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Introduction

An operations researcher’s perspective on “regular” words and
sequences. – Based on joint work with Nadia Brauner and Vincent
Jost (Grenoble).

OR specificity: decision-making problems
application driven (management, economics, social sciences,
engineering, etc.)
mathematical modeling
algorithmically oriented
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Applications

Apportionment

A House of representatives has 50 seats
37000 citizens elect representatives
Party A gets 19000 votes, party B gets 13000, party C gets 5000
How should each party be represented in the House?

Ideally, the apportionment of seats should be as close as possible
to the ratios 1

37(19,13,5), i.e., to (25.6757, 17.5676, 6.7568)

Well-studied problem (for a couple of centuries)
Apportionment algorithms are mostly sequential allocation
methods: first seat, then second one,...
E.g., Webster’s method for above example:
A B A B A A B C A B A C...
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Applications

Just-In-Time production scheduling

p product types (A, B, C,...; red, blue, green,...)
ni items of type i = 1, . . . ,p
n =

∑
i ni = total number of items

unit production times
ri =

ni
n = proportion of items of type i

kri = expected number of items of type i in the interval [1, k ].

Determine a production schedule of all items such that, at every
instant k , the number of items of type i that have been produced is
as close as possible to kri .
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Applications

JIT scheduling: Example

  n1 = 3 n2 = 3 n3 = 1 

  r1 = 3/7 r2 = 3/7 r3 = 1/7 

 

kr1  3/7     6/7       9/7     12/7    15/7    18/7    21/7 

x1k    1        1          2         2         2          3         3 

dev 4/7     1/7       5/7      2/7      1/7      3/7        0 
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Applications

JIT scheduling

Related to apportionment, but “sequencing” aspect is central.
E.g., 8 parties get (8,1,1,1,1,1,1,1) votes. House size is 15.

Webster’s apportionment method allocates
A A A A B C D E F G H A A A A
JIT scheduling would expect
A B A C A D A E A F A G A H A

7 / 42



Applications

JIT scheduling

Related to apportionment, but “sequencing” aspect is central.
E.g., 8 parties get (8,1,1,1,1,1,1,1) votes. House size is 15.
Webster’s apportionment method allocates
A A A A B C D E F G H A A A A

JIT scheduling would expect
A B A C A D A E A F A G A H A

7 / 42



Applications

JIT scheduling

Related to apportionment, but “sequencing” aspect is central.
E.g., 8 parties get (8,1,1,1,1,1,1,1) votes. House size is 15.
Webster’s apportionment method allocates
A A A A B C D E F G H A A A A
JIT scheduling would expect
A B A C A D A E A F A G A H A

7 / 42



Maximum deviation JIT scheduling

Outline

1 Applications

2 Maximum deviation JIT scheduling

3 JIT and Balanced words

4 Balanced words

5 Extensions and related concepts

6 Short bibliography

8 / 42



Maximum deviation JIT scheduling

Maximum deviation JIT scheduling

Steiner and Yeomans (1993): Optimization model
ri =

ni
n = proportion of items of type i

Determine a production schedule of all items such that, at every
instant k , the number of items of type i that have been produced is
as close as possible to kri

xik = number of items of type i = 1, . . . ,p produced up to time
k = 1, . . . ,n
(MDJIT) minimize maxi,k |xik − kri |
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Maximum deviation JIT scheduling

Maximum deviation JIT scheduling

ri =
ni
n = proportion of items of type i

xik = number of items of type i = 1, . . . ,p produced up to time
k = 1, . . . ,n
(MDJIT) minimize maxi,k |xik − kri |

Thresholding approach: fix maximum allowed deviation, say, B.
Decide whether one can produce the j-th item of type i at time k
so that |j − kri | ≤ B, for all i , j , k .
Bipartite matching model:

precompute the time-slots k to which j-th item of type i can be
assigned so that |j − kri | ≤ B
put an edge between (i , j) and k
determine whether the graph has a perfect matching

11 / 42



Maximum deviation JIT scheduling

Maximum deviation JIT scheduling

ri =
ni
n = proportion of items of type i

xik = number of items of type i = 1, . . . ,p produced up to time
k = 1, . . . ,n
(MDJIT) minimize maxi,k |xik − kri |

Thresholding approach: fix maximum allowed deviation, say, B.
Decide whether one can produce the j-th item of type i at time k
so that |j − kri | ≤ B, for all i , j , k .

Bipartite matching model:
precompute the time-slots k to which j-th item of type i can be
assigned so that |j − kri | ≤ B
put an edge between (i , j) and k
determine whether the graph has a perfect matching

11 / 42



Maximum deviation JIT scheduling

Maximum deviation JIT scheduling

ri =
ni
n = proportion of items of type i

xik = number of items of type i = 1, . . . ,p produced up to time
k = 1, . . . ,n
(MDJIT) minimize maxi,k |xik − kri |

Thresholding approach: fix maximum allowed deviation, say, B.
Decide whether one can produce the j-th item of type i at time k
so that |j − kri | ≤ B, for all i , j , k .
Bipartite matching model:

precompute the time-slots k to which j-th item of type i can be
assigned so that |j − kri | ≤ B
put an edge between (i , j) and k
determine whether the graph has a perfect matching

11 / 42



Maximum deviation JIT scheduling

JIT scheduling: Bipartite graph

3 part types
n1 = 3, n2 = 3, n3 = 1
n = 7 time slots
B = 5/7

1 
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Maximum deviation JIT scheduling

MDJIT: Complexity

Binary search on B leads to O(n log n) algorithm for the MDJIT
optimization problem

Pseudo-polynomial (input length is: log n1 + log n2 + . . . log np)
Can we do better?
Is the MDJIT problem in NP?
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Maximum deviation JIT scheduling

Algebraic characterization

Theorem (Brauner and Crama DAM 2004)
MDJIT has a solution with maximum deviation at most B if and only if
the following hold for all x1, x2 ∈ {1,2, . . . ,n} with x1 ≤ x2:∑

i max(0, bx2ri + Bc − d(x1 − 1)ri − Be) ≥ x2 − x1 + 1∑
i max(0, dx2ri − Be − b(x1 − 1)ri + Bc) ≤ x2 − x1 + 1

Corollary 1
MDJIT is in co-NP.

Corollary 2
For fixed p, MDJIT can be solved in polynomial time.

Proof. Express the NSC as linear inequalities in integer variables;
use Lenstra’s algorithm.
Easy when p = 2. We know nothing smarter when p ≥ 3
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Maximum deviation JIT scheduling

Bounds on the smallest deviation

Let B∗ = min maxi,k |xik − kri |.

Corollary 3
For all instances of MDJIT, B∗ < 1.

Corollary 4 (Jost 2006)
There always exists a 3-balanced schedule of items, i.e., a schedule
such that the difference between the number of occurrences of parts of
a same type in any two (time) intervals of the same length is at most 3.

Recall: for (n1,n2, . . . ,n8) = (8,1,1,1,1,1,1,1),
Webster’s method yields A A A A B C D E F G H A A A A
JIT scheduling yields A B A C A D A E A F A G A H A
The latter JIT schedule is balanced (difference is at most 1).
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Maximum deviation JIT scheduling

3-balance

A .. A .. A .. A .. A .. A .. A .. A .. A .. A ..

interval [s, t ]: A .. A .. A .. [A .. A .. A .. A .. A .. A] .. A ..
interval [1, t ]: [A .. A .. A .. A .. A .. A .. A .. A .. A] .. A ..
number of A’s is in (trA − 1, trA + 1)
interval [1, s − 1]: [A .. A .. A .. ] A .. A .. A .. A .. A .. A .. A ..
number of A’s is in

(
(s − 1)rA − 1, (s − 1)rA + 1

)
interval [s, t ]: number of A’s is in(
(t − s + 1) rA − 2, (t − s + 1) rA + 2

)
same holds for any other interval of length (t − s)
so, the number of A’s differs by 3 units, at most.
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Maximum deviation JIT scheduling

Small deviations

Let B∗ = min maxi,k |xik − kri |.

when does B∗ < 1
2 hold (meaning: xik = [kri ])?

Note

When B∗ < 1
2 , there exists a balanced schedule of items, i.e., a

schedule such that the difference between the number of occurrences
of parts of a same type in any two intervals of the same length is at
most 1.
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Maximum deviation JIT scheduling

Small deviations

More precisely:
W : word (sequence of letters) associated with a schedule
W ∗: infinite word (W ,W , . . .) obtained by repeating W indefinitely

Theorem (Crama and Brauner (2004))

If W is a schedule with B(W ) < 1
2 for the instance (n1,n2, . . . ,np), then

the word W ∗ is balanced and all numbers ni are pairwise distinct.

Conjecture (Crama and Brauner (2004))

If W is a schedule with B(W ) < 1
2 for the instance (n1,n2, . . . ,np), then

(n1,n2, . . . ,np) = (2p−1,2p−2, . . . ,1).

Proved by Kubiak (2003), Brauner and Jost (2008)
Nice connections with Fraenkel’s conjecture on balanced words.
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JIT and Balanced words

Definitions

Sequences and words
A sequence is a subset of Z.
A word on p letters (or colors) is a partition of Z into p sequences
S1, . . . ,Sp or, equivalently, a mapping Z→ {1,2, . . . ,p}.

Balanced sequences
A balanced sequence is a sequence S such that, for every two
intervals I1 and I2 of the same length, the difference between the
number of elements of the sequence in the two intervals is at most 1:
that is, if I1 = {i1, . . . , i1 + t} and I2 = {i2, . . . , i2 + t}, then
−1 ≤ |I1 ∩ S| − |I2 ∩ S| ≤ 1.

Balanced wordss
A word W is balanced if all its associated sequences Si , i ∈ {1, . . . ,p}
are balanced.
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JIT and Balanced words

Balanced words

Examples:
abacaba abacaba ...

abacaba abacaba ...: balanced

abacabababacaaba...
abacabababacaaba...: not balanced
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JIT and Balanced words

Densities

Densities
Every balanced word has a density vector δ, where δi , the density of
letter i , is the limit, when t →∞, of the proportion of occurrences of
letter i in the interval {1, . . . , t}.

Example:
abacaba abacaba ... δ = (4

7 ,
2
7 ,

1
7)
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JIT and Balanced words

Fraenkel’s conjecture

Fraenkel’s conjecture (1973)

For all p ≥ 3, W p is a balanced word on p letters such that all
components of its density vector δp are pairwise distinct if and only if

δp
i =

2p−i

2p − 1
, i = 1, . . . ,p.

W p is of the form (F p)∗ where F p = (F p−1,p,F p−1).
p = 3: (aba c aba)*; δ3 = (4

7 ,
2
7 ,

1
7).

p = 4: (aba c aba d aba c aba)*; δ4 = ( 8
15 ,

4
15 ,

2
15 ,

1
15).

F p has length 2p − 1, and the letter frequencies are
(2p−1,2p−2, . . . ,1).
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JIT and Balanced words

Links with MDJIT

Theorem (C&B (2004)): If W is a schedule with B(W ) < 1
2 for the

instance (n1,n2, . . . ,np), then W ∗ is balanced and all numbers ni
are pairwise distinct.
Conjecture (C&B (2004)): If W is a schedule with B(W ) < 1

2 for
the instance (n1,n2, . . . ,np), then ni = 2p−i for all i = 1, . . . ,p.
Conjecture would follow from Fraenkel’s conjecture.

Theorem (Brauner and Jost (2008))

If W is a schedule with B(W ) < 1
2 for the instance (n1,n2, . . . ,np), then

W is symmetric.

Theorem (Symmetric case of Fraenkel’s conjecture; B&J (2008))

For all p ≥ 3, W p is a symmetric and balanced word on p letters such
that all components of its density vector δp are pairwise distinct if and
only if δp

i = 2p−i

2p−1 for all i = 1, . . . ,p.
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JIT and Balanced words

Summary

JIT scheduling asks for “regular” scheduling of item types with
given densities.
MDJIT asks for a schedule minimizing the maximum deviation
from “ideal frequencies” kri .
MDJIT is in co-NP.
MDJIT can be solved in pseudo-polynomial time, and even in
polynomial time when p is fixed.
Complexity is unknown in general.

Optimal schedules are almost balanced (3-balanced).
When B∗ < 1

2 , the optimal schedule is balanced. But this is a rare
instance.
What about 2-balanced schedules?
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JIT and Balanced words

Extensions

JIT scheduling asks for “regular” scheduling of item types with
given densities.
MDJIT asks for a schedule minimizing the maximum deviation
from “ideal frequencies” kri .

These are just models! Very meaningful to ask for balanced
sequences when they exist.

More generally:

Given a vector δ in Rp, can we decide (efficiently) whether there
exists a “nicely regular” word with density δ?
Can we better understand the structure of such “nicely regular”
words?
How do we define a “nicely regular” word??

Questions, questions,...
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Balanced words

Outline

1 Applications

2 Maximum deviation JIT scheduling
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Balanced words

What words are balanced?

Balanceable vectors
Vector δ ∈ Rp is balanceable if there exists a balanced word on p
letters with density vector δ.

(4
7 ,

2
7 ,

1
7) is a balanceable vector.

Question:
Can we characterize all balanceable vectors?

Probably very ambitious, so let’s start slowly...
What is known already?
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Balanced words

Balanceable vectors

On 2 letters:

(α,1− α) is balanceable for all 0 < α < 1.

On more than 2 letters:

Much more complex
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Balanced words

A class of balanced words

Congruence sequence

Si = {ain + bi : n ∈ Z} with ai ,bi integers.

Congruence word

A word consisting of congruence sequences S1,S2, . . . ,Sp.
The density of letter i is 1/ai .

Example: W = (abacabad)∗

Positions of a : 1,3,5,7, ... = 2n + 1
Positions of b : 2,6,10... = 4n + 2
Positions of c : 4,12,20, ... = 8n + 4

Property
Every congruence word is balanced.
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Balanced words

A class of balanced words

Congruence substitution WA,j

given a word W , a congruence word A, and a letter j of W , replace the
k -th occurrence of j in W by k -th letter of A, cyclically.

W = (abacaba)∗ and A = (de)∗

WA,b =

(adacaea)∗ WA,c = (abadabaabaeaba)∗

Congruence expansion

A congruence expansion of a word W is the result of iterative
applications of congruence substitutions on W .

Property.
Every congruence expansion of a balanced word is balanced.

How general is this construction?
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Balanced words

Irrational densities

Proposition (Hubert 2000)
A word with irrational densities is balanced if and only if it is a
congruence expansion of a balanced word on two letters. These words
are non-periodic.

Algorithmically, irrational densities are not really relevant.
What about rational density vectors?

Experiment:

for small p and D, generate all balanceable vectors with rational
densities of the form

(
d1
D ,

d2
D , . . . ,

dp
D

)
.
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Balanced words

Experimental observations

In all cases, the balanceable vectors on p letters fall into one of the
following classes:

density vectors of congruence expansions of balanced words on
fewer letters
Fraenkel density

(
2p−1

2p−1 ,
2p−2

2p−1 , . . . ,
1

2p−1

)
and not much more...

33 / 42



Balanced words

Experimental observations

N = 3 : (α/2, α/2,1− α), for all 0 < α < 1, and (4
7 ,

2
7 ,

1
7) (this is

the complete list)

N = 4, results for D ≤ 200; sporadic cases:( 6
11 ,

3
11 ,

1
11 ,

1
11

) ( 6
11 ,

2
11 ,

2
11 ,

1
11

) ( 4
11 ,

4
11 ,

2
11 ,

1
11

) ( 8
14 ,

4
14 ,

1
14 ,

1
14

)
( 8

15 ,
4

15 ,
2

15 ,
1

15

)
(proved to be complete)

N = 5, results for D ≤ 130; sporadic cases:( 8
13 ,

2
13 ,

1
13 ,

1
13 ,

1
13

) ( 6
17 ,

6
17 ,

2
17 ,

2
17 ,

1
17

) (12
23 ,

6
23 ,

3
23 ,

1
23 ,

1
23

)
( 6

13 ,
3

13 ,
2

13 ,
1

13 ,
1
13

) ( 9
17 ,

3
17 ,

3
17 ,

1
17 ,

1
17

) (12
23 ,

6
23 ,

2
23 ,

2
23 ,

1
23

)
( 4

13 ,
3

13 ,
2

13 ,
2

13 ,
2
13

) ( 6
17 ,

6
17 ,

3
17 ,

1
17 ,

1
17

) (16
31 ,

8
31 ,

4
31 ,

2
31 ,

1
31

)
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1
11

) ( 4
11 ,

4
11 ,

2
11 ,

1
11

) ( 8
14 ,

4
14 ,

1
14 ,

1
14

)
( 8

15 ,
4

15 ,
2

15 ,
1

15

)
(proved to be complete)

N = 5, results for D ≤ 130; sporadic cases:( 8
13 ,

2
13 ,

1
13 ,

1
13 ,

1
13

) ( 6
17 ,

6
17 ,

2
17 ,

2
17 ,

1
17

) (12
23 ,

6
23 ,

3
23 ,

1
23 ,

1
23

)
( 6

13 ,
3

13 ,
2

13 ,
1

13 ,
1
13

) ( 9
17 ,

3
17 ,

3
17 ,

1
17 ,

1
17

) (12
23 ,

6
23 ,

2
23 ,

2
23 ,

1
23

)
( 4

13 ,
3

13 ,
2

13 ,
2

13 ,
2
13

) ( 6
17 ,

6
17 ,
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17 ,

1
17 ,

1
17

) (16
31 ,

8
31 ,

4
31 ,

2
31 ,

1
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Experimental observations

N = 6, test exhaustif pour D ≤ 80; sporadic cases:( 5
13 ,

3
13 ,

2
13 ,

1
13 ,

1
13 ,

1
13

) (10
19 ,

5
19 ,

1
19 ,

1
19 ,

1
19 ,

1
19

) ( 8
21 ,

8
21 ,

2
21 ,

1
21 ,

1
21 ,

1
21

)(12
35 ,

12
35 ,

6
35 ,

2
35 ,

2
35 ,

1
35

) ( 9
16 ,

3
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16

) (10
19 ,

3
19 ,

2
19 ,

2
19 ,

1
19 ,

1
19

)(12
25 ,

6
25 ,

3
25 ,

2
25 ,

1
25 ,

1
25

) (12
35 ,

12
35 ,

4
35 ,

4
35 ,

2
35 ,

1
35

) (10
17 ,

2
17 ,

2
17 ,

1
17 ,

1
17 ,

1
17

)(10
19 ,

2
19 ,

2
19 ,

2
19 ,

2
19 ,

1
19

) ( 9
26 ,

9
26 ,

3
26 ,

3
26 ,

1
26 ,

1
26

) (24
47 ,

12
47 ,

6
47 ,

3
47 ,

1
47 ,

1
47
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17 ,

3
17 ,

2
17 ,

1
17 ,

1
17 ,

1
17
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19 ,

3
19 ,

3
19 ,

2
19 ,

1
19 ,

1
19
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35 ,

9
35 ,

3
35 ,

3
35 ,

1
35 ,

1
35
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47 ,
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47 ,

6
47 ,

2
47 ,

2
47 ,

1
47
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3
17 ,

2
17 ,

2
17 ,

1
17 ,

1
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19 ,

6
19 ,

3
19 ,

2
19 ,

1
19 ,

1
19

)(18
35 ,

6
35 ,

6
35 ,

3
35 ,

1
35 ,

1
35

) (24
47 ,

12
47 ,

4
47 ,

4
47 ,

2
47 ,

1
47
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17 ,

4
17 ,

3
17 ,

2
17 ,

1
17 ,
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17

)( 6
19 ,

4
19 ,

4
19 ,

2
19 ,

2
19 ,

1
19

) (18
35 ,

6
35 ,

6
35 ,

2
35 ,

2
35 ,

1
35

) (24
47 ,

8
47 ,

8
47 ,

4
47 ,

2
47 ,

1
47

)( 6
17 ,

4
17 ,

2
17 ,

2
17 ,

2
17 ,

1
17

) ( 4
19 ,

4
19 ,

4
19 ,

4
19 ,

2
19 ,

1
19

) (12
35 ,

12
35 ,

6
35 ,

3
35 ,

1
35 ,

1
35

)(16
47 ,

16
47 ,

8
47 ,

4
47 ,

2
47 ,

1
47

) ( 4
17 ,

4
17 ,

3
17 ,

2
17 ,

2
17 ,

2
17

) (32
63 ,

16
63 ,

8
63 ,

4
63 ,

2
63 ,

1
63

)
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Balanced words

Which leads us to...

Conjecture (Brauner, Crama, Jost (2013))
Besides well-identified infinite families, there only exists a finite number
of balanceable vectors for each p.

More precisely:

Conjecture
If a word W on p letters is balanced, then
(1) W is a congruence expansion of a balanced word on two letters,

or
(2) W is D-periodical for some D ≤ 2p − 1.

For irrational densities, Condition (1) holds.
Condition (2) implies that the number of “sporadic cases” is finite
for each p.
Proof for p ≥ 5??
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Balanced words

More algorithmic questions

How difficult is it to recognize whether a vector δ is the density
vector of a balanced word?

How difficult is it to recognize whether a vector δ is the density
vector of a congruence word?

Example: δ = 1
15(5,5,3,3,3,2,2,1,1,1,1,1,1,1) is the density of

the congruence word
132465172xx31425xx162374152xxx .

But when applied to δ, classical methods for building “regular
schedules” (e.g., MDJIT algorithms, or Webster’s method of
divisors) do not produce a congruence word.
Given p congruence sequences S(ai ,bi), how difficult is it to
recognize whether they form a congruence word, i.e, whether they
partition Z ?
Polynomial for fixed p. In NP otherwise. Hard?
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Extensions and related concepts

m-balanced words

Various related notions have been considered in the OR literature.

Definition. A word W is m-balanced if, for all i and all t , every
subword of W of length t contains the same number of
occurrences of letter i , up to m units.
1-balanced ≡ balanced.

How difficult is it to recognize whether a vector δ is the density
vector of an m-balanced word? (or to minimize m?)
Proposition: For every rational vector δ, there exists a
3-balanced word with density δ.
(Follows from B∗ < 1 for the MDJIT problem.)

Question: What about 2-balance??
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Extensions and related concepts

Tree words

Definition. A tree word (or tree schedule) W is recursively built as
follows:

start with the constant word W = (a)∗

in the current word W , pick a letter j and substitute it by a
congruence word of the form (a1 . . . ak )

∗ for some integer k .

Tree words are a subclass of congruence words.

How difficult is it to recognize whether a vector δ is the density
vector of a tree word?
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Extensions and related concepts

Conclusions

Many interesting (and hard) questions relating to the structure of
“almost regular” words and of their density vectors.

More fundamentally: what is the “right” notion of regularity?
m-balance (different versions), congruence words, weighted
measure of deviation, etc.

Other untouched connections: apportionment problems,
queueing, Beatty sequences, billiard words, etc.

Recognition problems: given a vector δ, decide whether δ is the
density of a “regular” word.

Optimization problems: given a vector δ, find a “regular” word
whose density is as close as possible to δ.
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