positivist
evidence-based processes form the basis for policy
interventions – and in which the very notion of ‘evi-
dence’ itself is insufficiently problematised (see, e.g.,
Timmermans and Berg, 2003). Technical arenas, such
as the OECD QSAR management group, the ECHA in
charge of REACH, or the JRC (a research centre of the
European Commission active in the definition of
appropriate QSAR models), might well become sites
of particular political interest if the regulatory interest
for QSAR is developing.

Conclusions

In this paper, I focused on the use of QSAR models for
regulating chemicals, especially through the develop-
ment of the OECD guidelines. In particular, I insisted
on the one that requires ‘a mechanistic interpretation, if
possible’. This last guideline underpins a new regime of
evidence characterised by the impossibility to stabilise
‘a model of reality’, but it might instead carry forth ‘a
reality’, provided that the conditions of validations are
carefully made explicit and closely put on trial by regu-
latory bodies. Yet, I argue that the very use of predict-
ive modelling could open up new modes of
apprehending chemicals that are rooted in experimen-
tation. Through QSAR modelling, both the chemical
substance and the regulatory process need to go
through a process of contextualisation.

QSAR models need to be used not as a one-size-fits-
all tool, valid for all purposes, but as a political tool
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that underpins a learning process, i.e. determines con-
texts of use and levels of public acceptability, and directs
the attention towards potential chemical threats andhaz-
ards. Bensaude-Vincent and Stengers (1993) argue that
chemical entities are not fixed once and for all but instead
should be considered as ‘informed materials’, that is
materials that cannot be separated from the world they
are entangled in. In the same way, QSAR models could
not be fetishised as purely performing instruments, but
rather point out to the necessity of contextualising both
the model and its subsequent uses for decision-making
purposes. This could be called ‘informed modelling’.
This is a form of ‘regulatory chemistry’, in which
models and chemicals would not be considered inde-
pendently but instead grounded in a thick context of
use. ‘The chemist is interested in the fact that the proper-
ties of atoms andmolecules vary considerably depending
on the form and circumstances of their association with
others’ (Barry, 2005: 56). Just like Barry’s chemist, the
‘modelling regulator’ would learn to deal with the uncer-
tainties inherent tomulti-variables analysis andwould be
sensitive to the adjustments and caution required by a
‘variation rationale’, thus rendering the notion of ‘evi-
dence’ as in ‘evidence-based decisions’ problematic.

Such an evolution would have ontological conse-
quences. Not all of that is indifferent from the data view-
point; depending on how far regulatory processes can
follow that path, different sets of demands and require-
ments and, eventually, different datasets will be gener-
ated, asking different questions to different families of
molecules. Since the spectrum of covered realities is
potentially unlimited, it would not make sense to talk
about ‘the data’ but about ‘some data’ or ‘datasets’,
understood as partial and limited. There would be con-
sequences for the molecules themselves, since their infor-
mational environment would be dramatically affected by
models. As for the regulatory authorities themselves,
they would hereafter embrace uncertainties about the
material, not deny them; they would not take physico-
chemical descriptions as invariant but instead as trans-
formed through association with other political stakes.

Supplementary material

The supplementary files are available at http://bds.sagepub.

com/content/3/2

Notes

1. Regulation (EC) no. 1907/2006 of 18 December 2006 con-

cerning the REACH, consolidated version of 1 June 2015.
2. This research project is entitled ‘Risk assessment for Oxide

nanoparticles: social impact and establishment of

Quantitative Structure-Toxicological Activity Relationship’

(ROQSTAR). It was funded under the ‘Ressourcement

Carnot M.I.N.E.S 2013’ from October 2014 to September

2015.)

3. This roughly summarised process has been extensively

addressed through my interviews.

4. Collecting data about existing chemicals, i.e. about their

physicochemical properties and toxicity, is an important

goal of REACH regulation.
5. http://www.lhasalimited.org/products/derek-nexus.htm

(last accessed 13 April 2016).
6. http://oasis-lmc.org/ (last accessed 13 April 2016).
7. The detailed analysis of these specifications would not fit

in this paper. However, the interested reader can refer to

the reference guidance document from the OECD (2007).

8. REACH specifies a more restrictive series of conditions in

order for QSAR results to be used instead of classical

testing. The following conditions are cumulative: (1)

results are derived from a (Q)SAR model whose scientific

validity has been established, (2) the substance falls

within the applicability domain of the (Q)SAR model,

(3) results are adequate for the purpose of classification

and labelling and/or risk assessment, and (4) adequate

and reliable documentation of the applied method is pro-

vided, see European Commission (2006: 202), Annex XI,

1.3.

9. For a full list, see OECD (2007: 23).
10. My translation. The interview was conducted in French,

5 February 2015.

11. That being said, the document stresses right after that

that it is only a matter of time before models can explain

everything. Of course, this sequential view and this parti-

cular teleology could be discussed, but this is out of

scope.
12. Deleuze states that the ‘whole of possibilities’ can never

truly be exhausted, since new possibilities necessarily arise

along the way.
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