
Coefficients binomiaux de mots

Michel Rigo

http://www.discmath.ulg.ac.be/

16 septembre 2012

http://orbi.ulg.ac.be/handle/2268/201779

La notion de coefficient binomial de mots est classique en COW.
Voir, par exemple, Sakarovitch & Simon, Lothaire.

(
w

x

)

nombre de fois où x apparâıt comme sous-mot de w

i.e., x apparâıt comme sous-suite de w

On compte les applications
ϕ : {1, . . . , |x |} → {1, . . . , |w |} telles que

ϕ(1) < · · · < ϕ(|x |)

wϕ(1) · · ·wϕ(|x |) = x

(
aabbab

ab

)

= 7

Généralise la notion usuelle de coefficient binomial d’entiers
(
am

an

)

=

(
m

n

)

, m,n ∈ N

On a

(
w

a

)

= |w |a , a ∈ A

Ces coefficients se calculent aisément :
(
w

ε

)

= 1,

(
w

x

)

= 0, if |w | < |x |

u, v ∈ A∗, a, b ∈ A,

(
ua

vb

)

=

(
u

vb

)

+ δa,b

(
u

v

)

coeff[u_, v_] := coeff[u, v] =

If[Length[v] == 0, 1,

If[Length[u] < Length[v], 0,

coeff[Drop[u, -1], v]

+ ((Last[u] == Last[v]) /. {True -> 1, False -> 0})

coeff[Drop[u, -1], Drop[v, -1]]

]

]

ε 1 10 11 10
0

10
1

11
0

11
1

10
00

· · · 11
00

ε
1
10
11
100
101

110 1 1

111
1000
...

1100 2
...

(
ua

vb

)

=

(
u

vb

)

+ δa,b

(
u

v

)

ε 1 10 11 100 101 110 111

ε 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
10 1 1 1 0 0 0 0 0
11 1 2 0 1 0 0 0 0

100 1 1 2 0 1 0 0 0
101 1 2 1 1 0 1 0 0
110 1 2 2 1 0 0 1 0
111 1 3 0 3 0 0 0 1

Triangle de Pascal (modulo 2) généralisé à 1{0, 1}∗

J. Leroy, M. R., M. Stipulanti, Generalized Pascal triangle for binomial

coefficients of words, Adv. in Appl. Math. 80 (2016), 24—47.

replacements

A0

c(A0)

h(c(A0))

c2(A0)

h
(c

2
(A

0
))

h
2
(c

2
(A

0
))

h

c

c

0 1

1

c homothétie de centre (0, 0) et rapport 1/2 ; h : (x , y) 7→ (x , 2y).

Definition

Soit k ≥ 1. Deux mots u, v sont k -binomialement équivalents

u ≡k v si et seulement si

(
u

x

)

=

(
v

x

)

∀x ∈ A≤k .

Remarque : équivalence 1-binomiale = équivalence abélienne.

On trouve aussi la notion de k -spectre d’un mot u.
C’est un polynôme (formel) de N〈A∗〉 de degré k

Specu,k =
∑

x∈A≤k

(
u

x

)

x .

Deux mots u, v sont k -binomialement équivalents SSI ils ont le

même k -spectre. information complète.

Exemple

Le 2-spectre du mot u = abbab est

Specu,2 = 1ε+ 2a + 3b + aa + 4ab + 2ba + 3bb.

Le 3-spectre de ce mot est

Specu,3 = Specu,2 + aab + 2aba + 3abb + 2bab + bba + bbb.

Notez que le k -spectre contient

(#A)k+1 − 1

(#A)− 1
coefficients (éventuellement nuls).

 croissance exponentielle en k .

2 + 3 =

(
5

1

)

, 1 + 4 + 2+ 3 =

(
5

2

)

, 1 + 2 + 3+ 2+ 1+ 1 =

(
5

3

)

ababbba, abbabab, baabbab, babaabb sont 2-binomialement
équivalents

|w |a = 3, |w |b = 4,

(
w

aa

)

=

(
3

2

)

= 3,

(
w

bb

)

=

(
4

2

)

= 6

(
w

ab

)

= 7,

(
w

ba

)

= 5

mais pas 3-binomialement équivalents

(
ababbba

aab

)

= 3,

(
abbabab

aab

)

= 4.

M. Dudik, L. J. Schulman 2003

Si |u| ≥ k ≥ |x |, alors on a

(
|u| − |x |

k − |x |

)(
u

x

)

=
∑

t∈Ak

(
u

t

)(
t

x

)

.

x

u

tt ′

problèmes de reconstruction

u ≡k v si et seulement si

(
u

x

)

=

(
v

x

)

∀x ∈ A≤k .

Corollaire

Soient u, v ∈ A≥k . On a u ≡k v SSI
(
u
t

)
=

(
v
t

)
pour tout mot t de

longueur k .

En COW, il existe un zoologie de relations d’équivalence :

◮ équivalence abélienne (depuis Erdős en 1961)

abbacba ∼ab cababba

◮ équivalence k -abélienne (Karhumäki, Saarela, Zamboni 2013)

|u|x = |v |x ∀x ∈ A≤k

◮ équivalence cyclique ou en termes de sous-groupes de
permutations (Cassaigne 2014, Charlier, Puzynina, Zamboni 2015)

◮ équivalence k -binomiale

◮ (Parikh) matrix equivalence (Salomaa et al. 2000)

◮ congruence de Simon (1975, Karandikar, Schnoebelen 2015)

Supp(Specu,k) = Supp(Specv ,k)

applications aux“piecewise testable languages”

Liens avec les matrices de Parikh.

A = {a1, . . . , ak}. Le “Parikh matrix mapping”

ψk : A∗ → N
(k+1)×(k+1)

est le morphisme défini par la condition :
si ψk (aq) = (mi ,j)1≤i ,j≤k+1, alors pour tout i ∈ {1, . . . , k + 1},

mi ,i = 1, mq ,q+1 = 1,

tous les autres éléments de la matrice ψk (aq) étant 0.

définition

Deux mots sont M -équivalents, ou matrice-équivalents,
s’ils possèdent la même matrice de Parikh.

Exemple, #A = 2

Considérons A = {a, b}. On a

ψ2(a) =





1 1 0
0 1 0
0 0 1



 , ψ2(b) =





1 0 0
0 1 1
0 0 1





et

ψ2(abbab) = ψ2(a)ψ2(b)ψ2(b)ψ2(a)ψ2(b) =





1 2 4
0 1 3
0 0 1



 .

Les matrices de Parikh, pour un alphabet de taille k , encodent

k(k + 1)/2

coefficients binomiaux d’un mot w pour les sous-mots de longueur
≤ k .

Théorème (A. Mateescu, A. Salomaa, K. Salomaa, S. Yu 2001)

Soit A = {a1, . . . , ak} un alphabet ordonné.
Soient w un mot fini et ψk (w) = (mi ,j)1≤i ,j≤k+1.
Alors

mi ,j+1 =

(
w

ai · · · aj

)

pour tous i , j tels que 1 ≤ i ≤ j ≤ k .

 information partielle : O(k2) vs. Ω((#A)k)

Exemple sur A = {a, b, c}

ψ3(w) =










1
(
w
a

) (
w
ab

) (
w
abc

)

0 1
(
w
b

) (
w
bc

)

0 0 1
(
w
c

)

0 0 0 1










ψ3(wb) =










1
(
w
a

) (
w
ab

) (
w
abc

)

0 1
(
w
b

) (
w
bc

)

0 0 1
(
w
c

)

0 0 0 1



















1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1










Par exemple, (
wb

ab

)

=

(
w

a

)

+

(
w

ab

)

Aussi, les matrices de Parikh généralisées ψu à tout mot u ∈ A∗,

Soit u = u1 · · · uℓ.
Si ψu(a) = (mi ,j)1≤i ,j≤ℓ+1,
alors pour tout i ∈ {1, . . . , ℓ+ 1}, mi ,i = 1,
et pour tout i ∈ {1, . . . , ℓ},

mi ,i+1 = δa,ui ,

les autres éléments de la matrice ψu(a) étant nuls.

Remarque

On retrouve les matrices de Parikh ’classiques’ avec

u = a1a2 · · · ak

si A = {a1, . . . , ak}.

Il vient

ψabba(a) =









1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1









, ψabba(b) =









1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1









.

Généralisation naturelle du théorème de Mateescu et al.

Théorème (Şerbănuţă 2004)

Soient u = u1 · · · uℓ et w un mot. Soit ψu(w) = (mi ,j)1≤i ,j≤ℓ+1.
Alors, pour tout 1 ≤ i ≤ j ≤ ℓ,

mi ,j+1 =

(
w

ui · · · uj

)

.

En particulier, la première ligne de ψu(w) contient les coefficients
correspondant aux préfixes de u :
(
w
ε

)
,
(
w
u1

)
,
(

w
u1u2

)
, . . . ,

(
w

u1···uℓ−1

)
,
(
w
u

)
.

De même, la dernière colonne de ψu(w) contient les coefficients
correspondant aux suffixes de u :
(
w
u

)
,
(

w
u2···uℓ

)
, . . . ,

(
w
u1

)
,
(
w
ε

)
.

Exemple

ψabba (w) =












1
(
w
a

) (
w
ab

) (
w
abb

) (
w

abba

)

0 1
(
w
b

) (
w
bb

) (
w
bba

)

0 0 1
(
w
b

) (
w
ba

)

0 0 0 1
(
w
a

)

0 0 0 0 1












Lien entre l’équivalence k -binomiale et la M -équivalence

Proposition

Pour un alphabet binaire, deux mots sont 2-binomialement
équivalents SSI ils ont la même matrice de Parikh.

ψ2(w) =







1
(
w
a

) (
w
ab

)

0 1
(
w
b

)

0 0 1







⇒ clair !
⇐ (

w

aa

)

=

(
|w |a
2

)

(
w

aa

)

+

(
w

ab

)

+

(
w

ba

)

+

(
w

bb

)

=

(
|w |

2

)

Malheureusement, on n’a pas mieux.

Deux mots sur {a, b, c},

u = abcbabcbabcbab and v = bacabbcabbcbba

◮ non 3-binomialement équivalents :
(

u
abb

)
= 34 et

(
v
abb

)
= 36,

◮ MAIS même matrice de Parikh ψ3(u) = ψ3(v).

Note : ils n’ont pas la même matrice de Parikh généralisée

ψabb(u) 6= ψabb(v).

En effaçant les c’s, on obtient deux mots sur {a, b}

u ′ = abbabbabbab et v ′ = baabbabbbba

◮ non 3-binomialement équivalents :
(
u′

abb

)
= 34,

(
v ′

abb

)
= 36

◮ MAIS même matrice de Parikh




1 4 16
0 1 7
0 0 1





En effet, l’équivalence 3-binomiale est un rafinement de
l’équivalence 2-binomiale.

Enfin, deux mots sur {a, b, c}

u = bccaa et v = cacab

◮ non 2-binomialement équivalents :
(
u
ca

)
= 4 et

(
v
ca

)
= 3,

◮ MAIS avec la même matrice de Parikh ψ3(u) = ψ3(v).






1 2 0 0
0 1 1 2
0 0 1 2
0 0 0 1







Théorème (A. Salomaa 2010)

Sur un alphabet binaire A, deux mots ont la même matrice de
Parikh SSI l’un s’obtient à partir de l’autre par une suite finie de
transformations de la forme

xabybaz → xbayabz

où a, b ∈ A et x , y , z ∈ A∗.

Valide aussi pour l’équivalence 2-binomiale.

1011001001011 ≡2 1101001000111 ≡2 1100110000111

#[0 · · · 01 · · · 1]≡2 = 1

#({a, b}n/≡2) =
n3 + 5n + 6

6

Remarque

Si x ≡k−1 y , alors
pxqyr ≡k pyqxr

Cependant, il n’est pas clair que le résultat précédent puisse être
généralisé

Sur 3 lettres :
2100221 ≡2 0221102

mais 2100221 ne peut pas être factorisé en pxqyr avec x ≡ab y .

Questions

La notion d’évitement est classique en COW (Thue début XXe).

◮ #A = 2, tout mot de longueur ≥ 4 contient un carré uu

◮ #A = 2, les cubes (et les chevauchements) peuvent être évités

abbabaabbaababbabaababbaabbabaab · · ·

◮ #A = 3, les carrés peuvent être évités

(abb)(ab)(a)(abb)(a)(ab)(abb)(ab)(a)(ab)(abb)(a)(abb)(ab) · · ·

0 7→ 012, 1 7→ 02, 2 7→ 1

◮ #A = 3, les carrés abéliens sont inévitables

◮ #A = 4, les carrés abéliens peuvent être évités (V. Keränen)

◮ #A = 3, les cubes abéliens peuvent être évités
(F. M. Dekking)

Questions

On définit un carré 2-binomial uv où u ≡2 v

“carré abélien ≺ carré 2-binomial ≺ · · · ≺ carré”

◮ les carrés sont évitables sur 3 lettres

◮ les carrés abéliens sont évitables sur 4 lettres

 les carrés 2-binomiaux sont-ils évitables sur 3 lettres ?

0 7→ 012, 1 7→ 02, 2 7→ 1

Remarque : les carrés k -binomiaux sont évitables sur 3 lettres,
∀k ≥ 2.

Questions

On définit un carré 2-binomial uv où u ≡2 v

“carré abélien ≺ carré 2-binomial ≺ · · · ≺ carré”

◮ les carrés sont évitables sur 3 lettres

◮ les carrés abéliens sont évitables sur 4 lettres

 les carrés 2-binomiaux sont-ils évitables sur 3 lettres ?

0 7→ 012, 1 7→ 02, 2 7→ 1

Remarque : les carrés k -binomiaux sont évitables sur 3 lettres,
∀k ≥ 2.

Questions

On définit un cube 2-binomial uvw où u ≡2 v , v ≡2 w

abbabaabbaab

“cube abélien ≺ cube 2-binomial ≺ · · · ≺ cube”

◮ les cubes sont évitables sur 2 lettres

◮ les cubes abéliens sont évitables sur 3 lettres

 les cubes 2-binomiaux sont-ils évitables sur 2 lettres ?

0 7→ 001, 1 7→ 011

M. Rao, M. R., P. Salimov, Avoiding 2-binomial squares and cubes,
Theoret. Comput. Sci. 572 (2015), 83–91.

Questions

On définit un cube 2-binomial uvw où u ≡2 v , v ≡2 w

abbabaabbaab

“cube abélien ≺ cube 2-binomial ≺ · · · ≺ cube”

◮ les cubes sont évitables sur 2 lettres

◮ les cubes abéliens sont évitables sur 3 lettres

 les cubes 2-binomiaux sont-ils évitables sur 2 lettres ?

0 7→ 001, 1 7→ 011

M. Rao, M. R., P. Salimov, Avoiding 2-binomial squares and cubes,
Theoret. Comput. Sci. 572 (2015), 83–91.

Questions

Sakarovitch et Simon demandaient déjà d’avoir une meilleure
connaissance de #(An/ ∼k) où ∼k est la congruence de Simon.

◮ Etant donnés k ≥ 1 et deux mots u, v de longueur n

decider, en temps polynomial en n, k , si u ≡k v .

◮ Etant donnés k ≥ 1 et deux mots w , x

trouver, en temps polynomial, toutes les occurrences des

facteurs de w qui sont k -binomialement équivalents à x .

◮ Etant donnés deux mots u, v de longueur n,

trouver le plus grand k tel que u ≡k v .

cf. aussi k -abelian pattern matching, T. Ehlers, F. Manea,
R. Mercas, D. Nowotka, DLT 2014. (en temps linéaire)

Idées principales du papier
’Testing k -binomial equivalence’

arXiv:1509.00622

D. Freydenberger et al.

On considérera uniquement la première question.

Première réponse, étant donnés un mot w de longueur n et un
entier k
 construire un AFND Aw ,k ayant nk + 1 états

abcde

4,1 5,1

5,2

1,1 2,1 3,1

2,2 3,2 4,2

5,34,33,32,31,3

1,2

n

n

k

◮ tous les états sont finals,

◮ accepte exactement les sous-mots de w de longueur ≤ k

◮ un sous-mot x est accepté
(
w
x

)
fois !

w = abbab, k = 3

Aw ,3

4,1 5,1

5,2

1,1 2,1 3,1

2,2 3,2 4,2

5,34,33,32,31,3

1,2

(
w

abb

)

= 3,

(
w

ba

)

= 2

Deux automates sont équivalents s’ils
acceptent le même langage avec les mêmes multiplicitiés.

Etant donnés deux mots u, v

◮ construire Au,k et Av ,k

◮ u ≡k v se réduit à ’Au,k et Av ,k sont-ils équivalents ?’

W. Tzeng, SIAM J. Computing 1992

 algorithme polynomial, au moins en n3. . .

Du résumé du papier de Tzeng :

Two probabilistic automata are equivalent if
for any string x , the two automata accept x

with equal probability. This paper presents an
O((n1 + n2)

4) algorithm for determining whe-
ther two probabilistic automata U1 and U2 are
equivalent, where n1 and n2 are the number of
states in U1 and U2, respectively.

• S. Kiefer, A. S. Murawski, et al. On the complexity of the

equivalence problem for probabilistic automata, LNCS 7213

(2012), 467–481.

• M.-P. Schützenberger, On the definition of a family of automata,
Inf. and Control, 245–270, 1961. (minimisation d’automates
pondérés)

Seconde réponse, un algorithme probabiliste

Définition

Soient un mot w ∈ {0, 1}∗ de longueur n et un entier k ,

Qw ,k(X) :=
∑

v∈A≤k

(
w

v

)

X val2(1v)

Q0010,2(X) = X + 3X 2 + X 3 + 3X 4 + X 5 + X 6

Comme le k -spectre, contient l’information complète.

Exemple

Le 2-spectre du mot abbab est

1 ε
︸︷︷︸

1

+2 a
︸︷︷︸

10

+3 b
︸︷︷︸

11

+ aa
︸︷︷︸

100

+4 ab
︸︷︷︸

101

+2 ba
︸︷︷︸

110

+3 bb
︸︷︷︸

111

.

Q01101,2(X) = X + 2X 2 + 3X 3 +X 4 + 4X 5 + 2X 6 + 3X 7.

Remarque

Qw ,k est de degré

val(1 1 · · · 1
︸ ︷︷ ︸

k fois

) = 2k+1 − 1

 crôıt exponentiellement avec k .

Remarque

Deux mots u, v sont k -binomialement équivalents SSI

Qu,k (X) = Qv ,k(X).

A première vue, il est nécessaire de calculer tous les coefficients !
(au moins la moitié d’entre eux)

Soit p un grand nombre premier (bien choisi),
Qu,k (X) et Qv ,k(X) sont vus comme des polynômes de Fp [X].

Si u 6≡k v , alors Qu,k (X)−Qv ,k(X) est un polynôme non nul de
degré d ayant au plus d zéros. Si on choisit α ∈ Fp aléatoirement,

P((Qu,k −Qv ,k)(α) = 0) ≤ d/p.

Si u ≡k v , alors Qu,k (X)−Qv ,k(X) = 0.
Pour tout α ∈ Fp , Qu,k −Qv ,k(α) = 0

Remarque

Deux mots u, v sont k -binomialement équivalents SSI

Qu,k (X) = Qv ,k(X).

A première vue, il est nécessaire de calculer tous les coefficients !
(au moins la moitié d’entre eux)

Soit p un grand nombre premier (bien choisi),
Qu,k (X) et Qv ,k(X) sont vus comme des polynômes de Fp [X].

Si u 6≡k v , alors Qu,k (X)−Qv ,k(X) est un polynôme non nul de
degré d ayant au plus d zéros. Si on choisit α ∈ Fp aléatoirement,

P((Qu,k −Qv ,k)(α) = 0) ≤ d/p.

Si u ≡k v , alors Qu,k (X)−Qv ,k(X) = 0.
Pour tout α ∈ Fp , Qu,k −Qv ,k(α) = 0

Un algorithme probabiliste

En supposant que d/p est ’petit’, on choisit aléatoirement
α ∈ Fp [X].
En supposant que l’on calcule ’facilement’ Qu,k (α) et Qv ,k(α).

◮ Si Qu,k (α) 6= Qv ,k(α), alors u 6≡k v .
 L’algorithme renvoie u 6≡k v .

◮ Si Qu,k (α) = Qv ,k(α), alors presque sûrement u ≡k v .
 L’algorithme renvoie u ≡k v .

On a Qu,k (α) = Qv ,k(α) et u 6≡k v , uniquement si on a tiré un
zéro du polynôme non nul (Qu,k −Qv ,k)(X).

 On obtient une conclusion erronée u ≡k v alors que u 6≡k v ,
avec une probabilité d’au plus d/p.

Choix de p ?

Les coefficients in Qw ,k ∈ Fp [X] sont inférieurs à nk , en effet

(
an

ak

)

=

(
n

k

)

=
n(n − 1) · · · (n − k + 1)

k !
< nk

Choisir un nombre premier
p ∈ [nk , 2nk]

Ce n’est pas un problème pour obtenir un algorithme polynomial :

◮ AKS est polynomial en log(n)

◮ test probabiliste de Miller–Rabin,
déterministe si hypothèse de Riemann OK.

Qw ,k (X) est de degré 2k+1 − 1 et p ≥ nk

probabilité d’erreur :
d

p
≤

2k+1 − 1

nk

n→+∞
−→ 0

Pour des mots suffisamment longs u, v , on croira volontiers
l’algorithme quand il renvoie ’u ≡k v ’.

Résultat principal

Soit w un mot de longueur n. Soit α ∈ Fp .
La valeur Qw ,k (α) peut être calculée en O(k2n) opérations.

Qw ,k(X) =
∑

|v |≤k

(
w

v

)

X val2(1v) =
k∑

ℓ=1

X 2ℓ










∑

|v |=ℓ

(
w

v

)

X val2(v)

︸ ︷︷ ︸

=:Rw,ℓ(X)










 Il faut déterminer Rw ,ℓ(α) pour tout ℓ ∈ {1, . . . , k}

w = w1 · · ·wn w [i ,n] = wi · · ·wn

On utilise la programmation dynamique pour la table k × n et les
valeurs

Rw [i ,n],t(α), i ∈ {1, . . . ,n}, t ∈ {1, . . . , k}

Rw,k Rw[2,n],k Rw[3,n],k · · · · · · Rw[n,n],k 0

Rw,k−1 Rw[2,n],k−1 Rw[3,n],k−1 · · · · · · Rw[n,n],k−1 0

Rw,k−2 Rw[2,n],k−2 Rw[3,n],k−2 · · · · · · Rw[n,n],k−2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rw[i,n],t Rw[i+1,n],t
Rw[i+1,n],t−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rw,1 Rw[2,n],1 Rw[3,n],1 · · · · · · Rw[n,n],1 0

1 1 1 · · · · · · 1 1

Rw [n + 1,n]
︸ ︷︷ ︸

=ε

,t
= 0 si t > 0 ; Rw [i ,n],0 = 1 pour tout 1 ≤ i ≤ n + 1

Rw [i ,n],t , i ≤ n, t ≥ 1,
dépend uniquement de Rw [i+1,n],t and Rw [i+1,n],t−1

Soient i ≤ n, t ≥ 1, on a

Rw [i ,n],t(X) = Rw [i+1,n],t(X) +Rw [i+1,n],t−1(X), si wi = 0

Rw [i ,n],t(X) = Rw [i+1,n],t(X) + X 2tRw [i+1,n],t−1(X), si wi = 1

On se souvient que

Rw [i ,n],t(X) =
∑

|v |=t

(
wi · · ·wn

v

)

X val2(v)

Rw [i ,n],t(X)
︸ ︷︷ ︸

↓

= Rw [i+1,n],t(X) + Rw [i+1,n],t−1(X), si wi = 0

∑

|v |=t

(0wi+1···wn

v

)
X val2(v)

v débute avec 0 ou 1

=
∑

|u|=t−1

(0wi+1···wn

0u

)
X val2(0u) +

∑

|u|=t−1

(0wi+1···wn

1u

)
X val2(1u)

=
∑

|u|=t−1

(
wi+1···wn

u

)
X val2(u) +

∑

|u|=t−1

(
wi+1···wn

0u

)
X val2(0u)

+
∑

|u|=t−1

(
wi+1···wn

1u

)
X val2(1u)

=

Rw[i+1,n],t−1(X)
︷ ︸︸ ︷
∑

|u|=t−1

(
wi+1 · · ·wn

u

)

X val2(u)

+
∑

|u|=t−1

(
wi+1 · · ·wn

0u

)

X val2(0u) +
∑

|u|=t−1

(
wi+1 · · ·wn

1u

)

X val2(1u)

︸ ︷︷ ︸

Rw[i+1,n],t (X)

En résumé,

◮ Calculer un élément Rw [i ,n],t(α) de la table

est une addition dans Fp et p ∼ nk .
Cela nécessite O(log p) = O(k log n) — arithmétique des corps finis

◮ On doit calculer k × n éléments de ce type
 O(k2n log n)

◮ Enfin, on calcule

Qw ,k (α) =

k∑

ℓ=1

α2ℓRw ,ℓ(α)

k produits, chacun nécessitant O(log2 p) = O(k2 log2 n)
 O(k3 log2 n)

References

◮ P. Karandikar, M. Kufleitner, Ph. Schnoebelen. On the index
of Simon’s congruence for piecewise testability, Information

Processing Letters 15 (2015), 515–519.

◮ J. Maňuch, Characterization of a word by its subwords, in :
G. Rozenberg, W. Thomas (Eds.), Developments in Language
Theory, World Scientific Publ. Co., Singapore, 2000,
pp. 210–219.

◮ A. Mateescu, A. Salomaa, K. Salomaa, Yu Sheng, A
Sharpening of the Parikh Mapping, RAIRO-Theoretical
Informatics and Applications 35 (2001), 551–564.

◮ M. Rigo, P. Salimov, Another generalization of abelian
equivalence : Binomial complexity of infinite words, Theoret.
Comput. Sci. 601 (2015), 47—57.

References

◮ M. Rigo, Relations on words, Arxiv/1602.03364

◮ J. Sakarovitch, I. Simon, Subwords, in : M. Lothaire (Ed.),
Combinatorics on Words, Addison-Wesley, Reading, MA,
1983, pp. 105–142.

◮ A. Salomaa, Counting (scattered) subwords, EATCS Bull. 81

(2003) 165–179.

◮ A. Salomaa, Connections between subwords and certain
matrix mappings, Theoret. Comput. Sci. 340 (2005) 188–203.

◮ A. Salomaa, Criteria for the matrix equivalence of words,
Theoret. Comput. Sci. 411 (2010) 1818–1827.

◮ T.-F. Şerbănuţă, Extending Parikh matrices, Theoret.
Comput. Sci. 310 (2004), 23–246.

4th CANT School & Conference — CIRM, Marseille
Combinatorics, Automata and Number Theory

November 28th – December 2nd, 2016
http ://www.cant.ulg.ac.be/cant2016/

http ://scientific-events.weebly.com/1502.html

21th international conference DLT
Developments in Language Theory

7 – 11 August 2017
http ://www.cant.ulg.ac.be/dlt/

