

Stéphanie van Loo ^{1,2}, Serguei Stoukatch ², Michael Kraft ² & Tristan Gilet ¹

1

Introduction

- Experimental study of droplet formation in a microfluidic cross-junction, the simplest geometry.
- Two configurations: with and without surfactant.
- Two steps identified during squeezing: filling and pinching.
- Different production regimes are observed as Capillary number (Ca) and flow rate ratio (ϕ) are varied in a large range.

Parameters

Fixed: $H, W, \mu_D, \mu_C, \sigma$

$$W^* = \frac{W}{H}$$

$$\eta = \frac{\mu_D}{\mu_C}$$

Dimensionless

$$Ca = \frac{1}{WH} \frac{\mu Q_C}{\sigma}$$

$$\phi = \frac{Q_D}{Q_C}$$

Output: L_d, F_d (droplet frequency)

$$\Omega = \frac{Q_D}{F_d W^2 H}$$

2

Phase diagrams

3

4

Satellite droplets

Satellite droplet looping in the vertical plane between two main droplets.

Satellite droplet looping in the horizontal plane between two main droplets.

Time decomposition

Two steps during squeezing:
Filling (T_1) and pinching (T_2).

$$\Omega = \frac{Q_D}{F_d} \frac{1}{W^2 H} = (T_1 + T_2) Q_D \frac{1}{W^2 H} = \Omega_1 + \Omega_2 \phi$$

Position of the front interface during the formation of 10 successive droplets.

Ω_1, Ω_2

Ω_1 & Ω_2 vs. Ca (resp. ϕ) with fixed ϕ (resp. Ca).
Solid line = fit on the whole dataset.
Dashed line = model of Chen et al. [1].

● without surf. ● with surf.

→ Ω_1 & Ω_2 expressed as the product of a function of Ca and a function of ϕ

$$\Omega_i^* = Ca^{-A_i} (C_i - B_i \phi), \quad i \in \{1, 2\}$$

Step i	1: Filling	2: Pinching
Surfactant	S_o	S_w
A_i	0.20	0.48
B_i	0.045	0.045
C_i	0.48	0.13
		0.20

Simplified fitting parameters.

7

Parity plot of measured dimensionless volume Ω vs. empirical Ω^*

Conclusion

- Model valid for large range of Ca & ϕ (extended range compared to previous models - limits of Chen's model)
- Influence of surfactant mainly on T_1
- Aspect ratio W^* determined thanks to satellite droplets.

8

Stéphanie van Loo (svanloo@ulg.ac.be)

(1) Microfluidics Lab, department of Aerospace and Mechanical Engineering,

University of Liège, Belgium

(2) Microsys Lab, department of Electrical

Engineering and Computer Science,

University of Liège, Belgium

Acknowledgments

This research has been funded by the FNRS (FRIA) and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST), initiated by the Belgian Science Policy Office.

References

- [1] Chen et al., Microfluid. Nanofluid., 2014, 18.
- [2] S. van Loo et al., Microfluid. Nanofluid. 2016, under review.