Observational signatures of past mass-exchange episodes in massive binaries: The cases of LSS 3074 and HD 17505

Francoise Rauq, Gregor Rauw, Eric Gosset, Jean Manfroid, and Laurent Mahy

email to: fraucq@doct.ulg.ac.be

1. LSS 3074 (Rauq et al. 2016, in prep.)

1.1 System information
- Short-period O binary situated in or beyond the Coalsack region
- Orbital inclination of 50-55° (laflitte et al. 1994, IBVS, 3969, 1)
- Low minimum masses (8-9 M☉) (Morrill & Neimeier 1990, ASP Conf. Series, 7, 57)

1.2 New orbital solution

<table>
<thead>
<tr>
<th>Period (days)</th>
<th>T0 (HJD - 2450 000)</th>
<th>T eff (K)</th>
<th>log(g) (cgs)</th>
<th>L (L⊙)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.185 ± 0.0006</td>
<td>2000.51 ± 0.008</td>
<td>66.0 ± 5.0</td>
<td>21.7 ± 4.7</td>
<td>1.85 ± 0.05</td>
</tr>
<tr>
<td>228.5 ± 7.1</td>
<td>196.0 ± 6.1</td>
<td>9.9 ± 0.3</td>
<td>8.5 ± 0.3</td>
<td>9.3 ± 0.7</td>
</tr>
</tbody>
</table>

1.3 Preparatory analysis
- We separated the contributions from both stars through a disentangling method (Gonzalez & Levaux 2006, A&A 448, 283).
- Primaries are an O5.5 If and secondaries are O6.5-7 If.
- Brightness ratio: \(\frac{B_{\text{prim}}}{B_{\text{sec}}} \) = 2.5 ± 0.42.

1.4 Spectral analysis
- Vsin(i) through Fourier transform method: 110 and 127 km/s for primary and secondary respectively.

1.5 Results

1.6 Discussion
Our orbital solution confirms the low minimum masses announced in the literature for both components. This result is also confirmed by the low absolute masses obtained with our CMFGEN fit. An in depth comparison with theoretical evolutionary models will be performed to determine if such low masses can be explained by a massive loss of matter by the system during a RLOF episode.

Concerning the CMFGEN fit, we can see on Fig. 2 that the disentangled spectra display emission features that are difficult to recover with the models. This may be due to a strong wind-wind interaction within the system, as is common for massive binaries.

The presence of N V λλ 4604 and 4620 indicates a rather hot primary. Nevertheless, the relative strength of He I and He II lines rather suggests a cooler star. In a close binary system such as LSS 3074, the surface temperature of the stars is most likely not uniform and it could happen that different lines form over different parts of the primary’s surface. However, the good fit of the He I and He II lines, together with the well-reproduced wings of the Balmer lines tends to confirm the quality of our determination of the \(T_{\text{eff}} \) and log(g).

Determining precisely the surface CNO abundances is more difficult: while we have a lot of N lines to work on, the C and O lines are very weak, or even not detectable in the spectra, resulting in upper limits for the associated abundances. Nevertheless, a clear enrichment in N and a depletion in C and O are detected, in line with the RLOF scenario.

2. HD 17505

2.1 System information
- Multiple system composed of 7 visual companions, member of the Cas OB6 association
- Central object composed of three O-stars
- Low eccentricity orbit of the inner binary (e = 0.095, with an orbital period of 8.57 days)
- Orbital period of the tertiary < 61 years

2.2 Method
The disentangling does not work accurately because of the distant tertiary star.

- We recomposed the individual synthetic spectra of the three stars and adjusted the obtained spectrum of the triple system directly to the observations (work still in progress).
- Then we will subtract the third component to each observation.
- Finally, we will disentangle the spectra of the inner binary components and study them as for LSS 3074.

2.3 Results

2.4 Discussion
The He I and He II lines, as well as the width of the Balmer lines are well reproduced (Fig. 3). However, we can see in Table 4 that the surface gravities, and thus the associated stellar masses, are quite low compared to usual values for similar spectral types. We are currently investigating this preliminary result, and we will then investigate the CNO abundances.

<table>
<thead>
<tr>
<th>Period (days)</th>
<th>T0 (HJD - 2450 000)</th>
<th>T eff (K)</th>
<th>log(g) (cgs)</th>
<th>L (L⊙)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50 ± 0.005</td>
<td>2060.00 ± 0.008</td>
<td>66.5 ± 5.0</td>
<td>21.7 ± 4.7</td>
<td>2.5 ± 0.05</td>
</tr>
<tr>
<td>228.5 ± 7.1</td>
<td>196.0 ± 6.1</td>
<td>9.9 ± 0.3</td>
<td>8.5 ± 0.3</td>
<td>9.3 ± 0.7</td>
</tr>
</tbody>
</table>

2.5 Results

2.6 Discussion
Our orbital solution confirms the low minimum masses announced in the literature for both components. This result is also confirmed by the low absolute masses obtained with our CMFGEN fit. An in depth comparison with theoretical evolutionary models will be performed to determine if such low masses can be explained by a massive loss of matter by the system during a RLOF episode.

Concerning the CMFGEN fit, we can see on Fig. 2 that the disentangled spectra display emission features that are difficult to recover with the models. This may be due to a strong wind-wind interaction within the system, as is common for massive binaries.

The presence of N V λλ 4604 and 4620 indicates a rather hot primary. Nevertheless, the relative strength of He I and He II lines rather suggests a cooler star. In a close binary system such as LSS 3074, the surface temperature of the stars is most likely not uniform and it could happen that different lines form over different parts of the primary’s surface. However, the good fit of the He I and He II lines, together with the well-reproduced wings of the Balmer lines tends to confirm the quality of our determination of the \(T_{\text{eff}} \) and log(g).

Determining precisely the surface CNO abundances is more difficult: while we have a lot of N lines to work on, the C and O lines are very weak, or even not detectable in the spectra, resulting in upper limits for the associated abundances. Nevertheless, a clear enrichment in N and a depletion in C and O are detected, in line with the RLOF scenario.

2.7 Results

2.8 Discussion
The He I and He II lines, as well as the width of the Balmer lines are well reproduced (Fig. 3). However, we can see in Table 4 that the surface gravities, and thus the associated stellar masses, are quite low compared to usual values for similar spectral types. We are currently investigating this preliminary result, and we will then investigate the CNO abundances.

<table>
<thead>
<tr>
<th>Period (days)</th>
<th>T0 (HJD - 2450 000)</th>
<th>T eff (K)</th>
<th>log(g) (cgs)</th>
<th>L (L⊙)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50 ± 0.005</td>
<td>2060.00 ± 0.008</td>
<td>66.5 ± 5.0</td>
<td>21.7 ± 4.7</td>
<td>2.5 ± 0.05</td>
</tr>
<tr>
<td>228.5 ± 7.1</td>
<td>196.0 ± 6.1</td>
<td>9.9 ± 0.3</td>
<td>8.5 ± 0.3</td>
<td>9.3 ± 0.7</td>
</tr>
</tbody>
</table>

2.9 Results

2.10 Discussion
Our orbital solution confirms the low minimum masses announced in the literature for both components. This result is also confirmed by the low absolute masses obtained with our CMFGEN fit. An in depth comparison with theoretical evolutionary models will be performed to determine if such low masses can be explained by a massive loss of matter by the system during a RLOF episode.

Concerning the CMFGEN fit, we can see on Fig. 2 that the disentangled spectra display emission features that are difficult to recover with the models. This may be due to a strong wind-wind interaction within the system, as is common for massive binaries.

The presence of N V λλ 4604 and 4620 indicates a rather hot primary. Nevertheless, the relative strength of He I and He II lines rather suggests a cooler star. In a close binary system such as LSS 3074, the surface temperature of the stars is most likely not uniform and it could happen that different lines form over different parts of the primary’s surface. However, the good fit of the He I and He II lines, together with the well-reproduced wings of the Balmer lines tends to confirm the quality of our determination of the \(T_{\text{eff}} \) and log(g).

Determining precisely the surface CNO abundances is more difficult: while we have a lot of N lines to work on, the C and O lines are very weak, or even not detectable in the spectra, resulting in upper limits for the associated abundances. Nevertheless, a clear enrichment in N and a depletion in C and O are detected, in line with the RLOF scenario.