Critics Workshop on Critical Transitions in Complex Systems

Instability and abrupt changes in marine ice sheet behaviour

K. Bulthuis1,2, M. Arnst1, F. Pattyn2, L. Favier2

1University of Liège, Liège, Belgium
2Free University of Brussels, Brussels, Belgium

Monday 5 September 2016
Motivation

- **Ice streams** (narrow corridors of fast-flowing ice) drain over 90% of the Antarctic mass flux. Ice stream dynamics and stability are key factors for Antarctic mass balance and future contribution to sea-level rise.

![Map of Antarctic ice flow deduced from satellite data](image)

Figure: Full map of Antarctic ice flow deduced from satellite data [NASA/JPL-Caltech/UCI].
Motivation

- In this presentation, I will focus on two physical models that have been proposed to explain current and past behaviours of ice streams:

 - Marine ice sheet instability: Marine ice streams resting on a retrograde bedrock could exhibit a rapid retreat leading to a sudden and important loss of ice (Pine Island and Thwaites glaciers) [Schoof, 2007, 2012].

 - Thermally induced oscillations: Ice streams can show decadal to multi-millennial variability through a thermal feedback between ice mass and bedrock sediments (Siple Coast glaciers) [Robel et al., 2013, 2014].

- It is possible to develop a coupled model of marine ice sheet instability and thermally induced oscillations [Robel et al., 2016].
Outline

■ Motivation.

■ Marine ice sheet instability.

■ Thermally induced oscillations.

■ Coupled model of marine ice sheet instability and thermally induced oscillations.

■ Conclusion and outlook.

■ References.
Marine ice sheet instability (MISI)
Marine ice sheet instability mechanism

- Step 1: Steady state on an upward sloping bed \((q_{\text{in}} = q_{\text{out}})\).
Step 2: Initiation of grounding line retreat \((q_{in} < q_{out})\).
Step 3: Self-sustained grounding line retreat ($q_{in} \ll q_{out}$).
A simple geometrical model for MISI

- We consider an ice stream sliding on an overdeepened bed. Ice flow is described as a gravity-driven viscous flow subject to basal friction. Viscous stresses can be neglected in the ice sheet except in a narrow transition zone near the grounding line.
A mathematical model for MISI

- Continuity equation (nonlinear diffusion equation):

\[
\frac{\partial h}{\partial t} - \frac{\partial}{\partial x} \left[\left(\frac{\rho_i g}{C} \right)^{1/m} h^{1 + \frac{1}{m}} \left| \frac{\partial (h - b)}{\partial x} \right|^{\frac{1}{m} - 1} \frac{\partial (h - b)}{\partial x} \right] = a.
\]

- Symmetry condition at the ice divide:

\[
\left. \frac{\partial (h - b)}{\partial x} \right|_{x=0} = 0.
\]

- Flotation condition at the grounding line:

\[
\rho_i h(x_g) = \rho_w b(x_g).
\]

- Stress continuity at the grounding line (from boundary layer theory):

\[
q(x_g) = \left(\frac{\overline{A}(\rho_i g)^{n+1}(1 - \frac{\rho_i}{\rho_w})^n}{4^n C} \right)^{\frac{1}{m+1}} h(x_g)^{\frac{m+n+3}{m+1}}.
\]
Steady grounding line positions: graphical approach

Steady grounding line positions are given by

\[
\left(\frac{\bar{A}(\rho_i g)^{n+1}(1 - \frac{\rho_i}{\rho_w})^n}{4^n C} \right)^{\frac{1}{m+1}} \left(\frac{\rho_w}{\rho_i} b(x_g) \right)^{\frac{m+n+3}{m+1}} = ax_g
\]
Stability analysis of steady states

Graphical analysis:

Linear stability analysis: Schoof [Schoof, 2012] has shown that marine ice sheets are unstable if

\[a(x_g) - q'(x_g) > 0. \]
The system is **bistable** for some values of the parameters. The appearance or disappearance of two steady state solution branches is associated with a **saddle-node bifurcation**. The system can undergo **hysteresis** under variations of parameters.

\[
\Delta h_w \text{ (m)} \quad x_g \text{ (km)} \quad a(C/\bar{A})^{1/(m+1)} \left(10^{15} \text{ Pa}^3 \text{ m}^{3/4}\right)
\]
Conclusions about MISI

- Marine ice sheets have a **discrete number of equilibrium profiles**.

- Marine ice sheets are inherently **unstable on upward-sloping bed**.

- Marine ice sheets can undergo **hysteresis** under variations of physical parameters (sea level, accumulation rate, basal slipperiness and ice viscosity).

- MISI mechanism has been presented for a 2D model. For 3D models, **buttressing effects could stabilise** marine ice sheets.
Thermally induced oscillations
Heinrich events: a thermally oscillating event

- Heinrich events are quasi-periodic episodes of massive ice discharges during the last glacial period. These episodes led to a climatic cooling and high ice-rafted detritus concentrations in the North Atlantic Ocean.

![Graph showing DSDP609 core depth (cm) and δ¹⁸O‰ (NGRIP) with Heinrich Events H1-H6 marked.

% IRD

DSDP609 core depth (cm) (data from [Bond, 1996])

δ¹⁸O‰ (NGRIP)

ky before 2000 AD (data from [Andersen et al., 1996])

Critics Workshop, Kulhuse, Denmark
Thermal induced oscillations mechanism

- Step 1: Ice sheet build-up on a frozen bed (binge phase).
Thermal induced oscillations mechanism

- Step 2: Binge/Purge transition.
Thermal induced oscillations mechanism

- Step 3: Rapid basal motion (purge phase).
Thermal induced oscillations mechanism

- Step 4: Purge/Binge transition.
A simple model for thermal oscillations

- The system is described by a set of four dynamical variables:
 1. h: Ice thickness;
 2. w: Water content of the till ($0 \leq w \leq w_s$);
 3. Z_s: Thickness of unfrozen till with zero porosity ($0 \leq Z_s \leq Z_0$);
 4. T_b: Basal temperature ($T_b \leq T_m$).

w and Z_s are related through $w = eZ_s$ where e is till void ratio ($e \geq e_c$).

- The system has three main configurations:

\[
T_b = T_m, e > e_c \\
\]

\[
T_b = T_m, e = e_c \\
\]

\[
T_b < T_m \\
\]
A mathematical model for thermal oscillations (1)

■ Equation for h:

$$\frac{dh}{dt} = a_c - \frac{u_b}{h} L$$ (continuity equation).

■ Equation for w ($T_b = T_m$):

$$\frac{dw}{dt} = m - Q_w$$ (melt water budget)

with

$$\rho_i L_f m = G + \frac{k_i (T_s - T_b)}{h} + \tau_b u_b,$$

geothermal flux vertical heat conduction frictional heating

$$Q_w = \begin{cases} 0 & \text{if } w < w_s \text{ or } m < 0 \\ m & \text{otherwise} \end{cases}.$$
A mathematical model for thermal oscillations (2)

- **Equation for** Z_s ($T_b = T_m$):

\[
e \frac{dZ_s}{dt} = \begin{cases}
 m & \text{if } e = e_c \text{ and } 0 < Z_s < Z_0 \\
 m & \text{if } e = e_c \text{ and } Z_s = Z_0 \text{ and } m < 0 \\
 m & \text{if } e = e_c \text{ and } Z_s = 0 \text{ and } m > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

- **Equation for** T_b:

\[
\frac{dT_b}{dt} = \begin{cases}
 0 & \text{if } w > 0 \text{ or } (T_b = T_m, w = 0 \text{ and } m > 0) \\
 \frac{\rho_i L_f}{C_i h_b} m & \text{otherwise} \quad \text{(basal cooling)}
\end{cases}
\]
A mathematical model for thermal oscillations (3)

- Equation for u_b:

$$u_b = \frac{A g \mathcal{W}^{n+1}}{4^n(n+1)h^n} \max[\tau_d - \tau_b, 0]^n$$

(from force balance)

where

$$\tau_d = \rho i g \frac{h^2}{L},$$

$$\tau_b = \begin{cases} a' \exp(-b(e - e_c)) & \text{if } w > 0 \\ \infty & \text{otherwise} \end{cases}.$$
Characteristic modes of the ice stream

- **Mode 1:** Steady-streaming mode with drainage \((T_s = -15^\circ C)\).
Mode 2: Steady-streaming mode without drainage ($T_s = -20^\circ C$).
Characteristic modes of the ice stream

- **Mode 3**: Weak binge-purge mode ($T_s = -22^\circ C$).
Characteristic modes of the ice stream

- Mode 4: Strong binge-purge mode ($T_s = -35^\circ C$).
Bifurcation diagram

- $w = w_s$
- $0 < w < w_s$
- $w = 0$

$T_d \quad T_s \quad T_f$

$\Delta h (m)$

$w = w_s$

$T_{saddle} \quad T_{hopf}$

$T_s (^\circ C)$

- steady-streaming mode
- binge-purge mode

Critics Workshop, Kulhuse, Denmark
Ice streams dynamics
Conclusions about thermal oscillations

- Ice streams on a till with thermomechanically evolving properties have four potential modes of behaviour (steady-streaming modes with and without drainage and weak and strong binge-purge modes).

- Oscillations in ice flow are caused by internal ice stream dynamics.

- Ice streams can undergo a transition between their different modes when environmental conditions (surface temperature and geothermal flux) are changed. The transition between the steady-streaming mode without drainage and the weak binge-purge mode is a subcritical Hopf bifurcation.
Coupled model of marine ice sheet instability and thermally induced oscillations
Classical theories for grounding line stability and thermal oscillations

- Classical theories of grounding line stability:
 - Bed properties are supposed to be static in time.
 - Ice streams tend toward a steady state.
 - Grounding line can not persist on a retrograde slope.

- Classical theories of thermal oscillations:
 - Bed properties evolve dynamically.
 - Ice streams rest on purely downward-sloping beds.
 - Ice streams tend toward a steady state or an oscillatory behaviour.
A coupled model for ice stream dynamics

- Coupled model:
 - Bed section of retrograde slope [Schoof, 2007; Tsai et al., 2015].
 - Bed properties evolve dynamically [Robel et al., 2013, 2014].
 - Two main questions:
 - Is grounding line stability affected by evolving bed properties?
 - Are thermal oscillations affected by a section of retrograde slope?
New ice stream behaviours for the coupled model (1)

- Grounding line can persist on a retrograde slope during stagnation phase.

![Graph showing ice stream dynamics over kiloyears](image-url)
The grounding line of an active ice stream can reverse its direction of migration on a retrograde slope.

![Graph showing ice stream behaviours](graph_image)
New ice stream behaviours for the coupled model (3)

- A retrograde slope can suppress thermal oscillations.

![Graph showing ice stream dynamics over kiloyears](image-url)
Conclusions about coupled model

- Ice streams can exhibit behaviours unexplained by classical theories for grounding line stability and thermal oscillations:

 ◆ **Persistence** of the grounding line on a retrograde slope for centuries (Siple Coast glaciers).

 ◆ **Reversal** of the direction of grounding line migration on a retrograde slope (Siple Coast glaciers).

 ◆ **Suppression** of thermal oscillations.

- Ice stream behaviour is affected by *environmental conditions* (accumulation rate, geothermal flux, surface temperature, . . .) and *bed topography*.
Conclusion and outlook
Conclusion and outlook

- Understanding ice stream dynamics is essential to predict future mass balance of ice sheets.

- Ice streams exhibit complex behaviours. Environmental conditions as well as bed topography and properties play a key role in ice stream behaviour. Changes in these parameters can lead to abrupt transitions in ice sheet behaviour.

Future work:
- Investigation of other physical processes (buttressing, 3D model, ...).
- Ice stream dynamics with stochastic forcing.
- Investigation of uncertain parameters and their influence on ice stream dynamics.
References
References

The first author, Kevin Bulthuis, would like to acknowledge the Belgian National Fund for Scientific Research (F.R.S.-FNRS) for their financial support (F.R.S-FNRS Research Fellowship).