First come first served: “priority effect” benefits *Ambrosia artemisiifolia* L. more than other ruderal Asteraceae species

William Ortmans, Grégory Mahy, & Arnaud Monty
University of Liège, Gembloux Agro-Bio Tech, BISOE department, Biodiversity and Landscape Unit, Passage des Déportés 2, 5030 Gembloux, Belgium.

- **YOU SAID PRIORITY EFFECT?** -

In plant communities, species that start their development earlier can be advantageous over the other species. This advantage given by an earlier development is called the priority effect and can have an important impact on plant communities’ composition and structure. This is particularly true in ruderal habitats where disturbances are frequent.

Common ragweed (*Ambrosia artemisiifolia* L.) is an invasive plant causing a health crisis in Europe due to its allergenic pollen. This annual plant is highly affected by competition, has an opportunistic behavior, and is often found in ruderal habitats.

- **SO... WHAT’S THE OBJECTIVE?** -

The aim of this study was to evaluate the role the priority effect plays in the invasion success of common ragweed, by determining if the species is able to benefit more of the priority effect than other comparable species from ruderal habitats.

- **HOW DID YOU DO IT?** -

We selected eight annual species from the Asteraceae family, growing in ruderal habitats in Belgium, among which *A. artemisiifolia*. At the beginning of the experiment, seedlings of each species were individually planted in separated pots. Three weeks later, 7 other seedlings (one per species) were planted in the pots in order to have 8 seedlings from 8 different species in each pot, with one 3 weeks older than the others.

After two months, all the plants were cut at ground level, the above ground biomass was measured and the number of flowering head counted.

- **OKAY. LET’S SEE THE RESULTS!** -

The results showed that *A. artemisiifolia* benefited more from the priority than all the other species: its number of flowering heads was multiplied by almost 600 on average (Histogram A) and its aboveground biomass by 30 (Histogram B), when in priority.

Furthermore, when in priority *A. artemisiifolia* was the species that had the biggest negative impact on the development of the 7 other species (Scatterplot).

- **WHAT SHOULD WE LEARN FROM THIS STUDY?** -

This work demonstrated the importance of maintaining native vegetation in invaded areas, since the growth of *A. artemisiifolia* without competition decouples its reproductive performance. The avoidance of unnecessary disturbances is the first thing, but the artificial vegetation restoration of disturbed habitat can also have good results as showed in other studies.

This work also confirm a possible competition avoidance strategy in *A. artemisiifolia*. The species is highly impacted by the presence of competitors, and some authors have shown that the species is able to delay its seed germination in the presence of competitors. The high benefit from the priority can have been selected in order to take advantage of temporally favorable conditions, i.e. when a disturbance occurs.

Take-Home Messages
- *A. artemisiifolia* may pursue a “competition avoidance strategy”, by hastening its development
- In priority, the species decouples its biomass, its flower heads, and reduce the other species growth
- It is therefore critical to avoid situations where *A. artemisiifolia* grows without competition