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Understanding how climate change will affect species

interactions is a challenge for all branches of ecology. We have

only limited understanding of how increasing temperature and

atmospheric CO2 and O3 levels will affect pheromone-

mediated communication among insects. Based on the

existing literature, we suggest that the entire process of

pheromonal communication, from production to behavioural

response, is likely to be impacted by increases in temperature

and modifications to atmospheric CO2 and O3 levels. We argue

that insect species relying on long-range chemical signals will

be most impacted, because these signals will likely suffer from

longer exposure to oxidative gases during dispersal. We

provide future directions for research programmes

investigating the consequences of climate change on insect

pheromonal communication.
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Edited by Vladimir Koštál and Brent J Sinclair

http://dx.doi.org/10.1016/j.cois.2016.08.006

2214-5745/# 2016 Elsevier Inc. All rights reserved.

Introduction
Since the 19th century, the atmospheric concentration of

greenhouse gases, particularly carbon dioxide (CO2), have

drastically increased causing changes to environmental

parameters at a global scale, including temperature [1].

Recent studies now highlight the impact of such modifica-

tions on the whole dynamics of life [2]. Through cascade

effects, entire ecosystems are being disturbed, impacting

the population dynamics of inhabiting species and altering

the ways that they interact with one another. This phe-

nomenon has been well documented for insect–plant
www.sciencedirect.com 
interactions mediated by plant secondary metabolites

[3,4�].

Communication between insects relies mainly on semi-

ochemicals, which are organic molecules involved in the

chemical interactions between organisms [5]. They in-

clude pheromones (intraspecific communication) and alle-

lochemicals (interspecific communication). Pheromones

have a variety of important roles, especially related to

foraging, aggregation or sexual behaviour [6]. Using be-

haviour-changing pheromones (named releaser phero-

mones) is central to integrated pest management (IPM)

[7], so predicting the impact of climate change on IPM

programmes depends on understanding the impact of

changes in related abiotic parameters on insect pheromon-

al communication. However, few studies have focused on

how changes in climate will disturb each stage in the

pheromone pathway from emitters to receivers (Figure 1).

A pheromone’s long journey
Biosynthesis

Most insect pheromones are synthesised de novo and

secreted in specialised glandular tissues, regulated by

various enzymatic activities [8,9]. Others are sequestered

and/or derived from dietary precursors and depend on the

nutritive quality of the diet. Elevated temperatures will

likely have pronounced effects on pheromone biosynthe-

sis. Because insects are ectothermic and poikilothermic,

changing their body temperature will influence enzymatic

activities [10], and impact pheromone biosynthesis both

quantitatively and qualitatively. For example, tempera-

ture modifies the ratio of compounds in the sex phero-

mone of the potato tuber worm moth Phthorimaea
operculella [11]. Moths (Lepidoptera: Heterocera) differ-

entially use the same precursors to synthesise different

pheromone components, thanks to a wide variety of

enzymes (i.e. oxidase, desaturases, reductase), allowing

specific recognition [12]. Although these insects can per-

ceive a wide range of pheromone components, the activa-

tion of neurons in their macroglomerular complexes, and

the elicitation of relevant behavioural responses, is com-

binatorial: it will happen only when the right combination

and ratio of components is perceived at the same time [6].

Developmental temperature has a strong influence on adult

life history, morphology, and physiology. Furthermore, in

some species, pheromone production and availability is
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Intraspecific chemical communication in insects may be subdivided into five steps that are probably impacted by modifications to atmospheric

gas composition and associated raise in ambient temperature. Graphic art by Carolina Levicek.
dependent on larval, pupation, and/or adult developmental

conditions [8,13,14], hence the effect of abiotic parameters

on all the insect life stages is important. In the male

beewolf, Philanthus triangulum, an increase of 5 8C in

the larval rearing temperature led adult males to produce

more pheromonal secretions [13]. Moreover, warmer rear-

ing conditions led to higher relative amounts of compounds

with high molecular weight. As a consequence, a shift in

temperature could weaken intraspecific relationships of

these insect species by reducing the efficiency (i.e. speci-

ficity, activity, timing of production, etc.) of their chemical

communication.

Increasing atmospheric CO2 concentrations [1] could also

affect the biosynthesis of insect pheromones. Changes in

CO2 concentrations affect plant biochemistry, including

the synthesis of secondary metabolites [4�]. Since some

phytophagous insect species produce their pheromone

components based on precursors taken from their host

plant, we hypothesise that phytophagous insects could be

among the most vulnerable to changes in atmospheric

CO2 concentrations, through cascade effects of CO2 on

plant chemistry [15,16�]. In Holomelina spp. moths, leu-

cine is the starting material for sex pheromone production

[17]. In bark beetles, while pheromones are produced

primarily de novo mainly through the mevalonate path-

way, some aggregation pheromone components arise from

the hydroxylation of host tree-derived secondary metab-

olites [18].
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Emission

Few studies have specifically investigated how changes in

temperature and atmospheric gas composition act on

pheromone release. In the moth Striacosta ablicosta, in-

crease in average temperature does not affect the calling

behaviour of females, while an increasing variation be-

tween photophase and scotophase temperatures alter

significantly this behaviour, as also observed in Phyllonor-
ycter junoniella [19]. Ladybird larvae deposit more long-

chained hydrocarbons — used as oviposition deterring

pheromone — when exposed to rising temperature [20��].
An increase in atmospheric CO2 concentration reduces

the emission rate of the alarm pheromone in pea aphids

(Acyrthosiphon pisum) (Boullis et al., unpublished).

Signal dispersal

After pheromone release by the emitter, volatile pher-

omones may be altered by oxidative gases such as ozone

on their way to the receiver. Most pheromones are simple,

lipophilic and of low molecular weight, which facilitate

their long-distance dispersal in the air. Other pheromones

are heavier molecules, including semi-volatile phero-

mones and cuticular hydrocarbons (CHC), which are used

in short-range or contact communication [6]. Like phyto-

genic volatile organic compounds (VOCs), insect pher-

omones made of unsaturated terpenes may be

decomposed by ozone [21–23]. Similar terpenes are con-

stitutive of sexual, aggregation or alarm pheromones in

several insect taxa, such as ladybirds [24,25], aphids
www.sciencedirect.com
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[26,27], bark beetles [28] and fruit flies [29]. As highlight-

ed for Drosophila melanogaster, terpenes could lose their

biological activity after short-term ozone fumigation at

environmentally-realistic concentrations (ranging from

40 to 120 ppb) [30]. The lifespan of trail-pheromones

and alarm-pheromones, which act in a short time window

and small spatial scale [31,32], may thus be further

reduced in an ozone-rich atmosphere. In addition to

the effect of ozone on pheromones, temperature acts

on the volatility of semiochemicals. In the case of pher-

omones dispersed over long distances such as sex or

aggregation pheromones, temperature changes may mod-

ify the shape of scent plumes and disturb the efficiency of

insects to reach their target [33].

Increased temperature may also alter heavy molecules,

such as cuticular pheromones involved in contact recog-

nition. Because of their low volatility, temperature will

likely more affect the chemical composition of phero-

monal blends (ratios of components). Insects’ cuticular

lipids exist in a solid state at ambient temperatures, but

they can partially melt upon contact with the animal’s

surface (with higher than ambient temperature), which, in

turn, induces modifications in the ratios of cuticular

composition [34]. As observed in D. melanogaster, a 4 8C
increase of ambient temperature changes cuticular hy-

drocarbon composition, which lead to sexual isolation and

affect the stability of ecological communities [35].

Perception

Pheromone perception occurs through a complex series of

events, starting when pheromones enter the sensilla

lymph and ending at brain processing [36–38]. Very

few data are available on how environmental changes

will impact pheromone perception, but one recent study

showed that the sex pheromone perception was altered in

male moth Caloptilia fraxinella under elevated tempera-

ture [39].

Because insects are poikilotherms, changes in their body

temperature may alter the affinity between a pheromone

and its binding protein (PBP) that transports this mole-

cule through the sensillum lymph to olfactory receptor

neurons. In Apis mellifera and A. cerana, ASP1 acts as PBP

that has a good affinity to the queen mandibular phero-

mone [40]. However, increasing temperature weakens

the van der Waals and hydrogen bonds established be-

tween the queen mandibular pheromone and PBP, which

implies that binding affinity between these molecules can

be lessened, inducing a reduced efficiency of the signal

transportation trough the hydrophilic lymph [41].

Behavioural response

Although insect responses to pheromones are innate, they

may be conditional and influenced by direct (age, sex,

hormonal status, experience) and indirect (cascade effect)

factors [6]. Temperature is a major abiotic factor together
www.sciencedirect.com 
with photoperiod that determines the intensity and tim-

ing of various insects’ activities [42,43]. Field studies

related to IPM approaches on several lepidopterans have

shown that the diel periodicity of their sexual attraction is

modified by both photoperiod and ambient temperature

[44–46]. Moreover, the seasonal rate of capture by trap

catching is generally related to the associated tempera-

ture, depending on specific seasonal degree-days that

insects are subjected to [47,48]. By this logic, an increase

in global surface temperature may shift the seasonal

periodicity of sex-related flights in insects, requiring an

adaptation of monitoring and treatment periods against

these pest insects. Another example is the impact of

changing temperatures on ant foraging activity. Ants that

use chemical recruitment tend to forage at lower tem-

peratures compared to those that do not [49]. Therefore,

accelerated pheromone decay caused by increased tem-

peratures is expected to alter trail-following behaviour

and to be more detrimental to foraging by mass-recruiting

ant species [50].

In addition to a general increase in insect mobility, some

specific behavioural responses to pheromones can be

altered by elevated temperature. For instance, male

moths C. fraxinella reared under increased temperature

during their reproductive diapause and subsequently

exposed to female sex pheromones in a wind tunnel show

more pronounced sexual responses [39]. At higher tem-

peratures, male moths also show a lower level of specific-

ity towards their sex pheromones, due to shifts in

behavioural thresholds related to plume orientation and

to the elicitation of upwind flight [51].

With regards to the impact of atmospheric CO2 concen-

tration, the escape behaviour of aphids reared under

elevated CO2 concentrations (i.e. 2100 predicted levels)

is lower compared to those reared under ambient CO2

conditions [52,53,54��]. The increase in CO2 concentra-

tion could affect the escape behaviour of aphids by

reducing the enzymatic activity of acetylcholinesterase,

which is involved in neuronal transmission related to

alarm signal perception [55]. This altered ability of aphids

to produce and/or respond to the alarm pheromone may

alter their defensive behaviours under changing climatic

scenarios.

Conclusions, wider context and future
directions
Based on the existing literature, we suggest that phero-

monal communication in insects will be disturbed by

increases in temperature and atmospheric gas concentra-

tions. Insects relying on long-range chemical signalling,

involving complex blends of molecules, are likely to be

more impacted, due to the possible perturbation of enzy-

matic properties (leading to modification in compound

ratio) or signal degradation by oxidative gases during

dispersal (disrupting pheromone plumes). Behavioural
Current Opinion in Insect Science 2016, 17:87–91
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aspects of chemical communication (emission of the

signal and induced behaviours) could also be affected

as a consequence of shifts in optimal conditions affecting

phenology and/or physiology. However, because climate

change effects on pheromonal communication may be

masked by the daily and seasonal rhythms of behaviour

and physiology, our knowledge of the specific effects of

climate change on pheromone signalling is sparse.

In this review we only focused on intraspecific (pheromon-

al) chemical communication, although allelochemical-me-

diated communication in the broader sense will likely also

be affected by climate change. Indeed, as already sug-

gested in plant–insect relationships, the changes of several

abiotic parameters could affect interactions between

organisms from different trophic levels, and thus affect

the dynamics of ecological systems. However, it is difficult

to predict how climate change will impact chemical com-

munication between insects for several reasons. Abiotic

factors could affect the different stages of insect phero-

mone communication (Figure 1), and the response of

insects to particular environmental conditions could be

species-specific. Moreover, the interactive effects of ele-

vated atmospheric ozone and CO2 concentrations, as well

as temperature increase, on chemical-mediated interac-

tions have received limited attention, despite that all of

these factors are affecting ecosystems’ stability. A key

solution lies in the use of mesocosms and other facilities

where multiple components of climate change can be

manipulated in a multispecies context [56]. This approach

could be used to assess how all climatic changes associated

with a predicted scenario in the coming century might

interact to impact the production of plant secondary me-

tabolites, and the associated cascade effects on the phero-

mone production in phytophagous insects.

In an IPM context, the efficiency of pheromone slow-

release devices could be reduced following climatic mod-

ifications, since their release kinetics are sensitive to

various climatic parameters including temperature [57].

Moreover, because the behavioural response of insects to

pheromones and allelochemicals could also be modified

as a consequence of climate change, we suggest that all

semiochemical-based IPM strategies will be impacted,

including mass trapping, mating disruption, monitoring,

push-pull strategies and other intercropping systems.
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44. Comeau A, Cardé RT, Roelofs WL: Relationship of ambient
temperatures to diel periodicities of sex attraction in six
species of Lepidoptera. Can Entomol 1976, 108:415-418.

45. Lance DR, Odell TM, Mastro VC, Schwalbe CP: Temperature-
mediated programming of activity rhythms in male gypsy
moths (Lepidoptera: Lymantriidae): implications for the sterile
male technique. Env Entomol 1988, 17:649-653.
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