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A deterministic low-dimensional iterated map is proposed here to describe the interaction between
a bouncing droplet and Faraday waves confined to a circular cavity. Its solutions are investigated
theoretically and numerically. The horizontal trajectory of the droplet can be chaotic: it then
corresponds to a random walk of average step size equal to half the Faraday wavelength. An analogy
is made between the diffusion coefficient of this random walk and the action per unit mass ~/m of a
quantum particle. The statistics of droplet position and speed are shaped by the cavity eigenmodes,
in remarkable agreement with the solution of Schrödinger equation for a quantum particle in a
similar potential well.
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I. INTRODUCTION

The interaction between Faraday waves and
millimeter-sized bouncing droplets (Fig.1) has at-
tracted much attention over the past decade, owing to
its reminiscence of quantum-particle behavior [1, 2].
Faraday waves are stationary capillary waves at the
surface of a vertically vibrated liquid bath [3–5]. They
appear spontaneously and sustainably when the vi-
bration amplitude exceeds the Faraday threshold. At
smaller amplitude, they only appear in response to
a finite perturbation (e.g., the impact of a bouncing
droplet) and are then exponentially damped [6]. Close to
threshold the Faraday instability is often subharmonic,
i.e., the Faraday wave frequency is half the frequency
of the external vibration [4]. The selected Faraday
wavelength λF is approximately given by the dispersion
relation of water waves. The memory M is defined
as the decay time of Faraday waves below threshold,
divided by the wave period; it increases and diverges as
the threshold is approached.

Liquid droplets are able to bounce several successive
times on liquid interfaces before merging, and this in a
wide range of conditions [7–9]. Rebounds can be sus-
tained by vertically vibrating the liquid interface [10–14].
When the rebound dynamics locks into a periodic state
with one impact every two forcing periods, the droplet
becomes a synchronous emitter of Faraday waves [15].
More exactly, the droplet creates a radially propagat-
ing circular capillary wave that excites standing Faraday
waves in its wake [6]. The resulting wave field then con-
tains contributions from the last M droplet impacts. In
the walking state, horizontal momentum is transferred
from the wave field to the impacting droplet, propor-
tionally to the local wave slope at the droplet position.
The waves only exist in response to droplet impacts, and
in turn they cause the horizontal motion of the droplet.
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FIG. 1. (top) A drop of silicone oil bounces periodically at
the surface of a small pool (diameter 1.5 mm) of the same
liquid which is vertically vibrated at 80 Hz. (bottom) Drops of
appropriate size (here, diameter of 0.74 mm) can generate and
interact with underlying Faraday waves. This wave-particle
association is called a walker. The bottom left (right) picture
shows a walker at low (resp. high) memory, i.e., far from
(close to) the Faraday-instability threshold.

This coupled wave-particle entity at the millimeter scale
is called a walker.

The dynamics of individual walkers has been investi-
gated experimentally in several configurations where it
has shown properties reminiscent of quantum particles
[1]. For example, walkers tunnel through weak bound-
aries [16]. They diffract or interfere when individually
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passing through one or two slits respectively [17] (al-
though these experimental results have recently been
challenged by theoretical arguments [18, 19]). Walkers
also experience quantized orbits in response to confine-
ment by either central forces [20], Coriolis forces [21–23]
or geometry [24–26]. In the latter case, the walker evolves
in a cavity of finite horizontal extent. Chaotic trajecto-
ries are often observed in the high-memory limit, when
confinement compels the walker to cross its own path
again after less than M impacts. In response to central
and Coriolis forces, the walker oscillates intermittently
between several different quantized orbits, as if it were
in a superposition of trajectory eigenstates [22, 27, 28].
The spatial extent of these eigenstates is always close to
an integer multiple of half the Faraday wavelength λF /2,
which can then be seen as the analog of the de Broglie
wavelength for quantum particles [21]. The probability
to find the walker in a given state is proportional to the
relative amount of time spent in this state. In cavity
experiments [24], the probability to find the walker at a
given position is strongly shaped by the cavity geometry,
as would be the statistical behavior of a quantum particle
in a potential well.

Several theoretical models have already been pro-
posed that capture various aspects of walker dynamics
[6, 25, 28–31]. Most of them consider a stroboscopic point
of view, where the droplet is assumed to impact the bath
perfectly periodically. The wave field is then expressed
as a sum of contributions from each successive impact [6].
The walker horizontal trajectory is deduced from New-
ton’s second law, where the driving force is proportional
to the local wave slope and the effective mass includes
both the real droplet mass and an added mass from the
wave [32]. The resulting discrete iterated map can be
turned into an integrodifferential equation for the walker
trajectory in the limit of small horizontal displacements
between successive impacts [29]. In an infinite space,
the contribution from one droplet impact to the wave
field is assumed to be a Bessel function of the first kind
J0[kF (x− xd)] centered on the droplet position xd, and
of wavenumber kF = 2π/λF [6]. The recent model of
Milewski et al. [31] provides a more sophisticated model
of the wave fields through inclusion of weak viscous ef-
fects. It also includes realistic models of vertical bounc-
ing dynamics [13, 33]. At the other end of the scale of
complexity, a generic model [30] has been proposed that
reproduces some key features of confined wave-particle
coupling and walker dynamics within a minimal math-
ematical framework. These features include the time
decomposition of the chaotic trajectory into eigenstates
[28], and the particle statistics being shaped by confine-
ment [24].

These hydrodynamic experiments and models have al-
ready revealed a strong analogy between the statistical
behavior of chaotic walkers and quantum particles, in
many different configurations. It certainly results from
the deterministic chaos inherent to such wave-particle
coupling. Nevertheless, it is still unclear which ingredi-

ents are actually necessary and sufficient for these quan-
tum behaviors to appear. Also, no direct connection
between the equations of motion of the walker and the
Schrödinger equation has been made yet. What would
be the equivalent of Planck’s constant for walkers? On
which timescale should the walker dynamics be averaged
to recover quantum-like statistics? This works aims at
answering these questions through a theoretical investi-
gation of walker dynamics under confinement in a two-
dimensional cavity [24].

First the model developed in Ref.[30] is particularized
to a walker in a circular cavity (Sec. II). In Sec. III the
walker dynamics is analyzed as a function of its mem-
ory, and results are compared to the experiments of Har-
ris et al. [24]. In Sec. IV it is shown that the present
model gives theoretical access to the experimentally-
unachievable limit of zero damping (infinite memory) and
perfect mode selection. Finally, the above questions are
addressed through direct comparison with analytical pre-
dictions from quantum mechanics (Sec.V).

II. WAVE-PARTICLE COUPLING IN A
CONFINED GEOMETRY

The generic model [30] of the interaction between a
particle and a stationary wave confined to a domain S is
first recalled, here in a dimensional form. It is primarily
based on the decomposition of the standing Faraday wave
field Hn(X) resulting from the n first impacts into the
discrete basis of eigenmodes Φk(X) of the domain:

Hn(X) =
∑
k

Wk,nΦk(X), Wk,n =

∫
S

Hn(X)Φ∗k(X)dS,

(1)
where Φ∗k is the conjugate of Φk. These eigenmodes are
orthonormal on S. They are here chosen to satisfy the
Neumann condition n·∇Φk = 0 at the boundary ∂S with
normal vector n.

We consider the stroboscopic approach where the
droplet impacts the liquid bath at regular time intervals.
At rebound n, it impacts at position Xn and creates a
crater of shape Z = F (R) in the wave-field. In the limit
of a droplet size much smaller than λF , the crater F (R)
can be approximated by a delta function weighted by the
volume of liquid displaced Ω [30]:

F (R) = Ω
∑
k

Φ∗k(Xn)Φk(R) = Ωδ(R−Xn). (2)

The contribution ΩΦ∗k(Xn) of the impact to each wave
eigenmode depends on the droplet position.

Each mode Φk(X) is given a viscous damping factor
µk ∈ [0, 1] that depends on the forcing amplitude. It is
defined as the amplitude of mode k right before impact
n+1, divided by its amplitude right after impact n. The
associated memory Mk is given by Mk = −1/ lnµk. The
Faraday threshold instability corresponds to max(µk) =



3

1. The amplitude of each mode Wk,n then satisfies the
recurrence relation

Wk,n+1 = µk [ΩΦ∗k(Xn) +Wk,n] (3)

= Ω

n∑
n′=0

µn+1−n′

k Φ∗k(Xn′).

At each impact, the particle is shifted proportionally to
the gradient of the wave field at the impact position:

Xn+1 −Xn = −δ
∑
k

Wk,n ∇Φk]Xn
(4)

= −Ωδ
∑
k

n−1∑
n′=0

µn−n
′

Φ∗k]Xn′ ∇Φk]Xn
,

where δ > 0 is the proportionality constant between the
local wave slope and the particle displacement. Equa-
tions (3) and (4) form an iterated map that describes the
evolution of the particle in a cavity of arbitrary shape
and dimension.

A. The circular cavity

Focus is now made on a two-dimensional circular cavity
of radius Rc, as studied experimentally by Harris et al.
[24]. Cavity eigenfunctions are

Φk` =
φk`
Rc

, φk`(r, θ) = ϕk`(r)e
ikθ, k ∈ Z, ` ∈ N0 (5)

where r = R/Rc is the dimensionless radial position, θ
is the angular position, and φk` are the dimensionless
eigenfunctions. The dimensionless Faraday wavelength
is defined as ΛF = λF /Rc. The radial functions ϕk` are
expressed as

ϕk`(r) =
1√

π
(

1− k2

z2k`

) Jk(zk`r)

Jk(zk`)
, (6)

where zk` is the `-th zero of the derivative of the Bessel
function (1st kind) of order k, so J ′k(zk`) = 0. The in-
teger k can take both negative and positive values. The
eigenfunctions satisfy orthonormality conditions∫ 2π

0

dθ

∫ 1

0

φk`φ
∗
k′`′rdr = δkk′δ``′ (7)

as well as the Neumann boundary condition ∂rφk` = 0
in r = 1. Some of these eigenmodes are illustrated in
table I.

The dimensionless Faraday wave field hn(r, θ) = Hn ·
R2
c/Ω can be decomposed as a Dini series in this basis:

hn(r, θ) =

+∞∑
k=−∞

∞∑
`=1

wk`,nφk`(r, θ), (8)

with

wk`,n =
Rc
Ω
Wk`,n =

∫ 2π

0

dθ

∫ 1

0

hn(r, θ)φ∗k`rdr. (9)

The condition w−k`,n = w∗k`,n results from hn(r, θ) being
real-valued. Therefore,

hn(r, θ) =

+∞∑
k=0

∞∑
`=1

ξk< [wk`,nφk`(r, θ)] , (10)

where ξk = 2 when k > 0 and ξk = 1 when k = 0. For
the sake of readability, we will remove the factor ξk and
index ` from most notations, keeping in mind that when
cylindrical harmonics are involved, functions that depend
on k also depend on `. Specifically, the abbreviated sum
over k will always refer to a double sum over k and `, from
0 to ∞ and from 1 to ∞ respectively, with inclusion of
the factor ξk.

The particle position is expressed in cylindrical coor-
dinates Xn/Rc = (rn cos θn, rn sin θn). The wave recur-
rence relation (3) then becomes

wk,n+1 = µk
[
wk,n + ϕk(rn)e−ikθn

]
. (11)

The trajectory equation (4) can be projected along Xn,
then in the direction perpendicular to Xn:

rn+1 cos(θn+1 − θn) = rn − C
[
∂hn
∂r

]
(rn,θn)

rn+1 sin(θn+1 − θn) = − C
rn

[
∂hn
∂θ

]
(rn,θn)

, (12)

where

C =
δΩ

R4
c

(13)

is a dimensionless constant that characterizes the inten-
sity of the wave-particle coupling. After calculating the
gradient of hn at the impact point, the iterated map be-
comes

rn+1 cos(θn+1 − θn) = rn − C
∑
k

ϕ′k(rn)<
[
wk,ne

ikθn
]

rn+1 sin(θn+1 − θn) =
C

rn

∑
k

kϕk(rn)=
[
wk,ne

ikθn
]

wk,n+1 = µk
[
wk,n + ϕk(rn)e−ikθn

]
, (14)

where ϕ′(r) = dϕ/dr.

B. Model discussion

This model of walkers neglects traveling capillary
waves, similarly to most previous works [6]. Indeed, these
waves are not reenergized by the vertical forcing, and
their initial energy spreads in two dimensions. Their am-
plitude is then smaller than Faraday waves, and their
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contribution is likely to have only marginal influence on
the walker’s long-term behavior. Only when the walker
comes close to the boundary could these capillary waves
significantly modify the local trajectory. But this effect
would then be localized in space and time, so we assume
that it does not strongly affect the walker statistics.

In contrast to previous models [29, 31], the trajectory
equation (4) is here first order in time. It therefore as-
sumes that the walker completely forgets its past veloc-
ity at each impact, i.e., horizontal momentum is entirely
dissipated. Nevertheless, an inertial effect is still present,
because the walker keeps a constant velocity between suc-
cessive impacts. An additional inertial term, e.g., corre-
sponding to the hydrodynamic boost factor [32], would
increase the model complexity and the number of param-
eters, so it is left to future work.

This model should be compared to the experimental
results of a walker in a circular cavity reported by Harris
et al. [24]. A necessary step to a quantitative comparison
is the accurate determination of each eigenmode Φk and
its associated damping factor µk. Unfortunately, these
modes are not easily characterized experimentally, since
they cannot be excited one at a time. Uncertainty in the
boundary conditions further complicates mode identifi-
cation. Ideal Dirichlet boundary conditions (zero veloc-
ity where the liquid-air interface meets the solid walls)
could have been expected if the contact line was pinned
[34]. But in experiments contact lines are avoided on
purpose because the vibration of the associated menis-
cus would be a source of parasitic capillary waves. In-
stead, the solid obstacles that provide confinement are
always slightly submerged [16, 17, 24, 26]. The walker
cannot penetrate these shallow regions since waves are
strongly dissipated there [16]. Recent numerical simu-
lations suggest that such boundary condition cannot be
strictly expressed as a Robin condition [35]. From a prac-
tical point of view, when Dirichlet boundary conditions
are considered in Eq.(14), the particle tends to leave the
cavity as its radial displacement does not vanish at the
boundary. For this reason, Neumann boundary condi-
tions (zero wave slope) are adopted in this work.

Determining the damping factor associated with each
mode is also an issue. In the absence of horizontal con-
finement, viscous wave damping can be estimated by
spectral methods [5, 31]. The theoretical prediction is
then validated by measuring the Faraday threshold am-
plitude as a function of forcing frequency. Unfortunately,
confinement with submerged vertical walls yields addi-
tional viscous dissipation. Indeed, modes φk` of high
k and small ` are never observed in experiments right
above the Faraday threshold (D. Harris, private commu-
nication), while spectral methods would predict them as
highly unstable.

TABLE I. Twelve dominant Neumann eigenmodes for a cavity
of radius 14.3 mm filled with 20 cS oil and forced at 83 Hz.

Mode k, ` ΛF µ M Mode k, ` ΛF µ M

2,6 0.31 0.999 738 9,3 0.33 0.983 60

0,7 0.32 0.998 460 18,1 0.34 0.974 39

4,5 0.34 0.993 141 10,3 0.32 0.968 32

13,2 0.33 0.990 99 12,2 0.34 0.962 26

17,1 0.33 0.989 90 6,4 0.34 0.951 20

7,4 0.32 0.987 77 5,5 0.32 0.933 15

III. FINITE MEMORY IN A DAMPED WORLD

Harris and co-workers [24] considered a circular cavity
of radius Rc = 14.3 mm filled with silicone oil of density
965 kg/m3, surface tension σ = 20 mN/m and kinematic
viscosity ν = 20 cS. The forcing frequency f = 70 Hz
was chosen in relation with the cavity size, such that the
most unstable mode at Faraday threshold is one of the ra-
dial modes (k = 0, ` 6= 0). In this work, damping factors
are approximately determined from a spectral method [5]
for this same cavity with Neumann boundary conditions
and various forcing frequencies. A frequency of 83Hz is
then selected that again gives predominance to one of
the purely radial modes. Only modes of damping factor
µk > 0.01 are retained. The twelve modes of highest
damping factor are illustrated in Table I. Their wave-
length is always very close to the Faraday wavelength
that would result from this forcing frequency in the ab-
sence of confinement.

The average walking speed vw increases with the cou-
pling constant C. In experiments [24], vw = 8.66 mm/s
at a forcing frequency of f = 70 Hz and at 99% of the
Faraday threshold. This corresponds to an average step
size 2vw/f = 0.017Rc. The same value is obtained when
Eq.(14) is solved with C = 3×10−5. If we further assume
that δ ∼ 2vw/f , the volume of fluid displaced at each
impact can be estimated from Eq.(13) to be Ω ∼ 5 µL.
This volume corresponds to an interface deflection of a
few hundred micrometers on a horizontal length scale of
a few millimeters. It is one order of magnitude higher
than the droplet volume, even when corrected with the
boost factor [32].
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FIG. 2. Convergence to a stable circular orbit of type A (r1 =
0.592, α = 0.0135) at memory M = 7.7 and C = 3 × 10−5.
The underlying wave-field corresponds to the time at which
the walker is at the position indicated by the black circle (•).

A. Circular orbits

The iterated map (14) admits periodic solutions
(Fig. 2) where the particle orbits at constant speed
around the center of the cavity: rn = r1, θn = αn and
wk,n = wk1e

−ikαn (the wave pattern also rotates). The
walking velocity is r1α. Plugging this solution into the
iterated map yields

wk1 =
µk

e−ikα − µk
ϕk1 (15)

r1(1− cosα) = C
∑
k

ϕk1ϕ
′
k1µk

cos(kα)− µk
1− 2µk cos(kα) + µ2

k

r21 sinα = C
∑
k

kϕ2
k1µk

sin(kα)

1− 2µk cos(kα) + µ2
k

,

where ϕk1 = ϕk(r1) and ϕ′k1 = [dϕk/dr](r1). A de-
tailed analysis of these periodic solutions is given in Ap-
pendix A. At low memory, the only solution to Eq.(15) is
α = 0 (fixed points). The corresponding radii r1 satisfy

%′(r1) = 0, with %(r) =
∑
k

µk
1− µk

ϕ2
k(r)

2
. (16)

As memory increases (i.e., as all µk increase), each of
these fixed points experiences a pitchfork bifurcation
where two other solutions ±α 6= 0 appear, that corre-
spond to clockwise and counterclockwise orbits. This bi-
furcation is analogous to the walking threshold observed

and rationalized for unconfined walkers [6, 29]. These
orbits emerge from the loss of stability of their corre-
sponding fixed point. The radial stability of both fixed
points and corresponding orbits is related to %′′(r), as al-
ready shown in Ref.[30] for the unimodal and unidimen-
sional version of Eqs. (3) and (4). They are usually stable
when %′′(r1) > 0 (orbits of type A) and unstable when
%′′(r1) < 0 (orbits of type B). For single frequency forc-
ing, successive orbits of a same type are approximately
separated by ΛF /2. The convergence of trajectories to-
wards stable orbits of type A involves wobbling, i.e., ra-
dial oscillations (Fig. 2).

B. Transition to chaos
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FIG. 3. Bifurcation diagram of the radial position r as a func-
tion of memory M at C = 3 × 10−5. The probability distri-
bution function is represented in levels of gray; darker regions
correspond to more frequently visited radial positions. Thick
solid lines and thin dashed lines correspond to stable and un-
stable fixed points respectively (Eq. 16). Full and empty sym-
bols represent stable and unstable circular orbits respectively
(Eq. 15). Circles (◦) indicate that at least one pair of eigen-
values is complex-conjugated (type A) while triangles (4) are
used when all corresponding eigenvalues are real-valued (type
B).

As memory increases, each circular orbit of type A
destabilizes radially through a Neimark-Sacker bifurca-
tion (Fig. 3) [30]. Orbits of larger radius destabilize
at higher memory, since it takes more rebounds before
the particle revisits its past positions. Sustained wob-
bling orbits of finite amplitude are then observed, where
the radial position oscillates periodically. As memory
is increased further, wobbling orbits progressively disap-
pear. At high memory (M > 50 in Fig. 3), there are
no stable periodic attractors left and the walker chaot-
ically explores the entire cavity. The chaotic nature of
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the system is highlighted by the exponential growth of
the distance between two trajectories that were initially
extremely close to one other (positive Lyapunov expo-
nent in Fig. 4).
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FIG. 4. Exponential divergence of the radial distance |r1−r2|
between two neighboring trajectories, initially separated by
|r1 − r2| = 10−10 and placed on the same initial wave-field.
Memory and coupling constants are M = 500 and C = 3 ×
10−5 respectively. (Inset) The two trajectories are represented
with a solid line and dots respectively, for N ∈ [1400, 1600].

A chaotic trajectory is represented in Figure 5. Sev-
eral trajectory patterns are recurrent, including abrupt
changes in direction and off-centered loops of character-
istic radius close to half the Faraday wavelength ΛF /2.
Overall, the walker is observed to spend significantly less
time at radial positions where orbits were stable at low
memory (Fig. 3).

IV. THE ACCESSIBLE INFINITE MEMORY

Unlike its hydrodynamic analog, a quantum particle
confined in a cavity is known to be a Hamiltonian sys-
tem for which there is no dissipation. The behavior of
individual walkers that are reminiscent of quantum par-
ticles were always observed at high memory, i.e., when
dissipation is almost balanced by external forcing. In-
deed, in these conditions, the walker gets a chance to
walk onto the wave field left in its own wake [20, 22, 36].
For each mode k, this balance is theoretically achieved
when µk = 1 (infinite memory). Memory above 100 is
very challenging to achieve experimentally, owing to the
imperfect control of the forcing vibration [37]. More-
over, in most geometries (including circular) cavities are
such that it is impossible to get several modes reaching
µk = 1 for the same forcing acceleration. This model
does not suffer from such limitations; it is possible to
select a subset S of modes for which the memory is in-
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FIG. 5. Chaotic trajectory at memory M = 500 and C =
3× 10−5. The solid line corresponds to 10000 impacts, while
the dots emphasize 380 of these successive impacts.

finite (µk = 1, k ∈ S) while all other modes are instan-
taneously damped (zero memory, µk = 0, k /∈ S). In the
following, several subsets of selected modes S are con-
sidered (Table II). Each subset includes all the modes
for which the characteristic wavelength lies in a narrow
range λF · [1 −∆λF , 1 + ∆λF ], except the latest subset
which is a combination of two wavelengths. Such mode
selection could be analog to preparing quantum particles
with localized momentum. For subset S2 the coupling
constant C is varied over four orders of magnitude.

A. Radial statistics

Figure6 shows a superposition of half a million impact
positions. Dark circular strips indicate more frequent im-
pacts at certain radial positions r, as observed in exper-
iments [24]. The corresponding probability distribution
function ρ(r) shows a series of extrema at radii that are
largely independent of C (Fig. 7a). Chaotic trajectories
in the infinite memory limit are qualitatively identical to
those arising at finite memory. The radial position oscil-
lates intermittently between several preferred radii that
correspond to the maxima of ρ(r) [30] (Fig. 7b).

The iterated map is checked to be ergodic to a good
approximation (within 1% in these simulations), so the
time-average of any property over a single trajectory co-
incides with an ensemble average of this property over
many independent trajectories at a given time. In other
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TABLE II. Subsets of selected modes S, corresponding range
of wavelength and coupling constant C, and associated sym-
bols and colors in subsequent figures.

S Selected modes (k, `) ∈ S ΛF ∆ΛF log10 C

I S1 {(0,5); (2,4); (6,3); 0.473 4% -5
(9,2); (13,1)}

N S2 S1∪ {(3,4); (5,3); 0.473 8% -6.5
N (7,3);(10,2);(14,1)} -6
N -5.5
N -5
N -4.5
N -4
N -3.5
N -3
N -2.5
J S3 S2∪ {(1,5); (1,4); (4,4); 0.473 16% -5

(4,3); (8,3); (8,2);
(11,2); (12,1); (15,1)}

� S4 {(0,12); (2,11); (7,9); 0.178 1% -6
(10,8); (13,7); (17,6);
(26,3); (30,2); (35,1)}

• S5 {(0,31); (2,30); (11,26); 0.066 0.2% -7
(24,21); (27,20); (47,13);
(62,8); (69,6); (77,4)}

? S6 S1∪ {(0,12); (2,11); 0.473 4% -5.3
(7,9); (13,7); (17,6)} + 0.178 0.5%

words,

lim
N→∞

1

N

n+N∑
n′=n

f(rn′ , θn′) =

∫ 2π

0

∫ 1

0

ρ(r)f(r, θ)rdrdθ.

(17)
for any regular function f(rn, θn). It is rather counterin-
tuitive that the wave-field does not blow up with time,
since contributions from previous impacts keep adding up
without any of them being damped out. The resulting
wave field amplitudes satisfy

wk,n =

n−1∑
n′=0

ϕk(rn′)e−ikθn′ . (18)

In the long term, ergodicity yields

lim
n→∞

wk,n = n

∫ 2π

0

e−ikθdθ

∫ 1

0

ρ(r)ϕk(r)rdr. (19)

The angular integral vanishes by symmetry, except when
k = 0. In this latter case, the only way to keep a finite
wave amplitude is to satisfy∫ 1

0

ρ(r)ϕ0(r)rdr = 0. (20)

FIG. 6. Two-dimensional probability distribution function
obtained by superimposing half a million impact positions is-
sued from 78 independent trajectories. The subset of selected
modes is S2 (Table II), with C = 10−5.

So ρ(r) must always be orthogonal to each of the radial
eigenmodes φ0(r). We have checked numerically that for
every subset of selected modes S (TableII), the compo-
nent of ρ(r) along φ0(r) is always at least two orders of
magnitude smaller than the largest other component.

B. Coherence and diffusion

The walker trajectory is usually smooth and regular at
the scale of a few impacts (Fig. 5). But such coherence
is lost on longer timescales, where the trajectory oscil-
lates and loops chaotically. This behavior is quantified
through the average distance d(n) traveled in n steps,
defined as

d(n) =
√
〈||xn′+n − xn′ ||2〉n′ . (21)

and represented in Figure 8. For small n this distance in-
creases linearly with n so the motion is ballistic (Fig. 8).
As soon as d & ΛF /2, d starts increasing proportion-
ally to

√
n, like in normal diffusion. It then saturates

in d . 2 owing to the finite size of the cavity. This
ballistic-to-diffusive transition was already observed for
the one-dimensional (1D) version of this model [30]. This
suggests that the walker trajectory is similar to a random
walk for which the elementary steps are of the order of
ΛF /2.

The average number of impacts in one step should de-
pend on the walker velocity. It can be estimated by first
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FIG. 7. (a) Probability Distribution Function ρ(r) of radial position r, for mode subset S2 and three different values of C
(Table II). The solid line corresponds to the quantum prediction given in Eq.(35). (b) An example of the time evolution of the
particle’s radial position for mode subset S2 and for C = 10−5.
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FIG. 8. Average distance d traveled in n successive impacts,
for subsets S1, S4, S5 and S6. The solid line corresponds
to the ballistic regime d/ΛF = an/Nc, while the dashed line
corresponds to the diffusive regime d/ΛF = b

√
n/Nc. (In-

set) Same plot, for S1, S2 and S3. Symbols and colors are
explained in Table II.

looking at the amplitude wk,n of each wave eigenmode
(see inset of Fig. 9). Their time evolution is a succession
of coherent linear segments of variable durationNw. This
constant growth rate depends on the particle position; at
every impact, each wk increases by an average amount

〈|wk,n+1 − wk,n|〉n ' |ϕk(r)| (22)

as confirmed in Fig. 9. The statistical distribution of

r
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FIG. 9. Average increment of wave amplitude at each impact
〈|wk,n+1−wk,n|〉 as a function of particle position r, for modes
of the subset S2. The solid line is |ϕk(r)|. Modes (k, `) =
(0, 5) and (6, 3) are represented in black and gray, respectively.
Inset shows an example of the time evolution of the wave
amplitude <(wk,n), for these same modes. Nw is defined as
the distance between two successive extrema of wk,n.

Nw peaks at approximately the same value for each
mode of a given selection, then it decreases exponen-
tially for large Nw (Fig. 10). So after the average co-
herence time 〈Nw〉 each mode amplitude wk has grown
by about 〈Nw〉|ϕk| and its contribution to the total
wave slope now scales as ξkwk∇ϕk ∼ 2ξkNcϕ

2
k/ΛF .
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FIG. 10. Probability distribution function of the coherence
time Nw, for the two modes (k, `) = (0, 5) and (6, 3) of subset
S2 (in black and gray respectively). The vertical line corre-
sponds to Nw = Nc as defined in Eq.(23). Top inset shows
average distance Lw traveled during a coherent segment Nw,
as a function of the half Faraday wavelength ΛF /2. Bottom
inset shows average number of impacts 〈Nw〉 of a coherent
segment, as a function of Nc. In both insets, data from all
subsets are represented with different symbols (Table II), and
the solid line corresponds to equal abscissa and ordinate.

The average displacement per impact is then ∆x ∼
2Cχ〈Nw〉ϕ2

k/(ΛF ), where χ =
∑
k ξk. The average dis-

tance Lw =
√
〈||xn′+Nw

− xn′ ||2〉n′ traveled during one
of these coherent segments is observed to be close to
ΛF /2, independently of C or ∆ΛF (see upper inset in
Fig. 10). We deduce that 〈Nw〉 ∼ ΛF /

√
4Cχϕ2

k, which
yields the definition of the coherence timescale

Nc ,
ΛF√
Cχ

=
λFRc√
δΩχ

. (23)

The bottom inset of Figure 10 validates the scaling law
〈Nw〉 ' Nc over four decades of C, for several ΛF and
χ, with a proportionality constant almost equal to unity.
Even the subset S6 of mixed wavelengths (?) satisfies
these scaling arguments.

The curves of average distance vs time perfectly col-
lapse on a single curve independent of ∆ΛF (or χ) and
C, when n and d are normalized by Nc and ΛF respec-
tively (see inset of Fig. 8). Only subsets corresponding
to Nc < 4 (i.e., the two largest values of C for S2) fail to
collapse perfectly. The ballistic regime is described by:

d

ΛF
= a

n

Nc
(24)

where a ' 0.57. Similarly the diffusive regime satisfies:

d

ΛF
= b

√
n

Nc
(25)

where b ' 0.62 based on the data of subset S5, for which
the diffusive region is the largest since ΛF is the smallest
(Fig. 8). If the diffusive behavior is attributed to a two-
dimensional (2D) random walk, then the corresponding
diffusion coefficient is defined as

D̃ ,
d2

4n
=
b2

4

Λ2
F

Nc
. (26)

The crossover between both regimes occurs in n/Nc =
b2/a2 ' 1.2, so in d/ΛF = b2/a ' 0.67. It can be seen as
the elementary step of this random walk, and it is slightly
larger than half the Faraday wavelength. In dimensional
terms, the diffusion coefficient is

D = R2
cfD̃ =

b2

4

λ2F f

Nc
' 0.096

λ2F f

Nc
, (27)

where f is the impact frequency.

V. COMPARISON WITH THE PREDICTIONS
OF QUANTUM MECHANICS

In this section, the analogy between walkers at infi-
nite memory and quantum particles is further developed.
More exactly, the solutions of the map (14) are compared
to the predictions of the Schrödinger equation for a quan-
tum particle subject to the same confinement.

A. Correspondence of timescales

A single quantum particle is statistically described by
a wave-function Ψ(x, t): The probability to find the par-
ticle at position x is given by ρ(x, t) = |Ψ|2. For nonrela-
tivistic free particles, the wave-function evolves according
to the Schrödinger equation

i~∂tΨ +
~2

2m
∇2Ψ = 0, (28)

where ~ is the reduced Planck constant and m is the
rest mass of the particle. Special relativity can be taken
into account by instead considering the relativistic Klein-
Gordon equation for the function ψ(x, t), which applies
for spinless particles:

1

c2
∂ttψ +

m2c2

~2
ψ −∇2ψ = 0. (29)

In his pilot-wave theory, de Broglie [38] hypothesized that
quantum particles would vibrate at the Compton fre-
quency ωc = mc2/~ (Zitterbewegung). The nonrelativis-
tic Schrödinger equation can be retrieved by expressing
ψ as the modulation of a nonrelativistic, slowly varying
wave function Ψ(x, t) by this vibration at the Compton
frequency:

ψ(x, t) = e−i
mc2

~ tΨ(x, t). (30)
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Substitution in Eq.(29) indeed yields

i~∂tΨ +
~2

2m
∇2Ψ =

~2

2mc2
∂ttΨ. (31)

The left hand side is identical to Eq.(28), so the right
hand side is a relativistic correction. The characteris-
tic frequency of Ψ(x, t) is ω = ~k2/(2m). Therefore,
the relativistic correction is negligible when ω/k � c, or
equivalently when kλc � 1, where λc = 2π~/(mc) is the
Compton wavelength.

Couder and co-workers have already observed in many
different configurations [17, 20, 21] that the Faraday
wavelength λF was the walker equivalent of the de Broglie
wavelength λdB = 2π/k of quantum particles (Analogy
No. 1). In a recent review paper, J.W.M. Bush [1] pushed
the analogy one step further and hypothesized that the
bouncing motion of walkers could be the equivalent of
this Zitterbewegung, so the bouncing frequency f would
correspond to the Compton frequency mc2/(2π~) (Anal-
ogy No. 2).

The diffusive behavior of the walker on the long
term suggests a third analogy (No. 3), between the
walker’s diffusion coefficient D and the coefficient of
Schrödinger equation ~/m. It is equivalent to say that
the Schrödinger timescale 2π/ω = 4πm/(~k2) is anal-
ogous to the dimensional coherence time of the walker
λ2F /(πD) ' [4/(πb2)]Ncf

−1 ' 3.3Ncf
−1. De Broglie’s

momentum relation states that the speed of a nonrela-
tivistic particle is v = ~k/m, which is then equivalent
to [πb2/2]λF fN

−1
c ' 0.60λF fN

−1
c for the walker. This

value is remarkably close to the ballistic speed aλF f/Nc
with a = 0.57 as observed in Fig. 8. The analog of the
speed of light c is [b

√
π/2]λF fN

−1/2
c = 0.78λF fN

−1/2
c ,

which does not seem to be a fundamental constant in the
walker’s world. Nevertheless, the relativistic limit v → c
corresponds to Nc → πb2/2 ' 0.60 for the walker, i.e.,
the coherence time becomes of the order of the bouncing
period. Saying that a quantum particle cannot go faster
than light is then analogous to saying that the coher-
ence time of a walker trajectory should be at least one
rebound time. When Nc = πb2/2 ' 0.60, the equivalent
speed of light becomes λF f , which is the phase speed
of capillary waves. Finally, in quantum mechanics the
correspondence principle states that classical mechanics
is recovered in the limit ~ → 0. This translates into
the walker behavior being fully ballistic when D goes to
zero, i.e., when the coherence timescale Nc goes to in-
finity. The three equivalences and their implications are
summarized in Table III.

B. Probability density

In a 2D circular infinite potential well of radius Rc, the
wave-function can be decomposed into a discrete basis of

cylindrical harmonics φk(r) defined in Eq.(5):

Ψ =
1

Rc

∑
k

ckφk(r)e−iωkt, (32)

where (R2
c∇2 + z2k)φk = 0 and

ωk =
~

2mR2
c

z2k (33)

in order to satisfy the Schrödinger equation. The proba-
bility density function (PDF) is then

ρ(r, t) =
∑
j,k

c∗jckφ
∗
j (r)φk(r)e−i(ωk−ωj)t. (34)

Coefficients ck must satisfy
∫
S
ρdS =

∑
k |ck|2 = 1. Since

all zk are distinct (there is no degeneracy), the time-
averaged probability density is

ρ(r) =
∑
k

|ckφk(r)|2 =
∑
k

|ck|2ϕk(r)2, (35)

which is necessarily axisymmetric. Although all zeros
of bessel functions (and derivatives) are strictly dis-
tinct, it is always theoretically possible to find and se-
lect two eigenmodes (j, k) for which |zj − zk| is arbitrar-
ily small. The corresponding imaginary exponential in
Eq.(34) would generate some beating at the extremely
low frequency (ωj −ωk) that would challenge any practi-
cal computation of a time average. Nevertheless, as far as
the modes selected in this work are concerned (Table II),
|zj − zk| > 0.01 for any j 6= k.

How well are the walker statistics described by these
quantum predictions? Following de Broglie’s pilot wave
theory [38, 39], we assume an analogy between the quan-
tum wave function and the classical wave field of the
walker, averaged over the coherent timescale. In Sec. IV,
the walker dynamics was considered in configurations
where a small number of modes were equally excited
while others were strictly not. This suggests the iden-
tification of quantum coefficients ck as

ck =
ξk√∑
k ξ

2
k

(36)

where again ξk = 1 if k = 0 and ξk = 2 otherwise. As seen
in Fig. 7a, the corresponding quantum prediction of the
average probability density (Eq. 35) is reminiscent but
not identical to the one obtained from walker simulations.
Nevertheless, their extrema of density coincide almost
perfectly.

C. Average kinetic energy

In quantum mechanics, the kinetic energy operator
T̂ = − ~2

2m∇
2 is Hermitian, and its expected value

〈T 〉 = 〈Ψ|T̂ |Ψ〉 = − ~2

2m

∫
S

Ψ∗∇2ΨdS =
~2

2mR2
c

∑
k

|ck|2z2k

(37)
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TABLE III. Correspondence of variables between walkers and quantum particles (b ' 0.62).

Analogy Walker Quantum particle

# 1 Faraday wavelength λF de Broglie wavelength 2π/k

# 2 Bouncing frequency f Zitterbewegung frequency mc2/(2π~)

# 3 Diffusion coefficient D = [b2/4]λ2
F fN

−1
c Schrödinger diffusion ~/m

Derived

Coherence time [4/(πb2)]Ncf
−1 Schrödinger timescale 4πm/(~k2)

Ballistic speed v = [πb2/2]λF fN
−1
c Quantum speed v = ~k/m

Maximum speed [b
√
π/2]λF fN

−1/2
c Speed of light c

Relativistic limit Nc > πb2/2 Relativistic limit v/c < 1

Ballistic limit Nc →∞ Classical limit ~→ 0

is time-independent in a infinite potential well. A dimen-
sionless kinetic energy can then be defined based on the
cavity radius Rc and Compton frequency ωc/(2π):

T̃ =
2

m
〈T 〉 4π2

R2
cω

2
c

= B2
∑
k

|ck|2z2k (38)

where B = 2π~/(mR2
cωc) is a dimensionless coefficient.

According to Table III, B is equivalent to the dimen-
sionless diffusion coefficient D̃ of the walker, defined in
Eqs. (26) and (27). This quantum prediction is in re-
markable agreement with the observed average kinetic
energy of simulated walkers, for all considered mode sub-
sets (Fig. 11). Only simulations at large C fail to match
the prediction, possibly because they would be in the rel-
ativistic regime (Nc < 5). The energy of the mixed-mode
subset S6 is also overestimated. The kinetic energy of
two interacting walkers was shown to be somehow equiv-
alent to the energy stored in the corresponding wave field
[40]. Nevertheless, as detailed in Appendix B, it is here
unclear if both energies are still equivalent for a single
walker confined in a cavity.

D. Position-dependent statistics

Radial- and azimuthal-velocity operators are defined
by projecting the momentum operator P̂ = −i~∇ along
the radial and azimuthal directions, respectively:

V̂r = 1
mer · P̂= −i ~

mRc
∂r,

V̂θ = 1
meθ · P̂= −i ~

mRc

1

r
∂θ (39)

On the one hand, the radial-velocity operator is not Her-
mitian, so it should not be observable. On the other
hand, the tangential-velocity operator has a trivial ex-
pected value of zero, by symmetry. The Heisenberg un-
certainty principle states that one cannot measure accu-
rately and simultaneously both the position and momen-
tum of a quantum particle. However, it is possible to

T̃quantum

10
-6

10
-4

10
-2

10
0

T̃
w
a
lk
e
r

10
-6

10
-4

10
-2

10
0

FIG. 11. Average dimensionless kinetic energy T̃ of the
walker, vs quantum prediction, with the equivalence B ≡ D̃.
Symbols correspond to different mode subsets (Table II). The
solid line is the quantum prediction (Eq. 38).

"weakly" measure a quantum particle, gaining some in-
formation about its momentum without appreciably dis-
turbing it, so its position can be "strongly" measured
directly after [41]. The information obtained from in-
dividual measurements is limited. But one can perform
many trials, then postselect particles that were observed
at a given position and calculate their associated average
momentum. We here propose to extend this concept of
weak measurement to a particle in a 2D circular cavity.
We define the Hermitian operators

V̂ 2
r = V̂ †r

δ̂(r −R)

2πR
V̂r and V̂ 2

θ = V̂ †θ
δ̂(r −R)

2πR
V̂θ.

(40)
which are aimed to represent the squared radial and az-
imuthal velocities at a given radial position R, respec-
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tively. Their expected values

〈Ψ|V̂ 2
r |Ψ〉 =

(
~

mRc

)2 ∫
S

∂rΨ
∗∂rΨ

δ(r −R)

2πR
dS, (41)

〈Ψ|V̂ 2
θ |Ψ〉 =

(
~

mRc

)2 ∫
S

∂θΨ
∗∂θΨ

δ(r −R)

2πR
r−2dS

correspond to the variance of each velocity component.
They are time-averaged

〈Ψ|V̂ 2
r |Ψ〉 =

(
~

mRc

)2∑
k

|ck|2 [∂rϕk]
2
r=R , (42)

〈Ψ|V̂ 2
θ |Ψ〉 =

(
~

mRc

)2∑
k

|ck|2k2 [ϕk]
2
r=R , (43)

and made dimensionless

ṽ2r = 〈Ψ|V̂ 2
r |Ψ〉 4π2

R2
cω

2
c
= B2

∑
k

|ck|2 [∂rϕk]
2
r=R ,

ṽ2θ = 〈Ψ|V̂ 2
θ |Ψ〉

4π2

R2
cω

2
c
= B2

∑
k

|ck|2k2 [ϕk]
2
r=R . (44)
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FIG. 12. Average variance of the radial velocity ṽ2r of the
walker at a given radial position r, normalized by D̃2, for
subset S2 (Table II). The solid line corresponds to 3.16 times
the quantum prediction [Eq. (44); best fit].

Again, the equivalence between B and D̃ allows for
a direct comparison between walkers and quantum pre-
dictions. The evolution of ṽ2r with R is very similar in
both worlds, although the proportionality coefficient be-
tween both (best fit) varies from one subset to another
(Fig. 12). The agreement is even better for ṽ2θ , where
the walker variance is almost exactly twice the quantum
prediction, at any radial position for most values of C
(Fig. 13). This remarkable similarity holds for any of the
markedly different functions ṽ2θ(R) at each mode subset
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FIG. 13. Average variance of the tangential velocity ṽ2θ of
the walker at a given radial position r, normalized by D̃2, for
subset S2 (Table II). The solid line corresponds to 2.0 times
the quantum prediction [Eq. (44); best fit].

considered (Fig. 14). However, the quantum calculation
strongly underestimates both walker variances at large C
(relativistic regime).

These results demonstrate how much the velocity
statistics of the walker are shaped by the wave function
in almost the same way as the statistics of a quantum
particle would be. Moreover, they lead to an interpreta-
tion of the Heisenberg uncertainty principle for walkers
(slightly different from the one proposed in Ref.[17]). The
uncertainty in position can be related to the coherence
length and it is then of the order of λF /2 (equivalently
λdB/2). The uncertainty in speed is directly given by the
dimensional version of the standard deviation

√
ṽ, which

scales as D/λF [equivalently ~/(mλdB)]. The product of
these uncertainties then scales as the diffusion coefficient
D, which is equivalent to ~/m. So the uncertainty prin-
ciple is recovered for walkers provided their dynamics is
analyzed at the scale of diffusion.

VI. DISCUSSION

The theoretical framework introduced in Sec.II is one
of the simplest mathematical representations of a parti-
cle coupled to a wave. It qualitatively captures the key
features observed in the experiments on confined walk-
ers performed by Harris et al. [24]. It reproduces both
the circular orbits at low memory and the chaotic tra-
jectories at high memory. The current limitation for
a quantitative comparison originates in the lack of ex-
perimental information about the damping rate of each
eigenmode. Nevertheless, this model allows for the explo-
ration of regimes that are not accessible experimentally.
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FIG. 14. Variance of the tangential velocity ṽ2θ of the walker
at a given radial position r, normalized by D̃2, for subsets
S1, S4, S5, and S6, from top to bottom (Table II). The solid
lines in correspond, respectively, to 1.0, 2.1, 2.2 and 2.0 times
the quantum prediction associated with each subset [Eq. (44);
best fit].

Of particular interest is the possibility to set the memory
of each mode to either infinity (no damping) or zero (full
damping). Quantumlike behavior of individual walkers
were observed at high-memory, when the system was as
close to conservative as it can be. In this model, the
mode selection around one given wavelength can be seen

as analogous to the preparation of a quantum state with
a more-or-less defined momentum. Nevertheless, it must
be noted that this walker model is still highly dissipa-
tive since the nonselected modes (the ones that do not
resonate with the forcing) are immediately damped.

The chaotic trajectories of confined walkers are ballis-
tic on the short term and diffusive on the long term. The
coherence distance, beyond which the ballistic behavior
is lost, corresponds to half the Faraday wavelength, as
a careful qualitative look at the experimental data [24]
also confirms. The Faraday wavelength is at the heart of
most quantum-like behaviors of walkers; it is identified as
equivalent to the de Broglie wavelength for a quantum
particle. Our analysis of the diffusive motion in a cir-
cular corral has suggested another equivalence, between
the diffusion coefficient D and the factor ~/m in the
Schrödinger equation. The walker behavior thus becomes
apparently random only when it is analyzed at a length
scale larger than λF /2. This analogy is confirmed by the
observed ballistic speed of the walker, which corresponds
closely to the de Broglie speed ~k/m. Similarly, the av-
erage kinetic energy of the walker matches Schrödinger’s
prediction over several orders of magnitude.

The bouncing dynamics of the walkers was previously
hypothesized as reminiscent of the Zitterbewegung of
quantum particles [1]. From there, we found an analog
for the speed of light in the walker’s world, and we then
identified the condition for observing relativistic effects
on walkers: they have to travel a distance comparable
to half the Faraday wavelength at every rebound. Our
mathematical framework allows for a future investigation
of this regime, which is unfortunately not attainable in
experiments where the walking steps are usually limited
to around λF /20 [6, 24]. Equivalence relations of TableIII
do not explicitly depend on the dispersion relation of the
waves. Nevertheless, the variables therein (such as the
coherence time or the elementary diffusion coefficient)
do depend on the considered wave-particle interaction,
e.g., here through the coupling constant C [Eq. (23)].
This might be the reason why the analogs for the speed
of light and the Planck constant are not constant in the
walker’s world.

Harris et al. [24] observed that the statistics of con-
fined walkers can be shaped by the cavity eigenmodes
in the high-memory limit. We have here calculated
the position-dependent variance of walker velocity in the
limit of some modes having an infinite memory. Their
dependence on radial position is remarkably close to the
predictions obtained from the quantum formalism (linear
Schrödinger equation) with Hermitian observables, even
when complex combinations of modes are considered.

This model of walkers is reminiscent of the pilot-wave
theories of de Broglie and Bohm, although there are some
significant differences [1]. In the Bohmian mechanical de-
scription of quantum mechanics, particles are guided by a
pilot-wave prescribed by Schrödinger’s equation. It thus
evolves at the Schrödinger timescale. The particles do
not exert any direct individual feedback on this wave;
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only their statistics shapes the wave. By contrast, indi-
vidual bouncing walkers locally excite the wave field that
sets them into motion. The double-solution theory of
de Broglie [38] involves an additional pilot-wave centered
on the particle, whose timescale would be the Zitterbewe-
gung period. This second wave could be the analog of the
real Faraday wave that couples with individual walkers.
It was already shown that the Schrödinger equation can
be retrieved from a random walk of diffusion coefficient
~/(2m) [42]. This work suggests that such a random walk
can originate from the chaos of a deterministic map that
describes the coupling of a wave and a particle. In other
words, the solution of Schrödinger equation for a particle
in a cavity can be obtained from a purely deterministic
mechanism that does not involve any stochastic element.

Walkers have now been investigated for a decade. They
have shown many behaviors reminiscent of quantum par-
ticles. We have shown here that, when they are confined
in cavities, their statistics closely approaches the solution
of the Schrödinger equation. Future work is still required
to identify the exact limits of this analogy.
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Appendix A: Stability of fixed points and orbits

1. Finite memory

Fixed points of the iterated map (14) satisfy rn = r0
and wk,n = wk0. Because of axisymmetry, θn can take
any constant value, so the locus of these fixed points is a
series of concentric circles, referred to here as fixed lines.
The iterated map then becomes

wk0 =
µk

1− µk
ϕk0 ∈ R∑

k

µk
1− µk

ϕk0ϕ
′
k0 = 0 (A1)

where ϕk0 = ϕk(r0) and ϕ′k0 = [dϕk/dr]r0 . This second
condition can be written %′(r0) = 0 with

%(r) =
∑
k

µk
1− µk

ϕ2
k(r)

2
(A2)

Stability of these solutions can be inferred from a
linearized version of the map for small perturbations:
rn = r0 + r̃n, θn = θ̃n, wkn = wk0 + w̃kn, where
x̃n � 1, θ̃n � 1 and w̃kn � 1. We also decompose
w̃kn = ũkn + iṽkn. The linearized map is then

r̃n+1 = r̃n − C
∑
k

[ϕ′′k0wk0r̃n + ϕ′k0ũkn]

θ̃n+1 = θ̃n +
C

r20

∑
k

kϕk0

[
kwk0θ̃n + ṽkn

]
ũk,n+1 = µk [ũkn + ϕ′k0r̃n]

ṽk,n+1 = µk

[
ṽkn − kϕk0θ̃n

]
(A3)

Perturbations (r̃, ũk) are decoupled from (θ̃, ṽk) and can
be analyzed independently.

Radial perturbations r̃n = r̃0z
n and ũkn = ũ0z

n must
satisfy ũk0 = µkϕ

′
k0/(z − µk)r̃0 as well as

1− z = C
∑
k

µk

[
ϕk0ϕ

′′
k0

1− µk
+

ϕ′2k0
z − µk

]
(A4)

When C � 1, all the solutions z should be in the neigh-
borhood of z = 1. If z = 1− ε, then

ε =
C

1− C
∑
k

µk

(1−µk)2
ϕ′2k0

%′′(r0) (A5)

where

%′′(r0) =
∑
k

µk
1− µk

[
ϕk0ϕ

′′
k0 + ϕ′2k0

]
(A6)

Therefore in the limit of small C and finite damping fac-
tors µk < 1, radially-stable (resp. unstable) fixed points
are found where %(r) is minimum (resp. maximum).

Azimuthal perturbations θ̃n = θ̃0z
n and ṽkn = ṽk0z

n

must satisfy ṽk0 = −µkkϕk0

z−µk
θ̃0 as well as

(z − 1)

[
1− C

r20

∑
k

k2ϕ2
k0µk

(1− µk)(z − µk)

]
= 0 (A7)

Since z = 1 is always a solution, these azimuthal per-
turbations are never more than marginally stable. The
other solution z increases from zero as damping factors µk
are increased (i.e., as the forcing amplitude is increased).
Therefore, for each fixed point r0, there is a finite thresh-
old in forcing amplitude for which the damping factors
µk satisfy ∑

k

k2ϕ2
k0µk

(1− µk)2
=
r20
C

(A8)

Above this threshold, there is at least one solution z
larger than unity, so the corresponding fixed point be-
comes azimuthally unstable. This corresponds to the
walking threshold.

This azimuthal destabilization gives rise to periodic
solutions of the map (14) where the particle orbits at
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constant speed around the center of the cavity: rn = r1,
θn = αn and wk,n = wk1e

−ikαn (the wave pattern also
rotates). The walking velocity is then r1α. Plugging this
solution in the iterated map yields

wk1 =
µkϕk1

e−ikα − µk
(A9)

r1(1− cosα) = C
∑
k

ϕk1ϕ
′
k1µk

cos(kα)− µk
1− 2µk cos(kα) + µ2

k

r21 sinα = C
∑
k

kϕ2
k1µk

sin(kα)

1− 2µk cos(kα) + µ2
k

where ϕk1 = ϕk(r1) and ϕ′k1 = [dϕk/dr]r1 . This system
of equations for (r1, α, wk1) can be solved numerically.

Slightly above the azimuthal destabilization threshold,
the orbital radius r1 can be assumed to be as close to the

fixed point radius r0, so r1 = r0 + ε, with ε � 1. The
angular velocity α then satisfies

[
r0 + C

∑
k

µk(1 + µk)

(1− µk)3
k2ϕk0ϕ

′
k0

]
α2

2
= C%′′(r0)ε

(A10)
Since ε → 0 when α → 0, orbital solutions do originate
from the azimuthal destabilization of fixed points, here
through a pitchfork bifurcation. Each orbit then directly
inherits from the radial stability of its corresponding fixed
point.

Orbit stability can be inferred from a perturbation
analysis rn = r1 + r̃n, θn = nα + θ̃n, wk,n = (wk1 +

w̃k,n)e−ikαn, where r̃n � 1, θ̃n � 1, w̃k,n � 1, and
wk1 = uk1 + ivk1. The linearized map is then

r̃n+1 cosα− r1 sinα(θ̃n+1 − θ̃n) = r̃n − C
∑
k

[
ϕ′′k1uk1r̃n − kϕ′k1vk1θ̃n + ϕ′k1ũk,n

]
r̃n+1 sinα+ r1 cosα(θ̃n+1 − θ̃n) =

C

r1

∑
k

k

[(
ϕ′k1vk1 −

ϕk1vk1
r1

)
r̃n + kϕk1uk1θ̃n + ϕk1ṽk,n

]
ũn+1,k = µk

[
cos(kα) (ũk,n + ϕ′k1r̃n)− sin(kα)

(
ṽk,n − kϕk1θ̃n

)]
ṽn+1,k = µk

[
cos(kα)

(
ṽk,n − kϕk1θ̃n

)
+ sin(kα) (ũk,n + ϕ′k1r̃n)

]
.

Perturbations along different directions are now coupled,
and eigenvalues can be found numerically.

2. Fixed points and orbits in the case of infinite
memory

Fixed points do not exist anymore at infinite memory,
at least as soon as more than one mode is selected. In-
deed, they would require ϕk(r0) = 0 simultaneously for
all selected modes k. We can then look for circular orbits
rn = r1, θn = αn, wkn = wk1e

−ikαn. The wave equation
imposes

wk1 =
ϕk1

e−ikα − 1
, (A11)

which is finite provided that k > 0 (i.e., that no purely
radial mode is selected). Then

uk1 = −ϕk1
2
, vk1 =

ϕk1
2

sin(kα)

1− cos(kα)

r1(1− cosα) = −C
2

∑
k

ϕk1ϕ
′
k1

r21 sinα =
C

2

∑
k

kϕ2
k1

sin(kα)

1− cos(kα)
. (A12)

In the limit of (kα)2 � 1,

uk1 = −ϕk1
2
, vk1 =

ϕk1
kα

2%1 + %′1r1 = 0, r21α
2 = C%1, (A13)

with

%(r) =
∑
k

ϕk(r)2, %(r1) = %1,
d%

dr

]
r=r1

= %′1.

When the mode selection includes is at least one ra-
dial mode (k = 0), the orbit solution here above is not
valid anymore, because vk1 blows up when k = 0. In the
iterated map, the radial wave mode satisfies

w0,n+1 = w0,n + ϕ0(rn) (A14)

so the only way to avoid having this component to blow
up is to impose ϕ0(r1) = ϕ01 = 0, which selects the
orbital radii but leaves u01 and v01 undetermined. More-
over, if several radial modes coexist, there should not be
any orbital solution.

The other wave components (k > 0) still satisfy

uk1 = −ϕk1
2
, vk1 =

ϕk1
2

sin(kα)

1− cos(kα)
(A15)



16

Then the particle equations become

r1(1− cosα) = C

[
ϕ′01u01 + 2

∑
k>0

ϕ′k1uk1

]
r21 sinα = 2C

∑
k>0

kϕk1vk1 (A16)

Again, these equations can be solved numerically to find
the orbital radii r1 and their corresponding α.

Appendix B: Wave energy

In a recent paper, Borghesi et al. [40] observed an
equivalence between the kinetic energy of the walker and
the energy stored in the wave field, although the former
was one order of magnitude smaller than the latter. The
dimensional ballistic speed of the walker is here given by
vw ' 0.6λF f/Nc, from which we infer the kinetic energy
of the walker:

T =
2π

3
R3
dv

2
w ' 0.75χρ

R3
dδΩ

R2
c

f2 (B1)

where Rd is the droplet radius. The time-averaged energy
of a mono-frequency wave field is given by

Ewave ' πρf2λ
∫
S

〈H2
n〉dS = 2π2ρf2λ

Ω2

R2
c

∫ 1

0

〈h2n〉rdr

(B2)
where we check numerically for each subset S that

2π

∫ 1

0

〈h2n〉rdr =
∑
k

〈|wk|2〉 '
χΛ2

F

8C
. (B3)

Therefore, the ratio between both energies is

T

Ewave
' 6

π

R3
dδ

2

λ3FR
2
c

(B4)

In this model, δ is not directly expressed as a function of
other parameters, so it is unfortunately hard to conclude
here if both energies are equivalent or not. The esti-
mation of δ from more advanced bouncing and walking
models [33] is left to future work.
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