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Motivation
� Ice streams (narrow corridors of fast-flowing ice) drain over 90% of the

Antarctic mass flux. Ice stream dynamics and stability are key factors for
Antarctic mass balance and future contribution to sea-level rise.
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Figure: Full map of Antarctic ice flow deduced from satellite data
[ NASA/JPL-Caltech/UCI].
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Motivation

� In this presentation, I will focus on two physical models that have been
proposed to explain current and past behaviours of ice streams:

� Marine ice sheet instability: Marine ice streams resting on a retrograde
bedrock could exhibit a rapid retreat leading to a sudden and important
loss of ice (Pine Island and Thwaites glaciers) [Schoof, 2007, 2012].

� Thermally induced oscillations: Ice streams can show decadal to
multi-millennial variability through a thermal feedback between ice
mass and bedrock sediments (Siple Coast glaciers) [Robel et al., 2013,
2014].

� It is possible to develop a coupled model of marine ice sheet instability and
thermally induced oscillations [Robel et al., 2016].
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Outline

� Motivation.

� Marine ice sheet instability.

� Thermally induced oscillations.

� Coupled model of marine ice sheet instability and thermally induced
oscillations.

� Conclusion and outlook.

� References.
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Marine ice sheet instability (MISI)
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Marine ice sheet instability mechanism

� Step 1: Steady state on an upward sloping bed (qin = qout).

∗
∗ ∗∗ qin

qout
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Marine ice sheet instability mechanism

� Step 2: Initiation of grounding line retreat (qin < qout).

∗
∗ ∗∗ qin

qout
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Marine ice sheet instability mechanism

� Step 3: Self-sustained grounding line retreat (qin� qout).
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qout
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A simple geometrical model for MISI

� We consider an ice stream sliding on an overdeepened bed. Ice flow is
described as a gravity-driven viscous flow subject to basal friction. Viscous
stresses can be neglected in the ice sheet except in a narrow transition zone
near the grounding line.

∗
∗ ∗∗

ice sheet
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A mathematical model for MISI
� Continuity equation (nonlinear diffusion equation):

∂h

∂t
− ∂

∂x
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� Symmetry condition at the ice divide:
∂(h−b)

∂x

∣∣∣∣
x=0

= 0.

� Flotation condition at the grounding line:

ρih(xg ) = ρwb(xg ).

� Stress continuity at the grounding line (from boundary layer theory):
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Steady grounding line positions: graphical approach
� Steady grounding line positions are given by(
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Stability analysis of steady states
� Graphical analysis:
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� Linear stability analysis: Schoof [Schoof, 2012] has shown that marine ice
sheets are unstable if

a(xg )−q′(xg ) > 0.
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Bifurcation diagram

� The system is bistable for some values of the parameters. The appearance
or disappearance of two steady state solution branches is associated with a
saddle-node bifurcation. The system can undergo hysteresis under
variations of parameters.
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Conclusions about MISI

� Marine ice sheets have a discrete number of equilibrium profiles.

� Marine ice sheets are inherently unstable on upward-sloping bed.

� Marine ice sheets can undergo hysteresis under variations of physical
parameters (sea level, accumulation rate, basal slipperiness and ice
viscosity).

� MISI mechanism has been presented for a 2D model. For 3D models,
buttressing effects could stabilise marine ice sheets.
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Thermally induced oscillations
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Heinrich events: a thermally oscillating event
� Heinrich events are quasi-periodic episodes of massive ice discharges

during the last glacial period. These episodes led to a climatic cooling and
high ice-rafted detritus concentrations in the North Atlantic Ocean.
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Thermal induced oscillations mechanism

� Step 1: Ice sheet build-up on a frozen bed (binge phase).

∗∗ ∗∗
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Thermal induced oscillations mechanism

� Step 2: Binge/Purge transition.

∗∗ ∗∗
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Thermal induced oscillations mechanism

� Step 3: Rapid basal motion (purge phase).

∗∗ ∗∗
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Thermal induced oscillations mechanism

� Step 4: Purge/Binge transition.

∗∗ ∗∗
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A simple model for thermal oscillations
� The system is described by a set of four dynamical variables:

1. h: Ice thickness;
2. w : Water content of the till (06 w 6 ws );
3. Zs : Thickness of unfrozen till with zero porosity (06 Zs 6 Z0);
4. Tb: Basal temperature (Tb 6 Tm).

w et Zs are related trough w = eZs where e is till void ratio (e > ec ).

� The system has three main configurations:

Tb = Tm,e > ec

h

Z0

ub

Tb = Tm,e = ec

Zs

ub

Tb < Tm

ub = 0
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A mathematical model for thermal oscillations (1)
� Equation for h:

dh

dt
= ac −

ub
h
L (continuity equation).

� Equation for w (Tb = Tm):

dw

dt
= m−Qw (melt water budget)

with

ρiLfm = G︸︷︷︸
geothermal flux

+
ki (Ts −Tb)

h︸ ︷︷ ︸
vertical heat conduction

+ τbub︸︷︷︸
frictional heating

,

Qw =

{
0 if w < ws orm < 0

m otherwise
.
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A mathematical model for thermal oscillations (2)

� Equation for Zs (Tb = Tm):

e
dZs

dt
=


m if e = ec and 0 < Zs < Z0 (ice fringe)

m if e = ec and Zs = Z0 andm < 0 (ice fringe)

m if e = ec and Zs = 0 andm > 0 (ice fringe)

0 otherwise

.

� Equation for Tb:

dTb

dt
=


0 if w > 0 or (Tb = Tm,w = 0 andm > 0)

ρiLf
Cihb

m otherwise (basal cooling)
.
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A mathematical model for thermal oscillations (3)

� Equation for ub:

ub =
AgW

n+1

4n(n+ 1)hn
max[τd − τb,0]n (from force balance)

where

τd = ρig
h2

L
,

τb =

{
a′ exp(−b(e− ec)) ifw > 0

∞ otherwise
.
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Characteristic modes of the ice stream

� Mode 1: Steady-streaming mode with drainage (Ts =−15◦C).
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Characteristic modes of the ice stream

� Mode 2: Steady-streaming mode without drainage (Ts =−20◦C).
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Characteristic modes of the ice stream

� Mode 3: Weak binge-purge mode (Ts =−22◦C).
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Characteristic modes of the ice stream

� Mode 4: Strong binge-purge mode (Ts =−35◦C).
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Bifurcation diagram
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Conclusions about thermal oscillations

� Ice streams on a till with thermomechanically evolving properties have four
potential modes of behaviour (steady-streaming modes with and without
drainage and weak and strong binge-purge modes).

� Oscillations in ice flow are caused by internal ice stream dynamics.

� Ice streams can undergo a transition between their different modes when
environmental conditions (surface temperature and geothermal flux) are
changed. The transition between the steady-streaming mode without
drainage and the weak binge-purge mode is a subcritical Hopf bifurcation.
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Coupled model of marine ice sheet instability and thermally
induced oscillations
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Classical theories for grounding line stability and
thermal oscillations

� Classical theories of grounding line stability:

� Bed properties are supposed to be static in time.

� Ice streams tend toward a steady state.

� Grounding line can not persist on a retrograde slope.

� Classical theories of thermal oscillations:

� Bed properties evolve dynamically.

� Ice streams rest on purely downward-sloping beds.

� Ice streams tend toward a steady state or an oscillatory behaviour.
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A coupled model for ice stream dynamics

� Coupled model:

� Bed section of retrograde slope [Schoof, 2007; Tsai et al., 2015].

� Bed properties evolve dynamically [Robel et al., 2013, 2014].

� Two main questions:

→ Is grounding line stability affected by evolving bed properties ?
→ Are thermal oscillations affected by a section of retrograde slope ?

∗∗ ∗∗
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New ice stream behaviours for the coupled model (1)

� Grounding line can persist on a retrograde slope during stagnation phase.
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New ice stream behaviours for the coupled model (2)
� The grounding line of an active ice stream can reverse its direction of

migration on a retrograde slope.
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New ice stream behaviours for the coupled model (3)

� A retrograde slope can suppress thermal oscillations.
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Conclusions about coupled model

� Ice streams can exhibit behaviours unexplained by classical theories for
grounding line stability and thermal oscillations:

� Persistence of the grounding line on a retrograde slope for centuries
(Siple Coast glaciers).

� Reversal of the direction of grounding line migration on a retrograde
slope (Siple Coast glaciers).

� Suppression of thermal oscillations.

� Ice stream behaviour is affected by environmental conditions (accumulation
rate, geothermal flux, surface temperature, . . . ) and bed topography.
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Conclusion and outlook

Critics Workshop, Kulhuse, Denmark Ice streams dynamics 30 / 34



Conclusion and outlook

� Understanding ice stream dynamics is essential to predict future mass
balance of ice sheets.

� Ice streams exhibit complex behaviours. Environmental conditions as well
as bed topography and properties play a key role in ice stream behaviour.
Changes in these parameters can lead to abrupt transitions in ice sheet
behaviour.

� Future work:
� Investigation of other physical processes (buttressing, 3D model,. . . ).

� Ice stream dynamics with stochastic forcing.

� Investigation of uncertain parameters and their influence on ice stream
dynamics.
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