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La notion de coefficient binomial de mots est classique en COW.
Voir, par exemple, Sakarovitch & Simon, Lothaire.

w . .
( > nombre de fois ol z apparailt comme sous-mot de w
x

i.e., T apparait comme sous-suite de w

ICOMBINATORICS|
On compte les applications ON WORDS
e:{1,...,|z|} = {1,...,|w|} telles que

p(1) < < o(lz])

Wo(1) =+ We(la|) = L

M. Lothaire

Cambridge Mathematical Library
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ab
Généralise la notion usuelle de coefficient binomial d’entiers

(an> = <m>’ m,n €N
a n



Ces coefficients se calculent aisément :

(“’) —1, (“’) —0, if |w| < |z]

5 T

u,v€ A%, a,b € A, “y_ (¢ +0ab “
vb vb T\ w

coefflu_, v_] := coefflu, v] =
If[Lengthl[v] == 0, 1,
If [Length[u] < Length[v], O,
coeff [Drop[u, -1], v]
+ ((Last[u] == Last[v]) /. {True -> 1, False -> 0})
coeff [Drop[u, -1], Droplv, -11]

]
]
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Triangle de Pascal (modulo 2) généralisé a 1{0, 1}*
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J. Leroy, M. R., M. Stipulanti, Generalized Pascal triangle for binomial

coefficients of words, Adv. in Appl. Math. 80 (2016
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¢ homothétie de centre (0,0) et rapport 1/2; h: (z,y) — (z,2y).



DEFINITION

Soit k£ > 1. Deux mots u, v sont k-binomialement équivalents
uw =} v si et seulement si

(1) =) woean

Remarque : équivalence 1-binomiale = équivalence abélienne.

On trouve aussi la notion de k-spectre d'un mot wu.
C'est un polynéme (formel) de N(A*) de degré k

u
Spec,, , = Z <x) x.
TEASk

Deux mots u, v sont k-binomialement équivalents S5l ils ont le
méme k-spectre. ~~ information compléte.



EXEMPLE

Le 2-spectre du mot u = abbab est
Spec, o = le +2a + 3b + aa + 4ab + 2ba + 3bb.
Le 3-spectre de ce mot est

Spec,, 3 = Spec,, o + aab + 2aba + 3abb + 2bab + bba + bbb.

Notez que le k-spectre contient

G
#A) -1

~~ croissance exponentielle en k.

coefficients (éventuellement nuls).

2+3= G) 1+44424+3= <2> 1+2+3+2+1+1= (g)



ababbba, abbabab, baabbab, babaabb sont 2-binomialement
équivalents

s e (2)=)=5 (3)-()
() (2)-

mais pas 3-binomialement équivalents

ababbba 3 abbabab _4
aab aab



M. Dubpik, L. J. SCHULMAN 2003

Si |u| > k > |z|, alors on a

(o) () =2 0)0)

tc Ak

IETER
N

problémes de reconstruction



u =} v si et seulement si

(“) - <”> Vo € ASk,
x X
COROLLAIRE

Soient u,v € A=%. On a u =4 v SSI (%) = () pour tout mot ¢ de
longueur k.




En COW, il existe un zoologie de relations d'équivalence :

» équivalence abélienne (depuis Erd8s en 1961)
abbacba ~ 4 cababba
» équivalence k-abélienne (Karhumaki, Saarela, Zamboni 2013)
lu|, = |v|, Yz e ASF

» équivalence cyclique ou en termes de sous-groupes de
permutations (Cassaigne 2014, Charlier, Puzynina, Zamboni 2015)

» équivalence k-binomiale
» (Parikh) matrix equivalence (Salomaa et al. 2000)
» congruence de Simon (1975, Karandikar, Schnoebelen 2015)

Supp(Spec,, 1) = Supp(Spec, 1)

applications aux “piecewise testable languages”



Liens avec les matrices de Parikh.
A={ay,...,a}. Le"Parikh matrix mapping’
U - A* = N(k+1)><(k+1)

est le morphisme défini par la condition :
si ¥ (aq) = (mij)i<ij<k+1, alors pour tout 7 € {1,...,k + 1},
mii =1, mgqer1 =1,

)

tous les autres éléments de la matrice v, (a,) étant 0.

DEFINITION

Deux mots sont M -équivalents, ou matrice-équivalents,
s'ils possedent la méme matrice de Parikh.



EXEMPLE, #A =2
Considérons A = {a,b}. On a

10 10
1 0], va(b)=|[0 1
0 1 0 0

et



Les matrices de Parikh, pour un alphabet de taille k, encodent
k(k+1)/2

coefficients binomiaux d'un mot w pour les sous-mots de longueur
<k.

, N
THEOREI\[E (A. MATEESCU, A. SALOMAA, K. SALOMAA, S. YU 2001)

Soit A = {ai,...,ax} un alphabet ordonné.
Soient w un mot fini et Y1 (w) = (M4 )1<ij<i+1-

Alors
w
m; 41 =
‘7+ aZ o« o a]

pour tous 7,7 tels que 1 <7 <5 <k.

~~ information partielle : O(k?) vs. Q((#A)¥)



Exemple sur A = {a, b, c}

Y3(w) =

o o o =



Par exemple,

()

ab

wb



Aussi, les matrices de Parikh généralisées 1), a tout mot u € A*,

Soit u = up - - - uy.

Sipu(a) = (mij)i<ij<es1s

alors pour tout ¢ € {1,...,0+ 1}, m; ; =1,
et pour tout ¢ € {1,...,¢},

mgi+1 = 5a,u“

les autres éléments de la matrice v, (a) étant nuls.

REMARQUE

On retrouve les matrices de Parikh 'classiques’ avec
U= aay - - a

siA:{al,...,ak}.



Il vient
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Généralisation naturelle du théoréme de Mateescu et al.

THEOREI\[E (SERBANUTA 2004)

Soient u = uy - - up et w un mot. Soit Py, (w) = (M ;)1<ij<e+1-
Alors, pour tout 1 < i <j </,

w
ml?]"’_l = °

En particulier, la premiére ligne de 1, (w) contient les coefficients
correspondant aux préfixes de u :

() G G oo Gty ) G-

De méme, la derniere colonne de v, (w) contient les coefficients
correspondant aux suffixes de u :

G ()0 G (2):



Exemple

Yabba (’LU)



Lien entre I'équivalence k-binomiale et la M-équivalence

PROPOSITION

Pour un alphabet binaire, deux mots sont 2-binomialement
équivalents SSl ils ont la méme matrice de Parikh.

= clair!
<~

Malheureusement, on n'a pas mieux.



Deux mots sur {a, b, c},

u = abcbabecbabebab and v = bacabbcabbebba

> non 3-binomialement équivalents : (,},) = 34 et (,;,) = 36,
» MAIS méme matrice de Parikh ¢3(u) = ¢3(v).

Note : ils n'ont pas la méme matrice de Parikh généralisée

VYaby (1) 7 Vb (V).



En effacant les ¢'s, on obtient deux mots sur {a, b}

uw' = abbabbabbab et v' = baabbabbbba

» non 3-binomialement équivalents : (;Z/b) = 34, (;;;b) =36
» MAIS méme matrice de Parikh

1 4 16
01 7
0 0 1

En effet, I'équivalence 3-binomiale est un rafinement de
I'équivalence 2-binomiale.



Enfin, deux mots sur {a, b, c}

u = becaa et v = cacab

> non 2-binomialement équivalents : (%) =4 et () =3,
» MAIS avec la méme matrice de Parikh 13(u) = 93(v).

1 2 00
01 1 2
0 01 2
0 001



THEOREME (A. SALOMAA 2010)

Sur un alphabet binaire A, deux mots ont la méme matrice de
Parikh SSI I'un s’obtient a partir de I'autre par une suite finie de
transformations de la forme

xabybaz — xbayabz
oua,be Aetz,y,z€ A"

Valide aussi pour |'équivalence 2-binomiale.

1011001001011 =5 1101001000111 =5 1100110000111



#({a, b} j=g) = OO



REMARQUE

Si x =;_1 vy, alors
prqyr =k pyqrr

Cependant, il n'est pas clair que le résultat précédent puisse étre
généralisé
Sur 3 lettres :

2100221 =5 0221102

mais 2100221 ne peut pas étre factorisé en pzqyr avec x =g ¥.



(QUESTIONS

La notion d'évitement est classique en COW (Thue début XX¢).
» #A =2, tout mot de longueur > 4 contient un carré uu

» #A =2, les cubes (et les chevauchements) peuvent étre évités

abbabaabbaababbabaababbaabbabaab - - -

v

#A = 3, les carrés peuvent étre évités

(abb)(ab)(a)(abb)(a)(ab)(abb)(ab)(a)(ab)(abb)(a)(abb)(ab)---
0—012, 1—02, 2—1

v

#A = 3, les carrés abéliens sont inévitables

v

# A = 4, les carrés abéliens peuvent étre évités (V. Kerinen)

v

# A = 3, les cubes abéliens peuvent &étre évités
(F. M. Dekking)



(QUESTIONS

On définit un carré 2-binomial uv ol u =9 v

“carré abélien < carré 2-binomial < --- < carré”

» les carrés sont évitables sur 3 lettres

> les carrés abéliens sont évitables sur 4 lettres

~~ les carrés 2-binomiaux sont-ils évitables sur 3 lettres?



(QUESTIONS

On définit un carré 2-binomial uv ol u =9 v
“carré abélien < carré 2-binomial < --- < carré”

» les carrés sont évitables sur 3 lettres

> les carrés abéliens sont évitables sur 4 lettres

~~ les carrés 2-binomiaux sont-ils évitables sur 3 lettres?
0— 012, 1—02, 2—1

Remarque : les carrés k-binomiaux sont évitables sur 3 lettres,
vk > 2.



(QUESTIONS

On définit un cube 2-binomial wvw ol u =5 v, v =4 w
abbabaabbaab

“cube abélien < cube 2-binomial < --- < cube”

» les cubes sont évitables sur 2 lettres

> les cubes abéliens sont évitables sur 3 lettres

~~ les cubes 2-binomiaux sont-ils évitables sur 2 lettres ?



(QUESTIONS

On définit un cube 2-binomial wvw ol u =5 v, v =4 w
abbabaabbaab

“cube abélien < cube 2-binomial < --- < cube”

» les cubes sont évitables sur 2 lettres

> les cubes abéliens sont évitables sur 3 lettres

~~ les cubes 2-binomiaux sont-ils évitables sur 2 lettres ?
0+~ 001, 1~ 011

M. Rao, M. R., P. Salimov, Avoiding 2-binomial squares and cubes,
Theoret. Comput. Sci. 572 (2015), 83-91.



(QUESTIONS

Sakarovitch et Simon demandaient déja d’avoir une meilleure
connaissance de #(A"/ ~) ou ~y est la congruence de Simon.

» Etant donnés k£ > 1 et deux mots u, v de longueur n
decider, en temps polynomial en n.,k, si u =; v.
» Etant donnés k£ > 1 et deux mots w, z

trouver, en temps polynomial, toutes les occurrences des
facteurs de w qui sont k-binomialement équivalents a x.

» Etant donnés deux mots u, v de longueur n,

trouver le plus grand k tel que u =5 v.

cf. aussi k-abelian pattern matching, T. Ehlers, F. Manea,
R. Mercas, D. Nowotka, DLT 2014. (en temps linéaire)



Idées principales du papier
"Testing k-binomial equivalence’
arXiv:1509.00622
D. Freydenberger et al.

On considérera uniquement la premiere question.



Premieére réponse, étant donnés un mot w de longueur n et un
entier k
~» construire un AFND A,, ;, ayant nk + 1 états

abcd
n 11 21 31 41 51
NG

Y k
12 22 32 42 52
\

13 23 33 43 53

> tous les états sont finals,
> accepte exactement les sous-mots de w de longueur < k
> un sous-mot x est accepté (Z’) fois !



w = abbab, k =3

Aw,?)
11 21 31 41 51
12 22 32 42 52

13 23 33 43 53

<alll7}b> = (22) =2



Deux automates sont équivalents s'ils
acceptent le méme langage avec les mémes multiplicitiés.

Etant donnés deux mots u, v
» construire A, 1, et A,

> u =; v se réduit a 'A, ; et A, i sont-ils équivalents?’

W. Tzeng, SIAM J. Computing 1992

~ algorithme polynomial, au moins en n3. ..



Du résumé du papier de Tzeng :

Two probabilistic automata are equivalent if
for any string z, the two automata accept z
with equal probability. This paper presents an
O((ny + np)*) algorithm for determining whe-
ther two probabilistic automata U; and Us are
equivalent, where ny; and ny are the number of
states in Uy and Uy, respectively.

e S. Kiefer, A. S. Murawski, et al. On the complexity of the
equivalence problem for probabilistic automata, LNCS 7213
(2012), 467-481.

e M.-P. Schiitzenberger, On the definition of a family of automata,
Inf. and Control, 245-270, 1961. (minimisation d'automates
pondérés)



Seconde réponse, un algorithme probabiliste

DEFINITION

Soient un mot w € {0, 1}* de longueur n et un entier k,

Qw,k(X) = Z (f)Xvalz(lv)

vEASK

Qoor02(X) = X +3X2 4+ X3 +3X% + X° + X6

Comme le k-spectre, contient |'information compléte.



EXEMPLE

Le 2-spectre du mot abbab est

1 ¢ 42 a +3 b + aa +4 ab +2 ba +3 bb .
1 10 11 100 101 110 111

Qo11012(X) = X +2X2 +3X3 + X* 44X° + 2X°% 4 3X7.

REMARQUE

Qu, i est de degré

val(11---1) =2kt —1
———
k fois

~~ croit exponentiellement avec k.



REMARQUE

Deux mots u, v sont k-binomialement équivalents SSI

Qu,k(X) = Qv,k(X)'

A premiere vue, il est nécessaire de calculer tous les coefficients !
(au moins la moitié d'entre eux)



REMARQUE

Deux mots u, v sont k-binomialement équivalents SSI

Qu,k(X) = Qv,k(X)'

A premiere vue, il est nécessaire de calculer tous les coefficients !
(au moins la moitié d'entre eux)

Soit p un grand nombre premier (bien choisi),
Qu.x(X) et @, 1(X) sont vus comme des polynémes de F,,[X].

Siu#y, v, alors Q1 (X) — @y r(X) est un polynéme non nul de
degré d ayant au plus d zéros. Si on choisit o € IF), aléatoirement,

P((Quk — Qui)(a) =0) < d/p.

Siu=y v, alors Qyi(X)— Qui(X)

Pour tout a € Fp, Qu 1 — Qu i() 0



UN ALGORITHME PROBABILISTE

En supposant que d/p est 'petit’, on choisit aléatoirement
acF,[X]
En supposant que I'on calcule 'facilement’ @, ;(c) et @, r(c).
> Si Qui(a) # Qyi(a), alors u Zj, v.
~» L'algorithme renvoie u #;, v.

> Si Qui(a) = Qy i), alors presque siirement u =y, v.
~ L'algorithme renvoie u = v.

Ona Qui(a) = Qyi(a) et uw#, v, uniquement si on a tiré un
zéro du polynéme non nul (Qy 1 — Qy 1) (X).

~> On obtient une conclusion erronée u =; v alors que u #j, v,
avec une probabilité d'au plus d/p.



Choix de p 7

k

Les coefficients in @, 1, € F,[X] sont inférieurs a n”, en effet

(ZZ> _ (Z) _ n(n—l)--]-d(n—k—i—l) o

Choisir un nombre premier
p € [n*,2n"]

Ce n’est pas un probleme pour obtenir un algorithme polynomial :
» AKS est polynomial en log(n)

> test probabiliste de Miller—Rabin,
déterministe si hypothése de Riemann OK.



Qu x(X) est de degré 2841 — 1 et p > n*
2k+1 -1 n—>_+>oo 0

_ d
probabilité d'erreur : — < -
P n

Pour des mots suffisamment longs u, v, on croira volontiers
I"algorithme quand il renvoie 'u =4 v'.



RESULTAT PRINCIPAL

Soit w un mot de longueur n. Soit o € .
La valeur @, x(c) peut étre calculée en O(k*n) opérations.

Quir(X) = Z <U>X'L)alg (1v) ZX% Z <i’}1> vk (v)

lv|<k |v|=¢

::R'u),Z(X)

~» |l faut déterminer Ry, ¢(c) pour tout £ € {1,...,k}



w=w - w, wi,n]=uw---w,

On utilise la programmation dynamique pour la table k& x n et les
valeurs

Rw[i,n},t(a)a ie{l,...,n},te{l,.... k}

Ry K Ry(2,n],k Roy(3,n],k Run,n,k 0
Ry k-1 Ry2n]k—1  Bu@a)e—1 - s Ryn,n)k—1 | O
Ry k—2  BRyl2,n),k—2  Buw3,n]k—2 Ruynnl,k—2 | O

Rulinl,t Bulit1,n),¢
Rylit1,n],t—1

Ry 1 Ruyl2.n],1 Ry[3.n],1 s s Ruln,n],1
1 1 T 1 T

Rw[n + 1)t = 0sit>0; Ryfin,0=1pourtout 1 <i<n+1
—
Rw[i,n},tv i S n, t Z 1v
dépend uniquement de Ry [;11,5),¢ and Ry[it1n),t-1



Soient 1 <n,t>1,0na
Rw[i,n],t(X) = Rw[i—i—l,n},t(X) + Rw[i—i—l,n},t—l(X)a si w; =0

Rw[i,n},t(X) = Rw[i-}-l,n],t(X) + X2tRw[i+1,n],t—l(X)7 siw; =1

On se souvient que

Wy =« + Wn valp (v
Rw[i,n},t(X) = Z < v >X L)

|v|=t



Rw[i,n]vt(X) = Rw[i+17n},t(X) + Rw[i—i—l,n},t—l(X)y siw;, =0
—_————
1
Z|U|:t (OWi_‘—l'”wn) XUalQ(U) v débute avec 0 ou 1
071/7 “Wn 0 y .
— Z|u\:t—1 ( -‘blu )X'L)(J,IQ(OU + Z‘u|:t_1 ( 'LU+11u W, )Xvalg(lu)

Z|u‘ . 1(’UJL+1 wn)X'UalQ +Z‘u| . 1(w7,+(1] U/n)X'l)alQ(O'u)
+Z|u\:t—1 ('lUL+1 wn)Xvalg(lu)

lu

Rw [t+1,n],t— l(X)

Z <ZU2+1 >Xvalg(u)

|u|=t—1
+ Z <’U}z+l >Xva12(0u) + Z <wi+11' .. wn) Xvalg(lu)
lu[=t—1 st U

Royfit1,n],t(X)



En résumé,

» Calculer un élément R, ; ») () de la table

est une addition dans [F), et p ~ nk.

Cela nécessite (’)(log p) = O(k log n) — arithmétique des corps finis
» On doit calculer £ x n éléments de ce type

~ O(k*n logn)

» Enfin, on calcule

k

Qui(e) = o® Ry ()

(=1

k produits, chacun nécessitant O(log? p) = O(k?log® n)
~ O(k3 log? n)
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