Critics Workshop on Critical Transitions in Complex Systems Instability and abrupt changes in marine ice sheet behaviour

K. Bulthuis^{1,2}, M. Arnst¹, F. Pattyn², L. Favier²

¹University of Liège, Liège, Belgium ²Free University of Brussels, Brussels, Belgium

Monday 5 September 2016

Motivation

Ice streams (narrow corridors of fast-flowing ice) drain over 90% of the Antarctic mass flux. Ice stream dynamics and stability are key factors for Antarctic mass balance and future contribution to sea-level rise.

Pine Island and Thwaites glaciers

Siple Coast

Figure: Full map of Antarctic ice flow deduced from satellite data [NASA/JPL-Caltech/UCI].

Motivation

In this presentation, I will focus on two physical models that have been proposed to explain current and past behaviours of ice streams:

- Marine ice sheet instability: Marine ice streams resting on a retrograde bedrock could exhibit a rapid retreat leading to a sudden and important loss of ice (Pine Island and Thwaites glaciers) [Schoof, 2007, 2012].
- Thermally induced oscillations: Ice streams can show decadal to multi-millennial variability through a thermal feedback between ice mass and bedrock sediments (Siple Coast glaciers) [Robel et al., 2013, 2014].
- It is possible to develop a coupled model of marine ice sheet instability and thermally induced oscillations [Robel et al., 2016].

Outline

Motivation.

- Marine ice sheet instability.
- Thermally induced oscillations.
- Coupled model of marine ice sheet instability and thermally induced oscillations.
 - Conclusion and outlook.

Marine ice sheet instability (MISI)

Marine ice sheet instability mechanism

Step 1: Steady state on an upward sloping bed ($q_{in} = q_{out}$).

Marine ice sheet instability mechanism

Step 2: Initiation of grounding line retreat ($q_{in} < q_{out}$).

Marine ice sheet instability mechanism

Step 3: Self-sustained grounding line retreat ($q_{in} \ll q_{out}$).

A simple geometrical model for MISI

We consider an ice stream sliding on an overdeepened bed. Ice flow is described as a gravity-driven viscous flow subject to basal friction. Viscous stresses can be neglected in the ice sheet except in a narrow transition zone near the grounding line.

A mathematical model for MISI

Continuity equation (nonlinear diffusion equation):

$$\frac{\partial h}{\partial t} - \frac{\partial}{\partial x} \left[\left(\frac{\rho_i g}{C} \right)^{1/m} h^{1 + \frac{1}{m}} \left| \frac{\partial (h-b)}{\partial x} \right|^{\frac{1}{m} - 1} \frac{\partial (h-b)}{\partial x} \right] = a.$$

Symmetry condition at the ice divide:

$$\left.\frac{\partial(h-b)}{\partial x}\right|_{x=0}=0.$$

Flotation condition at the grounding line:

$$\rho_i h(x_g) = \rho_w b(x_g).$$

Stress continuity at the grounding line (from boundary layer theory):

$$q(x_g) = \left(\frac{\overline{A}(\rho_i g)^{n+1}(1-\frac{\rho_i}{\rho_w})^n}{4^n C}\right)^{\frac{1}{m+1}} h(x_g)^{\frac{m+n+3}{m+1}}$$

Critics Workshop, Kulhuse, Denmark

Ice streams dynamics

Steady grounding line positions: graphical approach

Steady grounding line positions are given by

$$-\left(\frac{\overline{A}(\rho_i g)^{n+1}(1-\frac{\rho_i}{\rho_w})^n}{4^n C}\right)^{\frac{1}{m+1}} \left(\frac{\rho_w}{\rho_i}b(x_g)\right)^{\frac{m+n+3}{m+1}} = ax_g$$

Stability analysis of steady states

Graphical analysis:

Linear stability analysis: Schoof [Schoof, 2012] has shown that marine ice sheets are unstable if

$$a(x_g)-q'(x_g)>0.$$

Critics Workshop, Kulhuse, Denmark

Ice streams dynamics

Bifurcation diagram

The system is bistable for some values of the parameters. The appearance or disappearance of two steady state solution branches is associated with a saddle-node bifurcation. The system can undergo hysteresis under variations of parameters.

Conclusions about MISI

Marine ice sheets have a discrete number of equilibrium profiles.

- Marine ice sheets are inherently unstable on upward-sloping bed.
- Marine ice sheets can undergo hysteresis under variations of physical parameters (sea level, accumulation rate, basal slipperiness and ice viscosity).
- MISI mechanism has been presented for a 2D model. For 3D models, buttressing effects could stabilise marine ice sheets.

Thermally induced oscillations

Heinrich events: a thermally oscillating event

Heinrich events are quasi-periodic episodes of massive ice discharges during the last glacial period. These episodes led to a climatic cooling and high ice-rafted detritus concentrations in the North Atlantic Ocean.

Step 1: Ice sheet build-up on a frozen bed (binge phase).

Step 2: Binge/Purge transition.

Step 3: Rapid basal motion (purge phase).

Step 4: Purge/Binge transition.

A simple model for thermal oscillations

The system is described by a set of four dynamical variables:

- 1. *h*: Ice thickness;
- 2. *w*: Water content of the till $(0 \le w \le w_s)$;
- 3. Z_s : Thickness of unfrozen till with zero porosity ($0 \le Z_s \le Z_0$);
- 4. T_b : Basal temperature ($T_b \leq T_m$).

w et Z_s are related trough $w = eZ_s$ where *e* is till void ratio ($e \ge e_c$).

The system has three main configurations:

A mathematical model for thermal oscillations (1)

Equation for *h*:

$$\frac{dh}{dt} = a_c - \frac{u_b}{h}L \quad \text{(continuity equation)}.$$

Equation for $w (T_b = T_m)$:

$$\frac{dw}{dt} = m - Q_w \quad \text{(melt water budget)}$$

with

$$\rho_i L_f m = \underbrace{G}_{\text{geothermal flux}} + \underbrace{\frac{k_i (T_s - T_b)}{h}}_{\text{vertical heat conduction}} + \underbrace{\tau_b u_b}_{\text{frictional heating}},$$

$$Q_w = \begin{cases} 0 & \text{if } w < w_s \text{ or } m < 0\\ m & \text{otherwise} \end{cases}.$$

Critics Workshop, Kulhuse, Denmark

Ice streams dynamics

A mathematical model for thermal oscillations (2)

Equation for Z_s ($T_b = T_m$):

$$e\frac{dZ_s}{dt} = \begin{cases} m & \text{if } e = e_c \text{ and } 0 < Z_s < Z_0 & \text{(ice fringe)} \\ m & \text{if } e = e_c \text{ and } Z_s = Z_0 \text{ and } m < 0 & \text{(ice fringe)} \\ m & \text{if } e = e_c \text{ and } Z_s = 0 \text{ and } m > 0 & \text{(ice fringe)} \\ 0 & \text{otherwise} \end{cases}$$

Equation for T_b :

$$\frac{dT_b}{dt} = \begin{cases} 0 & \text{if } w > 0 \text{ or } (T_b = T_m, w = 0 \text{ and } m > 0) \\ \frac{\rho_i L_f}{C_i h_b} m & \text{otherwise} \quad (\text{basal cooling}) \end{cases}$$

Ice streams dynamics

.

.

A mathematical model for thermal oscillations (3)

Equation for u_b :

$$u_b = \frac{A_g W^{n+1}}{4^n (n+1) h^n} \max[\tau_d - \tau_b, 0]^n \quad \text{(from force balance)}$$

where

$$\begin{aligned} \tau_d &= \rho_i g \frac{h^2}{L}, \\ \tau_b &= \begin{cases} a' \exp(-b(e-e_c)) & \text{if } w > 0 \\ \infty & \text{otherwise} \end{cases} \end{aligned}$$

.

Mode 1: Steady-streaming mode with drainage ($T_s = -15^{\circ}$ C).

Mode 2: Steady-streaming mode without drainage ($T_s = -20^{\circ}$ C).

Mode 3: Weak binge-purge mode ($T_s = -22^{\circ}$ C).

Mode 4: Strong binge-purge mode ($T_s = -35^{\circ}$ C).

Bifurcation diagram

Conclusions about thermal oscillations

- Ice streams on a till with thermomechanically evolving properties have four potential modes of behaviour (steady-streaming modes with and without drainage and weak and strong binge-purge modes).
 - Oscillations in ice flow are caused by internal ice stream dynamics.
- Ice streams can undergo a transition between their different modes when environmental conditions (surface temperature and geothermal flux) are changed. The transition between the steady-streaming mode without drainage and the weak binge-purge mode is a subcritical Hopf bifurcation.

Coupled model of marine ice sheet instability and thermally induced oscillations

Classical theories for grounding line stability and thermal oscillations

Classical theories of grounding line stability:

- Bed properties are supposed to be static in time.
- Ice streams tend toward a steady state.
- Grounding line can not persist on a retrograde slope.

Classical theories of thermal oscillations:

- Bed properties evolve dynamically.
- Ice streams rest on purely downward-sloping beds.
- Ice streams tend toward a steady state or an oscillatory behaviour.

A coupled model for ice stream dynamics

Coupled model:

- Bed section of retrograde slope [Schoof, 2007; Tsai et al., 2015].
- Bed properties evolve dynamically [Robel et al., 2013, 2014].
- Two main questions:
 - \rightarrow Is grounding line stability affected by evolving bed properties ?
 - \rightarrow Are thermal oscillations affected by a section of retrograde slope ?

New ice stream behaviours for the coupled model (1)

Grounding line can persist on a retrograde slope during stagnation phase.

New ice stream behaviours for the coupled model (2)

The grounding line of an active ice stream can reverse its direction of migration on a retrograde slope.

New ice stream behaviours for the coupled model (3)

A retrograde slope can suppress thermal oscillations.

Conclusions about coupled model

Ice streams can exhibit behaviours unexplained by classical theories for grounding line stability and thermal oscillations:

- Persistence of the grounding line on a retrograde slope for centuries (Siple Coast glaciers).
- Reversal of the direction of grounding line migration on a retrograde slope (Siple Coast glaciers).
- Suppression of thermal oscillations.
- Ice stream behaviour is affected by environmental conditions (accumulation rate, geothermal flux, surface temperature, ...) and bed topography.

Conclusion and outlook

Conclusion and outlook

- Understanding ice stream dynamics is essential to predict future mass balance of ice sheets.
- Ice streams exhibit complex behaviours. Environmental conditions as well as bed topography and properties play a key role in ice stream behaviour. Changes in these parameters can lead to abrupt transitions in ice sheet behaviour.
 - Future work:
 - ◆ Investigation of other physical processes (buttressing, 3D model,...).
 - Ice stream dynamics with stochastic forcing.
 - Investigation of uncertain parameters and their influence on ice stream dynamics.

References

References

- K. Andersen et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004.
- G. Bond. Heinrich Event Data, DSP 609. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 96-019. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, 1996.
- C. Schoof. Ice sheet grounding line dynamics : Steady states, stability, and hysteresis. Journal of Geophysical Research, 2007.
- C. Schoof. Marine ice sheet stability. Journal of Fluids Mechanics, 2012.
- V. Gornitz. Encyclopedia of paleoclimatology and ancient environnments. Springer, 2009.
- E. Mantelli et al. Stochastic ice stream dynamics. Proceedings of the National Academy of Sciences, 2016.
- A. Robel et al. Dynamics of ice stream temporal variability : Modes, scales, and hysteresis. Journal of Geophysical Research : Earth Surface, 2013.
- A. Robel et al. Rapid grounding line migration induced by internal ice stream variability. Journal of Geophysical Research : Earth Surface, 2014.
- A. Robel et al. Persistence and Variability of Ice Stream Grounding Lines on Retrogrades Bed Slopes. The Cryosphere Discussions, 2016.
- Tsai et al. Marine ice-sheet profiles and stability under Coulomb basal conditions. Journal of Glaciology, 2015.

Acknowledgement

The first author, Kevin Bulthuis, would like to acknowledge the Belgian National Fund for Scientific Research (F.R.S.-FNRS) for their financial support (F.R.S-FNRS Research Fellowship).

