Balanced words and related concepts: applications and complexity issues

Yves Crama
HEC Management School, University of Liège, Belgium

Liège, September 2016

Introduction

- An operations researcher's perspective on "regular" words and sequences. - Based on joint work with Nadia Brauner and Vincent Jost (Grenoble).

Introduction

- An operations researcher's perspective on "regular" words and sequences. - Based on joint work with Nadia Brauner and Vincent Jost (Grenoble).
- OR specificity: decision-making problems
- application driven (management, economics, social sciences, engineering, etc.)

Introduction

- An operations researcher's perspective on "regular" words and sequences. - Based on joint work with Nadia Brauner and Vincent Jost (Grenoble).
- OR specificity: decision-making problems
- application driven (management, economics, social sciences, engineering, etc.)
- mathematical modeling

Introduction

- An operations researcher's perspective on "regular" words and sequences. - Based on joint work with Nadia Brauner and Vincent Jost (Grenoble).
- OR specificity: decision-making problems
- application driven (management, economics, social sciences, engineering, etc.)
- mathematical modeling
- algorithmically oriented

Introduction

- An operations researcher's perspective on "regular" words and sequences. - Based on joint work with Nadia Brauner and Vincent Jost (Grenoble).
- OR specificity: decision-making problems
- application driven (management, economics, social sciences, engineering, etc.)
- mathematical modeling
- algorithmically oriented

Outline

(1) Applications
(2) Maximum deviation JIT scheduling
3) JIT and Balanced words

4 Balanced words
(5) Extensions and related concepts

6 Short bibliography

Apportionment

- A House of representatives has 50 seats
- 37000 citizens elect representatives
- Party A gets 19000 votes, party B gets 13000, party C gets 5000
- How should each party be represented in the House?

Apportionment

- A House of representatives has 50 seats
- 37000 citizens elect representatives
- Party A gets 19000 votes, party B gets 13000, party C gets 5000
- How should each party be represented in the House?
- Ideally, the apportionment of seats should be as close as possible to the ratios $\frac{1}{37}(19,13,5)$, i.e., to $(25.6757,17.5676,6.7568)$

Apportionment

- A House of representatives has 50 seats
- 37000 citizens elect representatives
- Party A gets 19000 votes, party B gets 13000, party C gets 5000
- How should each party be represented in the House?
- Ideally, the apportionment of seats should be as close as possible to the ratios $\frac{1}{37}(19,13,5)$, i.e., to $(25.6757,17.5676,6.7568)$
- Well-studied problem (for a couple of centuries)
- Apportionment algorithms are mostly sequential allocation methods: first seat, then second one,...
- E.g., Webster's method for above example: ABABAABCABAC...

Just-In-Time production scheduling

- p product types (A, B, C,...; red, blue, green,...)
- n_{i} items of type $i=1, \ldots, p$
- $n=\sum_{i} n_{i}=$ total number of items
- unit production times
- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- $k r_{i}=$ expected number of items of type i in the interval $[1, k]$.

Just-In-Time production scheduling

- p product types (A, B, C,...; red, blue, green,...)
- n_{i} items of type $i=1, \ldots, p$
- $n=\sum_{i} n_{i}=$ total number of items
- unit production times
- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- $k r_{i}=$ expected number of items of type i in the interval $[1, k]$.
- Determine a production schedule of all items such that, at every instant k, the number of items of type i that have been produced is as close as possible to $k r_{i}$.

JIT scheduling: Example

$$
\begin{array}{lll}
n_{1}=3 & n_{2}=3 & n_{3}=1 \\
r_{1}=3 / 7 & r_{2}=3 / 7 & r_{3}=1 / 7
\end{array}
$$

$\begin{array}{llllllll}k r_{1} & 3 / 7 & 6 / 7 & 9 / 7 & 12 / 7 & 15 / 7 & 18 / 7 & 21 / 7\end{array}$

| $x_{1 k}$ | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllll}\operatorname{dev} 4 / 7 & 1 / 7 & 5 / 7 & 2 / 7 & 1 / 7 & 3 / 7 & 0\end{array}$

JIT scheduling

- Related to apportionment, but "sequencing" aspect is central.
- E.g., 8 parties get $(8,1,1,1,1,1,1,1)$ votes. House size is 15 .

JIT scheduling

- Related to apportionment, but "sequencing" aspect is central.
- E.g., 8 parties get $(8,1,1,1,1,1,1,1)$ votes. House size is 15 .
- Webster's apportionment method allocates

AAAABCDEFGHAAAA

JIT scheduling

- Related to apportionment, but "sequencing" aspect is central.
- E.g., 8 parties get $(8,1,1,1,1,1,1,1)$ votes. House size is 15 .
- Webster's apportionment method allocates

AAAABCDEFGHAAAA

- JIT scheduling would expect

ABACADAEAFAGAHA

Outline

(1) Applications

(2) Maximum deviation JIT scheduling

3 JIT and Balanced words

4 Balanced words
(5) Extensions and related concepts

6 Short bibliography

Maximum deviation JIT scheduling

- Steiner and Yeomans (1993): Optimization model
- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- Determine a production schedule of all items such that, at every instant k, the number of items of type i that have been produced is as close as possible to $k r_{i}$

Maximum deviation JIT scheduling

- Steiner and Yeomans (1993): Optimization model
- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- Determine a production schedule of all items such that, at every instant k, the number of items of type i that have been produced is as close as possible to $k r_{i}$
- $x_{i k}=$ number of items of type $i=1, \ldots, p$ produced up to time $k=1, \ldots, n$
- (MDJIT) minimize $\max _{i, k}\left|x_{i k}-k r_{i}\right|$

JIT scheduling: Example

$$
\begin{array}{lcccccc}
& n_{1}=3 & n_{2}=3 & n_{3}=1 & \\
& r_{1}=3 / 7 & r_{2}=3 / 7 & r_{3}=1 / 7 & \\
& & & & & & \\
k r_{1} & 3 / 7 & 6 / 7 & 9 / 7 & 12 / 7 & 15 / 7 & 18 / 7 \\
x_{1 k} & 1 & 1 & 2 & 2 & 2 & 3 \\
\operatorname{dev} 4 / 7 & 1 / 7 & 5 / 7 & 2 / 7 & 1 / 7 & 3 / 7 & 0
\end{array}
$$

Maximum deviation JIT scheduling

- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- $x_{i k}=$ number of items of type $i=1, \ldots, p$ produced up to time $k=1, \ldots, n$
- (MDJIT) minimize $\max _{i, k}\left|x_{i k}-k r_{i}\right|$

Maximum deviation JIT scheduling

- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- $x_{i k}=$ number of items of type $i=1, \ldots, p$ produced up to time $k=1, \ldots, n$
- (MDJIT) minimize $\max _{i, k}\left|x_{i k}-k r_{i}\right|$
- Thresholding approach: fix maximum allowed deviation, say, B.
- Decide whether one can produce the j-th item of type i at time k so that $\left|j-k r_{i}\right| \leq B$, for all i, j, k.

Maximum deviation JIT scheduling

- $r_{i}=\frac{n_{i}}{n}=$ proportion of items of type i
- $x_{i k}=$ number of items of type $i=1, \ldots, p$ produced up to time $k=1, \ldots, n$
- (MDJIT) minimize $\max _{i, k}\left|x_{i k}-k r_{i}\right|$
- Thresholding approach: fix maximum allowed deviation, say, B.
- Decide whether one can produce the j-th item of type i at time k so that $\left|j-k r_{i}\right| \leq B$, for all i, j, k.
- Bipartite matching model:
- precompute the time-slots k to which j-th item of type i can be assigned so that $\left|j-k r_{i}\right| \leq B$
- put an edge between (i, j) and k
- determine whether the graph has a perfect matching

JIT scheduling: Bipartite graph

- 3 part types
- $n_{1}=3, n_{2}=3, n_{3}=1$
- $n=7$ time slots
- $B=5 / 7$

MDJIT: Complexity

- Binary search on B leads to $O(n \log n)$ algorithm for the MDJIT optimization problem

MDJIT: Complexity

- Binary search on B leads to $O(n \log n)$ algorithm for the MDJIT optimization problem
- Pseudo-polynomial (input length is: $\log n_{1}+\log n_{2}+\ldots \log n_{p}$)

MDJIT: Complexity

- Binary search on B leads to $O(n \log n)$ algorithm for the MDJIT optimization problem
- Pseudo-polynomial (input length is: $\log n_{1}+\log n_{2}+\ldots \log n_{p}$)
- Can we do better?

MDJIT: Complexity

- Binary search on B leads to $O(n \log n)$ algorithm for the MDJIT optimization problem
- Pseudo-polynomial (input length is: $\log n_{1}+\log n_{2}+\ldots \log n_{p}$)
- Can we do better?
- Is the MDJIT problem in NP?

Algebraic characterization

Theorem (Brauner and Crama DAM 2004)

MDJIT has a solution with maximum deviation at most B if and only if the following hold for all $x_{1}, x_{2} \in\{1,2, \ldots, n\}$ with $x_{1} \leq x_{2}$:
$\sum_{i} \max \left(0,\left\lfloor x_{2} r_{i}+B\right\rfloor-\left\lceil\left(x_{1}-1\right) r_{i}-B\right\rceil\right) \geq x_{2}-x_{1}+1$
$\sum_{i} \max \left(0,\left\lceil x_{2} r_{i}-B\right\rceil-\left\lfloor\left(x_{1}-1\right) r_{i}+B\right\rfloor\right) \leq x_{2}-x_{1}+1$

Algebraic characterization

Theorem (Brauner and Crama DAM 2004)

MDJIT has a solution with maximum deviation at most B if and only if the following hold for all $x_{1}, x_{2} \in\{1,2, \ldots, n\}$ with $x_{1} \leq x_{2}$:
$\sum_{i} \max \left(0,\left\lfloor x_{2} r_{i}+B\right\rfloor-\left\lceil\left(x_{1}-1\right) r_{i}-B\right\rceil\right) \geq x_{2}-x_{1}+1$
$\sum_{i} \max \left(0,\left\lceil x_{2} r_{i}-B\right\rceil-\left\lfloor\left(x_{1}-1\right) r_{i}+B\right\rfloor\right) \leq x_{2}-x_{1}+1$

Corollary 1

MDJIT is in co-NP.

Algebraic characterization

Theorem (Brauner and Crama DAM 2004)

MDJIT has a solution with maximum deviation at most B if and only if the following hold for all $x_{1}, x_{2} \in\{1,2, \ldots, n\}$ with $x_{1} \leq x_{2}$:
$\sum_{i} \max \left(0,\left\lfloor x_{2} r_{i}+B\right\rfloor-\left\lceil\left(x_{1}-1\right) r_{i}-B\right\rceil\right) \geq x_{2}-x_{1}+1$
$\sum_{i} \max \left(0,\left\lceil x_{2} r_{i}-B\right\rceil-\left\lfloor\left(x_{1}-1\right) r_{i}+B\right\rfloor\right) \leq x_{2}-x_{1}+1$

Corollary 1
 MDJIT is in co-NP.

Corollary 2

For fixed p, MDJIT can be solved in polynomial time.

- Proof. Express the NSC as linear inequalities in integer variables; use Lenstra's algorithm.
- Easy when $p=2$. We know nothing smarter when $p \geq 3$

Bounds on the smallest deviation

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

Bounds on the smallest deviation

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.
Corollary 3
For all instances of MDJIT, $B^{*}<1$.

Bounds on the smallest deviation

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

Corollary 3

For all instances of MDJIT, $B^{*}<1$.

Corollary 4 (Jost 2006)

There always exists a 3-balanced schedule of items, i.e., a schedule such that the difference between the number of occurrences of parts of a same type in any two (time) intervals of the same length is at most 3.

- Recall: for $\left(n_{1}, n_{2}, \ldots, n_{8}\right)=(8,1,1,1,1,1,1,1)$,
- Webster's method yields A A A A B CDEFGHAAAA
- JIT scheduling yields A B A C A D A E AFAGAHA

Bounds on the smallest deviation

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

Corollary 3

For all instances of MDJIT, $B^{*}<1$.

Corollary 4 (Jost 2006)

There always exists a 3-balanced schedule of items, i.e., a schedule such that the difference between the number of occurrences of parts of a same type in any two (time) intervals of the same length is at most 3.

- Recall: for $\left(n_{1}, n_{2}, \ldots, n_{8}\right)=(8,1,1,1,1,1,1,1)$,
- Webster's method yields A A A A B CDEFGHAAAA
- JIT scheduling yields A B A C A D A E AFAGAHA
- The latter JIT schedule is balanced (difference is at most 1).

3-balance

- A .. A ..

3-balance

- A .. A ..
- interval $[s, t]$: A .. A .. A .. [A .. A .. A .. A .. A .. A] .. A ..

3-balance

- A .. A ..
- interval $[s, t]:$ A .. A .. A .. [A .. A .. A .. A .. A .. A] .. A ..
- interval $[1, t]:[$ A .. A] .. A .. number of A 's is in $\left(t r_{A}-1, t r_{A}+1\right)$

3-balance

- A .. A ..
- interval $[s, t]$: A .. A .. A .. [A .. A .. A .. A .. A .. A] .. A ..
- interval $[1, t]:[$ A .. A] .. A .. number of A 's is in $\left(\operatorname{tr}_{A}-1, t r_{A}+1\right)$
- interval [1, s-1]: [A .. A .. A ..] A .. number of A 's is in $\left((s-1) r_{A}-1,(s-1) r_{A}+1\right)$

3-balance

- A .. A ..
- interval $[s, t]$: A .. A .. A .. [A .. A .. A .. A .. A .. A] .. A ..
- interval $[1, t]:[$ A .. A] .. A .. number of A 's is in $\left(t r_{A}-1, \operatorname{tr}_{A}+1\right)$
- interval [1, s-1]: [A .. A .. A ..] A .. number of A 's is in $\left((s-1) r_{A}-1,(s-1) r_{A}+1\right)$
- interval $[s, t]$: number of A's is in $\left((t-s+1) r_{A}-2,(t-s+1) r_{A}+2\right)$

3-balance

- A .. A ..
- interval $[s, t]:$ A .. A .. A .. [A .. A .. A .. A .. A .. A] .. A ..
- interval [1, $t]:[\mathrm{A}$.. A .. A$]$.. A .. number of A 's is in $\left(t r_{A}-1, t r_{A}+1\right)$
- interval [1, s-1]: [A .. A .. A ..] A .. number of A 's is in $\left((s-1) r_{A}-1,(s-1) r_{A}+1\right)$
- interval $[s, t]$: number of A's is in $\left((t-s+1) r_{A}-2,(t-s+1) r_{A}+2\right)$
- same holds for any other interval of length $(t-s)$
- so, the number of A's differs by 3 units, at most.

Small deviations

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

Small deviations

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

- when does $B^{*}<\frac{1}{2}$ hold (meaning: $x_{i k}=\left[k r_{i}\right]$)?

Small deviations

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

- when does $B^{*}<\frac{1}{2}$ hold (meaning: $x_{i k}=\left[k r_{i}\right]$)?

Note

When $B^{*}<\frac{1}{2}$, there exists a balanced schedule of items, i.e., a schedule such that the difference between the number of occurrences of parts of a same type in any two intervals of the same length is at most 1.

Small deviations

Let $B^{*}=\min \max _{i, k}\left|x_{i k}-k r_{i}\right|$.

- when does $B^{*}<\frac{1}{2}$ hold (meaning: $x_{i k}=\left[k r_{i}\right]$)?

Note

When $B^{*}<\frac{1}{2}$, there exists a balanced schedule of items, i.e., a schedule such that the difference between the number of occurrences of parts of a same type in any two intervals of the same length is at most 1.

Small deviations

More precisely:

- W: word (sequence of letters) associated with a schedule
- W^{*} : infinite word (W, W, \ldots) obtained by repeating W indefinitely

Small deviations

More precisely:

- W : word (sequence of letters) associated with a schedule
- W^{*} : infinite word (W, W, \ldots) obtained by repeating W indefinitely

Theorem (Crama and Brauner (2004))
If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then the word W^{*} is balanced and all numbers n_{i} are pairwise distinct.

Small deviations

More precisely:

- W: word (sequence of letters) associated with a schedule
- W^{*} : infinite word (W, W, \ldots) obtained by repeating W indefinitely

Theorem (Crama and Brauner (2004))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then the word W^{*} is balanced and all numbers n_{i} are pairwise distinct.

Conjecture (Crama and Brauner (2004))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $\left(n_{1}, n_{2}, \ldots, n_{p}\right)=\left(2^{p-1}, 2^{p-2}, \ldots, 1\right)$.

Small deviations

More precisely:

- W : word (sequence of letters) associated with a schedule
- W^{*} : infinite word (W, W, \ldots) obtained by repeating W indefinitely

Theorem (Crama and Brauner (2004))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then the word W^{*} is balanced and all numbers n_{i} are pairwise distinct.

Conjecture (Crama and Brauner (2004))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $\left(n_{1}, n_{2}, \ldots, n_{p}\right)=\left(2^{p-1}, 2^{p-2}, \ldots, 1\right)$.

- Proved by Kubiak (2003), Brauner and Jost (2008)

Small deviations

More precisely:

- W: word (sequence of letters) associated with a schedule
- W^{*} : infinite word (W, W, \ldots) obtained by repeating W indefinitely

Theorem (Crama and Brauner (2004))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then the word W^{*} is balanced and all numbers n_{i} are pairwise distinct.

Conjecture (Crama and Brauner (2004))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $\left(n_{1}, n_{2}, \ldots, n_{p}\right)=\left(2^{p-1}, 2^{p-2}, \ldots, 1\right)$.

- Proved by Kubiak (2003), Brauner and Jost (2008)
- Nice connections with Fraenkel's conjecture on balanced words.

Outline

(1) Applications

(2) Maximum deviation JIT scheduling
(3) JIT and Balanced words

4 Balanced words
(5) Extensions and related concepts

6 Short bibliography

Definitions

Sequences and words

A sequence is a subset of \mathbb{Z}.
A word on p letters (or colors) is a partition of \mathbb{Z} into p sequences S_{1}, \ldots, S_{p} or, equivalently, a mapping $\mathbb{Z} \rightarrow\{1,2, \ldots, p\}$.

Definitions

Sequences and words

A sequence is a subset of \mathbb{Z}.
A word on p letters (or colors) is a partition of \mathbb{Z} into p sequences S_{1}, \ldots, S_{p} or, equivalently, a mapping $\mathbb{Z} \rightarrow\{1,2, \ldots, p\}$.

Balanced sequences

A balanced sequence is a sequence S such that, for every two intervals I_{1} and I_{2} of the same length, the difference between the number of elements of the sequence in the two intervals is at most 1 : that is, if $I_{1}=\left\{i_{1}, \ldots, i_{1}+t\right\}$ and $I_{2}=\left\{i_{2}, \ldots, i_{2}+t\right\}$, then $-1 \leq\left|I_{1} \cap S\right|-\left|I_{2} \cap S\right| \leq 1$.

Definitions

Sequences and words

A sequence is a subset of \mathbb{Z}.
A word on p letters (or colors) is a partition of \mathbb{Z} into p sequences S_{1}, \ldots, S_{p} or, equivalently, a mapping $\mathbb{Z} \rightarrow\{1,2, \ldots, p\}$.

Balanced sequences

A balanced sequence is a sequence S such that, for every two intervals I_{1} and I_{2} of the same length, the difference between the number of elements of the sequence in the two intervals is at most 1 : that is, if $I_{1}=\left\{i_{1}, \ldots, i_{1}+t\right\}$ and $I_{2}=\left\{i_{2}, \ldots, i_{2}+t\right\}$, then $-1 \leq\left|I_{1} \cap S\right|-\left|I_{2} \cap S\right| \leq 1$.

Balanced wordss

A word W is balanced if all its associated sequences $S_{i}, i \in\{1, \ldots, p\}$ are balanced.

Balanced words

Examples:

- abacaba abacaba ...

Balanced words

Examples:

- abacaba abacaba ...
- abacaba abacaba ...: balanced

Balanced words

Examples:

- abacaba abacaba ...
- abacaba abacaba ...: balanced
- abacabababacaaba...
- abacabababacaaba...: not balanced

Densities

Densities

Every balanced word has a density vector δ, where δ_{i}, the density of letter i, is the limit, when $t \rightarrow \infty$, of the proportion of occurrences of letter i in the interval $\{1, \ldots, t\}$.

Densities

Densities

Every balanced word has a density vector δ, where δ_{i}, the density of letter i, is the limit, when $t \rightarrow \infty$, of the proportion of occurrences of letter i in the interval $\{1, \ldots, t\}$.

Example:

- abacaba abacaba ... $\delta=\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$

Fraenkel's conjecture

Fraenkel's conjecture (1973)

For all $p \geq 3, W^{p}$ is a balanced word on p letters such that all components of its density vector δ^{p} are pairwise distinct if and only if

$$
\delta_{i}^{p}=\frac{2^{p-i}}{2^{p}-1}, \quad i=1, \ldots, p
$$

Fraenkel's conjecture

Fraenkel's conjecture (1973)

For all $p \geq 3, W^{p}$ is a balanced word on p letters such that all components of its density vector δ^{p} are pairwise distinct if and only if

$$
\delta_{i}^{p}=\frac{2^{p-i}}{2^{p}-1}, \quad i=1, \ldots, p
$$

- W^{p} is of the form $\left(F^{p}\right)^{*}$ where $F^{p}=\left(F^{p-1}, p, F^{p-1}\right)$.

Fraenkel's conjecture

Fraenkel's conjecture (1973)

For all $p \geq 3, W^{p}$ is a balanced word on p letters such that all components of its density vector δ^{p} are pairwise distinct if and only if

$$
\delta_{i}^{p}=\frac{2^{p-i}}{2^{p}-1}, \quad i=1, \ldots, p
$$

- W^{p} is of the form $\left(F^{p}\right)^{*}$ where $F^{p}=\left(F^{p-1}, p, F^{p-1}\right)$.
- $p=3$: $(\text { aba c aba) })^{*} ; \delta^{3}=\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$.

Fraenkel's conjecture

Fraenkel's conjecture (1973)

For all $p \geq 3, W^{p}$ is a balanced word on p letters such that all components of its density vector δ^{p} are pairwise distinct if and only if

$$
\delta_{i}^{p}=\frac{2^{p-i}}{2^{p}-1}, \quad i=1, \ldots, p
$$

- W^{p} is of the form $\left(F^{p}\right)^{*}$ where $F^{p}=\left(F^{p-1}, p, F^{p-1}\right)$.
- $p=3$: $(\text { aba c aba) })^{*} ; \delta^{3}=\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$.
- $p=4$: (aba c aba d aba c aba) ${ }^{*} ; \delta^{4}=\left(\frac{8}{15}, \frac{4}{15}, \frac{2}{15}, \frac{1}{15}\right)$.

Fraenkel's conjecture

Fraenkel's conjecture (1973)

For all $p \geq 3, W^{p}$ is a balanced word on p letters such that all components of its density vector δ^{p} are pairwise distinct if and only if

$$
\delta_{i}^{p}=\frac{2^{p-i}}{2^{p}-1}, \quad i=1, \ldots, p
$$

- W^{p} is of the form $\left(F^{p}\right)^{*}$ where $F^{p}=\left(F^{p-1}, p, F^{p-1}\right)$.
- $p=3$: (aba c aba)*; $\delta^{3}=\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$.
- $p=4$: (aba c aba d aba c aba) ${ }^{*} ; \delta^{4}=\left(\frac{8}{15}, \frac{4}{15}, \frac{2}{15}, \frac{1}{15}\right)$.
- F^{p} has length $2^{p}-1$, and the letter frequencies are $\left(2^{p-1}, 2^{p-2}, \ldots, 1\right)$.

Links with MDJIT

Links with MDJIT

- Theorem (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W^{*} is balanced and all numbers n_{i} are pairwise distinct.

Links with MDJIT

- Theorem (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W^{*} is balanced and all numbers n_{i} are pairwise distinct.
- Conjecture (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $n_{i}=2^{p-i}$ for all $i=1, \ldots, p$.

Links with MDJIT

- Theorem (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W^{*} is balanced and all numbers n_{i} are pairwise distinct.
- Conjecture (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $n_{i}=2^{p-i}$ for all $i=1, \ldots, p$.
- Conjecture would follow from Fraenkel's conjecture.

Links with MDJIT

- Theorem (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W^{*} is balanced and all numbers n_{i} are pairwise distinct.
- Conjecture (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $n_{i}=2^{p-i}$ for all $i=1, \ldots, p$.
- Conjecture would follow from Fraenkel's conjecture.

Theorem (Brauner and Jost (2008))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W is symmetric.

Links with MDJIT

- Theorem (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W^{*} is balanced and all numbers n_{i} are pairwise distinct.
- Conjecture (C\&B (2004)): If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then $n_{i}=2^{p-i}$ for all $i=1, \ldots, p$.
- Conjecture would follow from Fraenkel's conjecture.

Theorem (Brauner and Jost (2008))

If W is a schedule with $B(W)<\frac{1}{2}$ for the instance $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$, then W is symmetric.

Theorem (Symmetric case of Fraenkel's conjecture; B\&J (2008))
For all $p \geq 3, W^{p}$ is a symmetric and balanced word on p letters such that all components of its density vector δ^{p} are pairwise distinct if and only if $\delta_{i}^{p}=\frac{2^{p-i}}{2^{p-1}}$ for all $i=1, \ldots, p$.

Summary

- JIT scheduling asks for "regular" scheduling of item types with given densities.
- MDJIT asks for a schedule minimizing the maximum deviation from "ideal frequencies" $k r_{i}$.
- MDJIT is in co-NP.
- MDJIT can be solved in pseudo-polynomial time, and even in polynomial time when p is fixed.
- Complexity is unknown in general.
- Optimal schedules are almost balanced (3-balanced).
- When $B^{*}<\frac{1}{2}$, the optimal schedule is balanced. But this is a rare instance.
- What about 2-balanced schedules?

Extensions

- JIT scheduling asks for "regular" scheduling of item types with given densities.
- MDJIT asks for a schedule minimizing the maximum deviation from "ideal frequencies" $k r_{i}$.

Extensions

- JIT scheduling asks for "regular" scheduling of item types with given densities.
- MDJIT asks for a schedule minimizing the maximum deviation from "ideal frequencies" $k r_{i}$.
- These are just models! Very meaningful to ask for balanced sequences when they exist.

Extensions

- JIT scheduling asks for "regular" scheduling of item types with given densities.
- MDJIT asks for a schedule minimizing the maximum deviation from "ideal frequencies" $k r_{i}$.
- These are just models! Very meaningful to ask for balanced sequences when they exist.

More generally:

- Given a vector δ in \mathbb{R}^{p}, can we decide (efficiently) whether there exists a "nicely regular" word with density δ ?

Extensions

- JIT scheduling asks for "regular" scheduling of item types with given densities.
- MDJIT asks for a schedule minimizing the maximum deviation from "ideal frequencies" $k r_{i}$.
- These are just models! Very meaningful to ask for balanced sequences when they exist.

More generally:

- Given a vector δ in \mathbb{R}^{p}, can we decide (efficiently) whether there exists a "nicely regular" word with density δ ?
- Can we better understand the structure of such "nicely regular" words?

Extensions

- JIT scheduling asks for "regular" scheduling of item types with given densities.
- MDJIT asks for a schedule minimizing the maximum deviation from "ideal frequencies" $k r_{i}$.
- These are just models! Very meaningful to ask for balanced sequences when they exist.

More generally:

- Given a vector δ in \mathbb{R}^{p}, can we decide (efficiently) whether there exists a "nicely regular" word with density δ ?
- Can we better understand the structure of such "nicely regular" words?
- How do we define a "nicely regular" word??

Questions, questions,...

Outline

(1) Applications

(2) Maximum deviation JIT scheduling
(3) JIT and Balanced words

4 Balanced words
(5) Extensions and related concepts

6 Short bibliography

What words are balanced?

Balanceable vectors

Vector $\delta \in \mathbb{R}^{p}$ is balanceable if there exists a balanced word on p letters with density vector δ.

- $\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$ is a balanceable vector.

What words are balanced?

Balanceable vectors

Vector $\delta \in \mathbb{R}^{p}$ is balanceable if there exists a balanced word on p letters with density vector δ.

- $\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$ is a balanceable vector.

Question:

Can we characterize all balanceable vectors?

- Probably very ambitious, so let's start slowly...
- What is known already?

Balanceable vectors

On 2 letters:

($\alpha, 1-\alpha$) is balanceable for all $0<\alpha<1$.

Balanceable vectors

On 2 letters:

$(\alpha, 1-\alpha)$ is balanceable for all $0<\alpha<1$.
On more than 2 letters:

Much more complex

A class of balanced words

Congruence sequence
$S_{i}=\left\{a_{i} n+b_{i}: n \in \mathbb{Z}\right\}$ with a_{i}, b_{i} integers.

A class of balanced words

Congruence sequence
$S_{i}=\left\{a_{i} n+b_{i}: n \in \mathbb{Z}\right\}$ with a_{i}, b_{i} integers.
Congruence word
A word consisting of congruence sequences $S_{1}, S_{2}, \ldots, S_{p}$. The density of letter i is $1 / a_{i}$.

Example: $W=(a b a c a b a d)^{*}$

- Positions of a: $1,3,5,7, \ldots=2 n+1$
- Positions of $b: 2,6,10 \ldots=4 n+2$
- Positions of $c: 4,12,20, \ldots=8 n+4$

A class of balanced words

Congruence sequence

$S_{i}=\left\{a_{i} n+b_{i}: n \in \mathbb{Z}\right\}$ with a_{i}, b_{i} integers.
Congruence word
A word consisting of congruence sequences $S_{1}, S_{2}, \ldots, S_{p}$. The density of letter i is $1 / a_{i}$.

Example: $W=(a b a c a b a d)^{*}$

- Positions of a: $1,3,5,7, \ldots=2 n+1$
- Positions of $b: 2,6,10 \ldots=4 n+2$
- Positions of $c: 4,12,20, \ldots=8 n+4$

Property

Every congruence word is balanced.

A class of balanced words

Congruence substitution $W_{A, j}$

given a word W, a congruence word A, and a letter j of W, replace the k-th occurrence of j in W by k-th letter of A, cyclically.

$$
\begin{aligned}
& W=(a b a c a b a)^{*} \text { and } A=(d e)^{*} \\
& W_{A, b}=
\end{aligned}
$$

A class of balanced words

Congruence substitution $W_{A, j}$

given a word W, a congruence word A, and a letter j of W, replace the k-th occurrence of j in W by k-th letter of A, cyclically.

$$
\begin{aligned}
& W=(a b a c a b a)^{*} \text { and } A=(d e)^{*} \\
& W_{A, b}=(a d a c a e a)^{*}
\end{aligned}
$$

A class of balanced words

Congruence substitution $W_{A, j}$

given a word W, a congruence word A, and a letter j of W, replace the k-th occurrence of j in W by k-th letter of A, cyclically.

$$
\begin{aligned}
& W=(a b a c a b a)^{*} \text { and } A=(d e)^{*} \\
& W_{A, b}=(\text { adacaea })^{*} \quad W_{A, c}=(\text { abadabaabaeaba })^{*}
\end{aligned}
$$

A class of balanced words

Congruence substitution $W_{A, j}$

given a word W, a congruence word A, and a letter j of W, replace the k-th occurrence of j in W by k-th letter of A, cyclically.

$$
\begin{aligned}
& W=(\text { abacaba })^{*} \text { and } A=(d e)^{*} \\
& W_{A, b}=(\text { ad } a c a e a)^{*} \quad W_{A, c}=(\text { abadabaabaeaba })^{*}
\end{aligned}
$$

Congruence expansion

A congruence expansion of a word W is the result of iterative applications of congruence substitutions on W.

A class of balanced words

Congruence substitution $W_{A, j}$

given a word W, a congruence word A, and a letter j of W, replace the k-th occurrence of j in W by k-th letter of A, cyclically.

$$
\begin{aligned}
& W=(\text { abacaba })^{*} \text { and } A=(d e)^{*} \\
& W_{A, b}=(\text { ad } a c a e a)^{*} \quad W_{A, c}=(\text { abadabaabaeaba })^{*}
\end{aligned}
$$

Congruence expansion

A congruence expansion of a word W is the result of iterative applications of congruence substitutions on W.

Property.

Every congruence expansion of a balanced word is balanced.

- How general is this construction?

Irrational densities

Irrational densities

Proposition (Hubert 2000)

A word with irrational densities is balanced if and only if it is a congruence expansion of a balanced word on two letters. These words are non-periodic.

Irrational densities

Proposition (Hubert 2000)

A word with irrational densities is balanced if and only if it is a congruence expansion of a balanced word on two letters. These words are non-periodic.

- Algorithmically, irrational densities are not really relevant.

Irrational densities

Proposition (Hubert 2000)

A word with irrational densities is balanced if and only if it is a congruence expansion of a balanced word on two letters. These words are non-periodic.

- Algorithmically, irrational densities are not really relevant.
- What about rational density vectors?

Irrational densities

Proposition (Hubert 2000)

A word with irrational densities is balanced if and only if it is a congruence expansion of a balanced word on two letters. These words are non-periodic.

- Algorithmically, irrational densities are not really relevant.
- What about rational density vectors?

Experiment:

for small p and D, generate all balanceable vectors with rational densities of the form $\left(\frac{d_{1}}{D}, \frac{d_{2}}{D}, \ldots, \frac{d_{\rho}}{D}\right)$.

Experimental observations

In all cases, the balanceable vectors on p letters fall into one of the following classes:

- density vectors of congruence expansions of balanced words on fewer letters
- Fraenkel density $\left(\frac{2^{p-1}}{2^{p}-1}, \frac{2^{p-2}}{2^{p}-1}, \ldots, \frac{1}{2^{p}-1}\right)$
- and not much more...

Experimental observations

- $N=3:(\alpha / 2, \alpha / 2,1-\alpha)$, for all $0<\alpha<1$, and $\left(\frac{4}{\mathbf{7}}, \frac{\mathbf{2}}{\mathbf{7}}, \frac{\mathbf{1}}{\mathbf{7}}\right)$ (this is the complete list)

Experimental observations

- $N=3:(\alpha / 2, \alpha / 2,1-\alpha)$, for all $0<\alpha<1$, and $\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$ (this is the complete list)
- $N=4$, results for $D \leq 200$; sporadic cases:
$\left(\frac{6}{11}, \frac{3}{11}, \frac{1}{11}, \frac{1}{11}\right)\left(\frac{6}{11}, \frac{2}{11}, \frac{2}{11}, \frac{1}{11}\right)\left(\frac{4}{11}, \frac{4}{11}, \frac{2}{11}, \frac{1}{11}\right)\left(\frac{8}{14}, \frac{4}{14}, \frac{1}{14}, \frac{1}{14}\right)$
$\left(\frac{8}{15}, \frac{4}{15}, \frac{2}{15}, \frac{1}{15}\right)$
(proved to be complete)

Experimental observations

- $N=3:(\alpha / 2, \alpha / 2,1-\alpha)$, for all $0<\alpha<1$, and $\left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$ (this is the complete list)
- $N=4$, results for $D \leq 200$; sporadic cases:
$\left(\frac{6}{11}, \frac{3}{11}, \frac{1}{11}, \frac{1}{11}\right)\left(\frac{6}{11}, \frac{2}{11}, \frac{2}{11}, \frac{1}{11}\right)\left(\frac{4}{11}, \frac{4}{11}, \frac{2}{11}, \frac{1}{11}\right)\left(\frac{8}{14}, \frac{4}{14}, \frac{1}{14}, \frac{1}{14}\right)$
$\left(\frac{8}{15}, \frac{4}{15}, \frac{2}{15}, \frac{1}{15}\right)$
(proved to be complete)
- $N=5$, results for $D \leq 130$; sporadic cases:

$$
\begin{aligned}
& \left(\frac{8}{13}, \frac{2}{13}, \frac{1}{13}, \frac{1}{13}, \frac{1}{13}\right)\left(\frac{6}{17}, \frac{6}{17}, \frac{2}{17}, \frac{2}{17}, \frac{1}{17}\right)\left(\frac{12}{23}, \frac{6}{23}, \frac{3}{23}, \frac{1}{23}, \frac{1}{23}\right) \\
& \left(\frac{6}{13}, \frac{3}{13}, \frac{2}{13}, \frac{1}{13}, \frac{1}{13}\right)\left(\frac{9}{17}, \frac{3}{17}, \frac{3}{17}, \frac{1}{17}, \frac{1}{17}\right)\left(\frac{12}{23}, \frac{6}{23}, \frac{2}{23}, \frac{2}{23}, \frac{1}{23}\right) \\
& \left(\frac{4}{13}, \frac{3}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}\right)\left(\frac{6}{17}, \frac{6}{17}, \frac{3}{17}, \frac{1}{17}, \frac{1}{17}\right)\left(\frac{16}{31}, \frac{8}{31}, \frac{4}{31}, \frac{2}{31}, \frac{1}{31}\right)
\end{aligned}
$$

Experimental observations

- $N=6$, test exhaustif pour $D \leq 80$; sporadic cases:

$$
\begin{aligned}
& \left(\frac{5}{13}, \frac{3}{13}, \frac{2}{13}, \frac{1}{13}, \frac{1}{13}, \frac{1}{13}\right)\left(\frac{10}{19}, \frac{5}{19}, \frac{1}{19}, \frac{1}{19}, \frac{1}{19}, \frac{1}{19}\right)\left(\frac{8}{21}, \frac{8}{21}, \frac{2}{21}, \frac{1}{21}, \frac{1}{21}, \frac{1}{21}\right) \\
& \left(\frac{12}{35}, \frac{12}{35}, \frac{6}{35}, \frac{2}{35}, \frac{2}{35}, \frac{1}{35}\right)\left(\frac{9}{16}, \frac{3}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}\right)\left(\frac{10}{19}, \frac{3}{19}, \frac{2}{19}, \frac{2}{19}, \frac{1}{19}, \frac{1}{19}\right) \\
& \left(\frac{12}{25}, \frac{6}{25}, \frac{3}{25}, \frac{2}{25}, \frac{1}{25}, \frac{1}{25}\right)\left(\frac{12}{35}, \frac{12}{35}, \frac{4}{35}, \frac{4}{35}, \frac{2}{35}, \frac{1}{35}\right)\left(\frac{10}{17}, \frac{2}{17}, \frac{2}{17}, \frac{1}{17}, \frac{1}{17}, \frac{1}{17}\right) \\
& \left(\frac{10}{19}, \frac{2}{19}, \frac{2}{19}, \frac{2}{19}, \frac{2}{19}, \frac{1}{19}\right)\left(\frac{9}{26}, \frac{9}{26}, \frac{3}{26}, \frac{3}{26}, \frac{1}{26}, \frac{1}{26}\right)\left(\frac{24}{47}, \frac{12}{47}, \frac{6}{47}, \frac{3}{47}, \frac{1}{47}, \frac{1}{47}\right) \\
& \left(\frac{9}{17}, \frac{3}{17}, \frac{2}{17}, \frac{1}{17}, \frac{1}{17}, \frac{1}{17}\right)\left(\frac{9}{19}, \frac{3}{19}, \frac{3}{19}, \frac{2}{19}, \frac{1}{19}, \frac{1}{19}\right)\left(\frac{18}{35}, \frac{9}{35}, \frac{3}{35}, \frac{3}{35}, \frac{1}{35}, \frac{1}{35}\right) \\
& \left(\frac{24}{47}, \frac{12}{47}, \frac{6}{47}, \frac{2}{47}, \frac{2}{47}, \frac{1}{47}\right)\left(\frac{8}{17}, \frac{3}{17}, \frac{2}{17}, \frac{2}{17}, \frac{1}{17}, \frac{1}{17}\right)\left(\frac{6}{19}, \frac{6}{19}, \frac{3}{19}, \frac{2}{19}, \frac{1}{19}, \frac{1}{19}\right) \\
& \left(\frac{18}{35}, \frac{6}{35}, \frac{6}{35}, \frac{3}{35}, \frac{1}{35}, \frac{1}{35}\right)\left(\frac{24}{47}, \frac{12}{47}, \frac{4}{47}, \frac{4}{47}, \frac{2}{47}, \frac{1}{47}\right)\left(\frac{6}{17}, \frac{4}{17}, \frac{3}{17}, \frac{2}{17}, \frac{1}{17}, \frac{1}{17}\right) \\
& \left(\frac{6}{19}, \frac{4}{19}, \frac{4}{19}, \frac{2}{19}, \frac{2}{19}, \frac{1}{19}\right)\left(\frac{18}{35}, \frac{6}{35}, \frac{6}{35}, \frac{2}{35}, \frac{2}{35}, \frac{1}{35}\right)\left(\frac{24}{47}, \frac{8}{47}, \frac{8}{47}, \frac{4}{47}, \frac{2}{47}, \frac{1}{47}\right) \\
& \left(\frac{6}{17}, \frac{4}{17}, \frac{2}{17}, \frac{2}{17}, \frac{2}{17}, \frac{1}{17}\right)\left(\frac{4}{19}, \frac{4}{19}, \frac{4}{11}, \frac{4}{19}, \frac{2}{19}, \frac{1}{19}\right)\left(\frac{12}{35}, \frac{12}{35}, \frac{6}{35}, \frac{3}{35}, \frac{1}{35}, \frac{1}{35}\right) \\
& \left(\frac{16}{47}, \frac{16}{47}, \frac{8}{47}, \frac{4}{47}, \frac{2}{47}, \frac{1}{47}\right)\left(\frac{4}{17}, \frac{4}{17}, \frac{3}{17}, \frac{2}{17}, \frac{2}{17}, \frac{2}{17}\right)\left(\frac{32}{63}, \frac{16}{63}, \frac{8}{63}, \frac{4}{63}, \frac{2}{63}, \frac{1}{63}\right)
\end{aligned}
$$

Which leads us to...

Conjecture (Brauner, Crama, Jost (2013))
Besides well-identified infinite families, there only exists a finite number of balanceable vectors for each p.

Which leads us to...

Conjecture (Brauner, Crama, Jost (2013))

Besides well-identified infinite families, there only exists a finite number of balanceable vectors for each p.

More precisely:

Conjecture

If a word W on p letters is balanced, then
(1) W is a congruence expansion of a balanced word on two letters, or
(2) W is D-periodical for some $D \leq 2^{p}-1$.

- For irrational densities, Condition (1) holds.
- Condition (2) implies that the number of "sporadic cases" is finite for each p.
- Proof for $p \geq 5$??

More algorithmic questions

- How difficult is it to recognize whether a vector δ is the density vector of a balanced word?

More algorithmic questions

- How difficult is it to recognize whether a vector δ is the density vector of a balanced word?
- How difficult is it to recognize whether a vector δ is the density vector of a congruence word?

More algorithmic questions

- How difficult is it to recognize whether a vector δ is the density vector of a balanced word?
- How difficult is it to recognize whether a vector δ is the density vector of a congruence word?
- Example: $\delta=\frac{1}{15}(5,5,3,3,3,2,2,1,1,1,1,1,1,1)$ is the density of the congruence word

$$
132465172 x x 31425 x x 162374152 x x x .
$$

But when applied to δ, classical methods for building "regular schedules" (e.g., MDJIT algorithms, or Webster's method of divisors) do not produce a congruence word.

- Given p congruence sequences $S\left(a_{i}, b_{i}\right)$, how difficult is it to recognize whether they form a congruence word, i.e, whether they partition \mathbb{Z} ?
Polynomial for fixed p. In NP otherwise. Hard?

Outline

(1) Applications
(2) Maximum deviation JIT scheduling

3 JIT and Balanced words

4 Balanced words
(5) Extensions and related concepts

6 Short bibliography

m-balanced words

Various related notions have been considered in the OR literature.

m-balanced words

Various related notions have been considered in the OR literature.

- Definition. A word W is m-balanced if, for all i and all t, every subword of W of length t contains the same number of occurrences of letter i, up to m units.
- 1-balanced \equiv balanced.

m-balanced words

Various related notions have been considered in the OR literature.

- Definition. A word W is m-balanced if, for all i and all t, every subword of W of length t contains the same number of occurrences of letter i, up to m units.
- 1-balanced \equiv balanced.
- How difficult is it to recognize whether a vector δ is the density vector of an m-balanced word? (or to minimize m ?)
- Proposition: For every rational vector δ, there exists a 3 -balanced word with density δ. (Follows from $B^{*}<1$ for the MDJIT problem.)

m-balanced words

Various related notions have been considered in the OR literature.

- Definition. A word W is m-balanced if, for all i and all t, every subword of W of length t contains the same number of occurrences of letter i, up to m units.
- 1-balanced \equiv balanced.
- How difficult is it to recognize whether a vector δ is the density vector of an m-balanced word? (or to minimize m ?)
- Proposition: For every rational vector δ, there exists a 3 -balanced word with density δ. (Follows from $B^{*}<1$ for the MDJIT problem.)
- Question: What about 2-balance??

Tree words

- Definition. A tree word (or tree schedule) W is recursively built as follows:
- start with the constant word $W=(a)^{*}$
- in the current word W, pick a letter j and substitute it by a congruence word of the form $\left(a_{1} \ldots a_{k}\right)^{*}$ for some integer k.

Tree words

- Definition. A tree word (or tree schedule) W is recursively built as follows:
- start with the constant word $W=(a)^{*}$
- in the current word W, pick a letter j and substitute it by a congruence word of the form $\left(a_{1} \ldots a_{k}\right)^{*}$ for some integer k.
- Tree words are a subclass of congruence words.

Tree words

- Definition. A tree word (or tree schedule) W is recursively built as follows:
- start with the constant word $W=(a)^{*}$
- in the current word W, pick a letter j and substitute it by a congruence word of the form $\left(a_{1} \ldots a_{k}\right)^{*}$ for some integer k.
- Tree words are a subclass of congruence words.
- How difficult is it to recognize whether a vector δ is the density vector of a tree word?

Tree words

- Definition. A tree word (or tree schedule) W is recursively built as follows:
- start with the constant word $W=(a)^{*}$
- in the current word W, pick a letter j and substitute it by a congruence word of the form $\left(a_{1} \ldots a_{k}\right)^{*}$ for some integer k.
- Tree words are a subclass of congruence words.
- How difficult is it to recognize whether a vector δ is the density vector of a tree word?

Conclusions

- Many interesting (and hard) questions relating to the structure of "almost regular" words and of their density vectors.
- More fundamentally: what is the "right" notion of regularity? m-balance (different versions), congruence words, weighted measure of deviation, etc.
- Other untouched connections: apportionment problems, queueing, Beatty sequences, billiard words, etc.
- Recognition problems: given a vector δ, decide whether δ is the density of a "regular" word.
- Optimization problems: given a vector δ, find a "regular" word whose density is as close as possible to δ.

Outline

(1) Applications

(2) Maximum deviation JIT scheduling

3 JIT and Balanced words

4 Balanced words
(5) Extensions and related concepts

6 Short bibliography
E. Altman, B. Gaujal, and A. Hordijk.

Balanced sequences and optimal routing.
Journal of the ACM 47 (1999) 752-775.
M. Balinski and V. Ramirez,

Parametric methods of apportionment, rounding and production, Mathematical Social Sciences 37 (1999) 107-122.
A. Bar-Noy, V. Dreizin and B. Patt-Shamir, Efficient algorithms for periodic scheduling, Computer Networks 45 (2004) 155-173.
國 N. Brauner and Y. Crama,
The maximum deviation just-in-time scheduling problem, Discrete Applied Mathematics 134 (2004) 25-50.
R N. Brauner and V. Jost,
Small deviations, JIT sequencing and symmetric case of Fraenkel's conjecture, Discrete Mathematics 308 (2008) 2319-2324.
A.S. Fraenkel,

Complementing and exactly covering sequences, Journal of Combinatorial Theory (Ser. A) 14 (1973) 8-20.

氰 J．W．Herrmann，
Finding optimally balanced words for production planning and maintenance scheduling，
IIE Transactions 44 （2012），215－229．
P．Hubert，
Suites équilibrées，
Theoretical Computer Science 242 （2000），91－108．
圊 V．Jost，
Ordonnancement chromatique；polyèdres，complexité et classification， Thèse de doctorat，Grenoble， 2006.
風 W．Kubiak，
Fair sequences，
in：J．Y－T．Leung，ed．，Handbook of Scheduling：Algorithms，Models and
Performance Analysis，Chapman \＆Hall／CRC，Boca Raton，FL，2004，pp．
19－1－19－21．
圊 W．Kubiak，
Proportional Optimization and Fairness，
Springer，New York，NY， 2009.
R. Sano, N. Miyoshi and R. Kataoka, m-Balanced words: a generalization of balanced words, Theoretical Computer Science 314(1-2) (2004) 97-120.
G. Steiner and J.S. Yeomans,

Level schedules for mixed-model, just-in-time processes, Management Science 39 (1993) 728-735.
R. Tijdeman,

Fraenkel's conjecture for six sequences,
Discrete Mathematics 222 (2000) 223-234.
嗇 R. Tijdeman,
Periodicity and almost-periodicity,
in: E. Győry, G.O.H. Katona and L. Lovász, eds., More Sets, Graphs and
Numbers, Springer and Bolyai Mathematical Society, Berlin Heidelberg New York Budapest, 2006, pp. 381-405.
R. Vuillon, Balanced words,
Bulletin of the Belgian Mathematical Society Simon Stevin 10 (2003) 787-805.

