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� PV self-consumption with or without battery is evaluated for many households in EU.
� Self-sufficiency cannot exceed 80% without excessively oversizing the system.
� A simple equation is proposed to compute self-consumption from PV and battery sizes.
� Economic optimizations indicate that further decreases in battery costs are required.
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The recent development of new and innovative home battery systems has been seen by many as a cat-
alyst for a solar energy revolution, and has created high expectations in the sector. Many observers have
predicted an uptake of combined PV/battery units which could ultimately disconnect from the grid and
lead to autonomous homes or micro-grids. However, most of the comments in social media, blogs or
press articles lack proper cost evaluation and realistic simulations. We aim to bridge this gap by simulat-
ing self-consumption in various EU countries, for various household profiles, with or without battery.
Results indicate that (1) self-consumption is a non-linear, almost asymptotic function of PV and battery
sizes. Achieving 100% self-consumption (i.e. allowing for full off-grid operation) is not realistic for the
studied countries without excessively oversizing the PV system and/or the battery; (2) although falling
fast, the cost of domestic Li-Ion storage is most likely still too high for a large-scale market uptake in
Europe; (3) home battery profitability and future uptake depend mainly on the indirect subsidies for
self-consumption provided by the structure of retail prices; (4) the self-sufficiency rate varies widely
between households. For a given household, the volume of self-consumption cannot be predicted in a
deterministic way. Along with these results, this study also provides a database of synthetic household
profiles, a simulation tool for the prediction of self-consumption and a method for the optimal sizing
of such systems.

� 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent development and marketing of new home battery
systems, combined with significant price reductions, have been
seen by many as a catalyst for a solar energy revolution and have
created high expectations in the sector. Significant uptake of com-
bined photovoltaic (PV)/battery units is now seen as a possible
future, which would lead to increased decentralised generation
and higher self-consumption levels. In addition, if current cost
reduction trends persist, it is predicted that these systems could
ultimately disconnect from the grid and lead to autonomous
homes or micro-grids.

At present, however, solar home battery systems are not in
themselves economically viable in most EU countries: rooftop PV
panels still require subsidies in the form of feed-in-tariffs, green
certificates or favourable net metering schemes [1,2]. The benefits
of battery systems are closely linked to higher levels of self-
consumption and thus to exemptions from taxes and grid fees on
the self-consumed part [2]. Increased self-consumption also raises
concerns as regards the sharing of grid costs, taxes and levies: it
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tends to reallocate costs from some prosumers who can afford the
necessary investment to consumers who depend fully on the grid.
The fact that the latter bear a higher proportion of non-energy-
related costs is unfair and unsustainable [3].

The typical installation considered in this paper is depicted in
Fig. 1: it consists of a DC-coupled PV and battery system, covering
part of the household consumption and feeding excess electricity
to the grid. Although the scope of the study is limited to single
households, the proposed approach could easily be extended to
public or commercial buildings, or to micro-grids comprising sev-
eral households.

In order to provide reliable profitability indicators, we have to
assess the volume of self-consumption made possible by a stan-
dalone PV system or the combination of a PV system with a home
battery. A common simplification consists in assuming a fixed
number of charging cycles over the lifetime of the battery. This is
a convenient hypothesis, since it makes it easy to calculate the
levelised cost of stored energy: if the lifetime is 10 years, a total
of 3650 full daily cycles is assumed, which, once multiplied by
the battery capacity and divided by the annualised investment,
gives the levelised cost of stored kWh. As we demonstrate, how-
ever, this approach is erroneous, because the number of full equiv-
alent cycles is usually less than one per day, and is highly
dependent on battery capacity: a small battery tends to perform
almost one full cycle every day, while a large battery presents
much more limited average charge/discharge cycles.

The economic viability of PV combined with battery storage
was evaluated in 2014 in the German context [5]. The authors con-
cluded that, for an economically rational household, investments
in battery storage are already profitable for small residential PV
systems. However, the cost assumption for the battery system
was very low (EUR 171/kWh + EUR 172/kW); a Bloomberg market
survey from January 2016 indicates that the 2015 cost for batteries
should be taken as being around USD 1250/kWh [6]. Other studies,
such as [7], find that PV is profitable under current German regu-
lations, but that batteries still need to become significantly cheaper
if they are to be economically viable.

Truong et al. [8] analyses the profitability of a particular home
battery brand in the case of Germany. They conclude that these
Fig. 1. Conceptual scheme of the considered DC-coupled system. Adapted from [4].
systems require subsidies and increasing retails price of electricity
to be economically viable. In [9], the economics of PV/battery sys-
tems is evaluated for the case of a supermarket. The results indi-
cate that PV alone is profitable, with an optimum installed
capacity around 200% of the peak load. However, the only scenario
in which a battery is profitable is the one in which it costs
decreases down to 200/kWh.

Studies on solar home batteries focus, inter alia, on systems’
peak-shaving capabilities: if the maximum power that can be
exchanged with the grid is limited, power curtailment can be sig-
nificantly reduced by using a battery and an appropriate charging
strategy. However, this also decreases the self-consumption rate
(SCR) [10,11].

Various studies also focus on quantifying self-consumption
with respect to system design. For example [12], shows that,
depending on the battery size (0–32 kWh), the self-sufficiency rate
(SSR) varies from 30% to 66% in winter and 48–99% in summer.
Truong et al. [8] obtains similar results for a German houshold,
in which a 7 kWh battery increases SSR from 38% to 65%. However,
this effect decreases in time due to battery degradation. Weniger
et al. [7] shows that self sufficiency of roughly 54% is achievable
with a battery system of 1 kWh per MWh of yearly consumption
and a PV system of 1 kWp/MWh. For SSRs above 70%, the PV and
battery systems become prohibitively large.

To increase self-consumption, an alternative to battery storage
is demand side management (DSM) through load shifting. This
option has also been considered in previous studies, with very vari-
able results. In [13], DSM only increases self-consumption by 7%
and the system does not seem economically viable. Constrastingly,
in [14], DSM increases SSR from 30.9% to 56.9%, and this figure goes
up to 76% if a battery is added to the system.

Because consumption and production profiles directly affect
SSR, the quality of the input data is key when evaluating self-
consumption. Household consumption profiles are often available
as aggregates, obtained by averaging the profiles of different
households or daily profiles over a given time period (e.g. one
month) [15]. This approach neglects the fast and wide variations
in consumption. It can therefore bias the analysis: Kastel and
Gilory-Scott [16] shows that the error between aggregated and
original curves varies between 10% and 15% for the computation
of self-consumption. To overcome this, we considered only high
time-resolution, disaggregated household consumption profiles.
Contrary to most previous studies, we also aim to simulate a high
number of profiles so as to provide statistically-significant self-
consumption indicators.

The final goal is to develop a simple tool (in the form of an equa-
tion) to quantify self consumption as a function of the installed PV
and battery sizes. This kind of information is key for researchers or
policy makers willing to evaluate the impacts (e.g. financial) of the
deployment of such technologies. Because of its computational
efficiency, it can also be used for the optimal sizing of such systems
in a large number of possible configurations and cost assumptions.

We propose the following general approach:

1. A database of household 15-min electricity consumption pro-
files is gathered for the following countries: Belgium, Spain,
Germany, Denmark, Hungary, Italy, Romania, France and the
United Kingdom. These are simulated in conjunction with a
PV generation model and a simple battery model. Irradiation
and temperature profiles are obtained from typical meteorolog-
ical year datasets;

2. The volume of self-consumption is derived as a function of the
relative sizes of the yearly demand, PV generation and battery
capacity. This analysis is carried out for all household profiles,
the number of which is deemed sufficient to derive statistically
significant SCR and SSR values; and



Table 1
Historical household consumption profiles.

Dataset Location Nprofiles Period Ref.

UKDA UK 22 2008–2009 [18,22]
FR France 1 2006–2010 [21]
SustData Portugal 13 2010–2011 [23]
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3. We evaluate the economic profitability of the systems as a func-
tion of the PV system and battery sizes in a particular regulatory
framework. An optimisation model is set up to maximise sys-
tem profitability from a user perspective and sensitivity analy-
ses are carried out to determine the influence of the battery
cost.

2. Data sources

Realistic time series of domestic electricity demand and PV pro-
duction throughout the year should be used to evaluate the poten-
tial for self-consumption and the levelised cost of a home battery
storage system. This is necessary to account for the (mis) match
between solar generation and household consumption at each
moment of the day. The analysis should also cover several distinct
geographical areas, since the variations in the load patterns across
countries impact the volume of self-consumption: warmer cli-
mates are associated with higher cooling loads and therefore pre-
sent a better match between solar irradiation and electricity
consumption. This effect will be detailed in the following sections.

There are several ways of obtaining these time series. Current
best-practice load profile generation techniques work bottom-up:
appliances and home activity are modelled and used to create load
profiles (see for example [17] or [18]). The disadvantages of this
approach are the data requirements and the modelling intensity.
Other studies [19,20] model the consumption in a top-down fash-
ion using Markovian models. In this work, we avoid consumption
modelling by relying on historical monitoring data available from
various sources, for various countries.

Given the stochasticity of electricity consumption and genera-
tion, reliable values of the self-consumption indicators must be
computed from a statistical of a large number of consumption/pro-
duction profiles. The main challenge is the scarcity of easily acces-
sible data for household consumption profiles in different EU
countries. Most of the published data is aggregated over a large
number of households (standard load profiles) and therefore
smoothens out the variability of the individual profiles. Neverthe-
less, we have gathered a significant number of monitored con-
sumption profiles from various sources, and, where only
aggregated data was available, stochastic variations were added
to the profiles.

2.1. Historical monitoring data

We built up a database of historical household electrical con-
sumption profiles from available sources, with the following
requirements:

� monitoring over at least a year to account for seasonal
variability;

� time steps of 15 min or less;
� monitoring campaign in a European country; and
� disaggregated (i.e. non-averaged) data.

We have a useful data source complying with these require-
ments in the field of machine learning and nonintrusive load mon-
itoring: open datasets are released to test and train the models, and
provide household consumption profiles with a high time-
resolution. A good example is described in [21], with a monitoring
campaign comprising 2,075,259 measurements gathered in a
French household between December 2006 and November 2010
(47 months). The time step is one minute and the monitored value
is the active power. In that case, the one-minute data is aggregated
over 15 min and four monitoring years are added to the database.
Since there is no data for December 2010, the December 2009 val-
ues are duplicated to give us a complete four-year series.
Other datasets focus on the monitoring of multiple households,
such as in [18]: electricity data was measured with a one-minute
resolution in 22 UK dwellings over two complete years (2008
and 2009). Each dwelling was fitted with a single meter covering
electricity use of the whole dwelling.

Table 1 summarises the historical datasets used in this work.

2.2. Synthetic individual load profiles

Thanks to the EUs REMODECE project, household consumption
profiles are available for various Member States [24]. This dataset
is particularly valuable because of the large number of monitored
households (>850). Its main drawback is that the load profiles
are hourly profiles for one typical day in the month. As a result
of the aggregation into average days, the high frequency-
stochastic variability is lost, which might impact the evaluation
of self-consumption. More specifically, having smooth average load
usually overestimates the system’s performance and consequently
the SSR, for two reasons: (1) the load duration curve is smoother
and shallower, implying a higher load factor of the installation;
and (2) the system’s response to fast load variations are neglected.

We therefore add stochastic noise on top of each individual
REMODECE profile.

2.2.1. Stochastic noise model
The historical monitoring data [18] is used to calibrate a

stochastic model of the load variations around its averaged daily
profile, in order to generate realistic time series from the aggre-
gated data. We used the following methodology is applied:

1. average the historical data into average daily profiles for each
month and for each household;

2. compute the logarithmic error between the data and the aver-
aged values;

3. generate stochastic time series calibrated with the characteris-
tic of the log-normal noise; and

4. apply this stochastic noise to the REMODECE averages historical
profiles to generate realistic yearly time series.

A log-normal distribution of the noise is selected, because its
skewness matches that of the error between the load and the aver-
age curve in the data. The logarithmic error is computed by:

LE ¼ log
Loadhist

Loadmean

� �
ð1Þ

Fig. 2 displays the logarithmic noise value for the monitored
data of a UK household, together with its duration curve. The pur-
pose is to generate stochastic times series with characteristics
close to those of this monitored noise. One of the main character-
istics is the maximum load throughout the year, which conditions
the battery’s capacity to offset it and therefore affects self-
consumption. To ensure that this value is conserved, the stochastic
model should conserve the duration curve in Fig. 2.

To that end, we used an algorithm adapted from the iterated
amplitude adjusted Fourier transform (IAAFT) [25,26], which gen-
erates samples of a random process conforming to a given auto-
covariance and probability density function. The advantages of this
approach are that it gives more insight into the underlying process,



Fig. 2. Historical logarithmic noise for a UK household.
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it can take as input only the marginals and autocorrelations, and it
can generate time series of any length [27]. As a first step, a ran-
dom realisation of a given probability distribution function (PDF)
is created at the desired temporal sampling interval x0. Then an
iterative process starts, in which the realization is shuffled in order
to match the given (two-sided) power spectral density (PSD) ðSxxÞ.
The PDF is not affected by the temporal reordering. In every itera-
tion, the Fourier amplitudes of Sxx are compared with those of x0.
This procedure is summarised below (for more information, see
[25]):

1. the phases of x0 are calculated;
2. a new signal x is created with the same phases but with the

amplitudes of Sxx via the IFFT transformation;
3. x lost its marginal information (became Gaussian), so a zero-

mean non-linear transformation is applied. In this procedure,
the values of the signal with the correct distribution, xo, are
shuffled to match the rank of x;

4. the act of shuffling x alters the Fourier amplitudes and hence
the PSD.

The above steps are iterated until the final step matches the
rank from the previous iteration.

During this process, the PDF remains exactly the same, but
there can be some small error in the PSD. According to [27] the
error decreases with the length of the time series. For this paper,
the length of the time series is large enough to give almost zero
error on the PSD generated by the above procedure.

A total of 894 synthetic, yearly, 15-min time-step (i.e. 35,040
time steps) household profiles are generated using the above
methodology. The conservation of the load duration curve and of
the PDF ensures that these profiles present similar characteristics
to the historical ones. Besides the stochasticity of the noise model,
additional variability originates from the diversity of the historical,
aggregated REMODECE basis profiles. The synthetic profiles gener-
ated in this manner comply with the historical monthly energy
consumptions and properly represent the variability of household
consumption patterns. They are therefore deemed realistic enough
for the computation of self-consumption. The database of synthetic
profiles is provided as an electronic annex to this paper, https://
github.com/squoilin/Self-Consumption/releases.

2.3. PV generation

Each household generation profile is simulated using the typical
meteorological year (TMY3 files) for the capital of the country in
question [28]. A simple PV model is used, assuming a south orien-
tation and a tilt angle of 35�. It should be noted that in practice, the
orientation of the PV collectors vary from one household to the
other: the azimuth angles can vary e.g. depending on the roof ori-
entation and the tilt angle can vary depending on the shading (e.g.
in mountainous areas) or on the latitude (for the considered coun-
tries, the optimum tilt angle varies from 32� to 38� [29]). Due to the
lack of information and to simplify the analysis, we consider fixed
azimuth and tilt angles for all households. In order to ensure real-
istic yearly PV generation, the computed profiles are however
scaled to match the average capacity factor specific to each coun-
try, as provided in the JRC PVGIS information system [30].

3. Model description

3.1. PV and battery dispatch models

The storage capacity is dispatched in such a way as to maximise
self-consumption; if the PV power is higher than the load, the bat-
tery is charged until full. As soon as the PV power is lower than the
load, the battery is discharged until empty. The losses taken into
account are battery round-trip efficiency and inverter efficiency.
It is assumed that demand is not responsive.

At each time step, the following simple dispatch algorithm is
executed: the maximum battery discharge power is calculated by:

Pmax;dis;i ¼ min Pmax;bat;
SOCi�1 � gbat

Dt

� �
ð2Þ

and the maximum charging power by:

Pmax;ch;i ¼ min Pmax;bat;
CAPbat � SOCi�1

Dt

� �
ð3Þ

The actual battery discharge is computed by comparing the PV
generation with the load:

Pdis;i ¼ min Pmax;dis;i;max 0;
Pload;i

ginv
� PPV ;DC;i

� �� �
ð4Þ

The actual battery charging power is calculated in a similar
manner:

Pch;i ¼ min Pmax;ch;i;max 0; PPV ;DC;i � Pload;i

ginv

� �� �
ð5Þ

The energy balance is finally written:

SOCi ¼ SOCi�1 þ Pch;i � Dt � Pdis;i

gbat
� Dt ð6Þ

Fig. 3 illustrates the results of the dispatch algorithm for a
French historical consumption profile in a typical week in July. Bat-
tery charging and feeding to the grid are indicated as negative
values.

3.2. Yearly simulations

Combining the PV generation model, the demand profiles and
the battery dispatch algorithm, it is straightforward to simulate a
whole year of operation. This results in time vectors of the battery
state of charge or of the power bought and sold to the grid. The var-
ious models and data processing are implemented in the Python
language. The dispatch algorithm is compiled using Cython to
improve the computational efficiency of the yearly simulation.
The different scripts developed for this study are provided as elec-
tronic annexes.

3.3. Yearly energy flows

For a yearly simulation, the main variable of interest is the total
volume of self-consumption, which is commonly expressed as a
SSR or a SCR [7]. Other authors also refer to these variables as cover
ratio, solar fraction or load fraction [16,31].

https://github.com/squoilin/Self-Consumption/releases
https://github.com/squoilin/Self-Consumption/releases


Fig. 3. Power dispatch for a typical week of July.
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In this study, the SSR is defined as the ratio between the self-
consumed energy and the total yearly energy demand:

SSR ¼ ESC

Eload
¼
PN

i¼1ðPdis;i þ PSC;DC;0;iÞ � ginvPN
i¼1Pload;i

ð7Þ

where E refers to an annual energy flow and P to an instantaneous
power. N is the number of time steps in one year and PSC;DC;0;i is the
DC PV generation directly self-consumed (i.e. without passing
through the battery).

The SCR is defined in a similar manner. Note that the reference
is the annual energy produced by the PV array on the DC bus (i.e.
before the inverter):

SCR ¼ ESC

EPV ;DC
¼
PN

i¼1ðPdis;i þ PSC;DC;0;iÞ � ginvPN
i¼1PPV ;DC;i

ð8Þ

A summary of the relevant yearly energy flows within the con-
sidered system is shown in Fig. 4. Interestingly, each of these val-
ues can be derived from the yearly demand Eload and from the
value of SSR computed with or without battery, as demonstrated
below.

To compute all energy flows, we first need to determine the
‘self-sufficiency without battery’ value. We do this through the
SSR0 variable, defined as:

SSR0 ¼ ESC;0

Eload
¼
PN

i¼1PSC;DC;0;i � ginvPN
i¼1Pload;i

ð9Þ

The relative PV system and battery sizes are defined as inputs of
the simulation since they influence the different energy flows and
the volume of self-consumption. They are normalised to the annual
electricity demand:

Rbat ¼ CAPbat

Eload

kWh
MWh

� �
ð10Þ
Fig. 4. Energy flows on a yearly basis.
where CAPbat is the accessible battery capacity (i.e. the total battery
capacity multiplied by the maximum depth of discharge).

The relative PV size is defined using the annual generation of
the PV array on the DC bus (i.e. before inverter):

RPV ¼ EPV ;DC

Eload
¼ PPV ;peak � ginv � CFPV

Eload

kWh
kWh

� �
ð11Þ

where PPV ;peak is the peak power (in kWp) of the PV system in the
standard conditions and CPPV is the capacity factor of the PV instal-
lation for the given location (in kWh/kWp). SCR can be deducted
from SSR and the PV system capacity:

SCR ¼ SSR
RPV

ð12Þ

The total amount of energy provided by the battery is self-
consumption minus the self-consumption in the case without
battery:

EFromBat ¼ ESC;DC � ESC;DC;0 ¼ ESC � ESC;0

ginv
ð13Þ

The amount of electricity sold to the grid is what remains from
the PV production after removing the self-consumed energy flows:

EToGrid ¼ ginv �EPV ;DC � ESC;DC;0 � EFromBat

gbat

� �
ð14Þ

From the above equations, it appears that the most important indi-
cator is SSR, from which all others are deducted. Therefore, the fol-
lowing paragraphs focus on the influence of the operating
parameters on the SSR value.

3.4. Direct self-consumption

This section focuses on the case of household self-consumption
with a PV system but without battery. One of the goals of this anal-
ysis is to cross-check the very common hypothesis of a 30% SSR. To
that end, the entire database of synthetic and historical profiles is
simulated using the algorithm described in Section 3.2. For these
simulations, it is assumed that RPV ¼ 1. The simulation time step
is 15 min and the total number of simulated profiles is 929. The
results of the simulations are shown in Fig. 5.

The following conclusions can be drawn from Fig. 5:

� The standard deviation is high. The self-consumption for a given
household can therefore be evaluated only in a probabilistic
way.

� The assumption SSR0 ¼ 30% seems to underestimate slightly
the actual numbers obtained in this analysis. It can therefore
be considered as a conservative hypothesis.



Fig. 5. Box plot of the self-sufficiency rate for each country (PV/demand ratio: 1).

Fig. 6. Influence of the battery size on the self-sufficiency rate for each country (PV/
demand ratio: 1).

Fig. 7. Influence of the simulation time resolution.
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� Southern countries tend to present a slightly higher SSR, prob-
ably due to the close correlation between cooling demand and
solar irradiation.

� The average difference between countries is much smaller than
the standard deviation within a country.

3.5. Economic performance of the system

From a user perspective, the levelised cost of a grid-connected
solar home battery system can be calculated by considering the
grid as a zero-investment generator producing at the retail price.
Accordingly, the energy fed to the grid should also be taken into
account as a negative cost.

The investment in the battery and PV systems is taken into
account as a constant annuity:

A ¼ IPV þ Ibat � 1þ 1

ð1þ iÞNbat

" # !
� ðCRF þ OMÞ ð15Þ

where A is the annuity and I stands for investment. It is assumed
that there is a second investment in the battery after Nbat years.
OM is the fraction of annual operation and maintenance. CRF
denotes the capital recovery factor calculated by:

CRF ¼ i � ð1þ iÞNPV

ð1þ iÞNPV � 1
ð16Þ

where i is the weighted average cost of capital (WACC) and NPV is
the PV system lifetime in years.

The levelised cost of electricity from a prosumer perspective can
be defined as:

LCOE ¼ Aþ EFromGrid � PRetail � EToGrid � PToGrid

Eload
ð17Þ

It is also useful to isolate the contribution of the battery by cal-
culating the levelised cost of storage:

LCOS ¼ Abat

EFromBat � ginv
ð18Þ

where Abat denotes the part of the annuities linked to the battery
investment and re-investment (cfr. Eq. (15)).

4. Discussion

4.1. Influence of the battery capacity

Adding a battery to the system allows greater self-consumption,
but each additional storage unit within the system has a utilisation
rate lower than the previous one. This effect is illustrated by per-
forming the same simulation as above and varying the battery size
(Fig. 6). As expected, the curve seems to present an horizontal
asymptote: after a certain quantity, any additional kWh of battery
storage increases the SSR only marginally. At higher capacity, the
battery storage starts to balance longer variations (e.g. weekly or
seasonal, rather than daily), which occur less frequently and there-
fore contribute less to the increase in SSR.

The following conclusions can be drawn from Fig. 6:

� the difference between countries is limited for Rbat ¼ 0, but
seems to increase with the battery capacity;

� interestingly, the only country for which both synthetic and his-
torical profiles are available (Portugal) shows a close match
between the two curves, which tends to confirm that the gener-
ated stochastic profiles are suitable for such simulation.

4.2. Influence of timestep and maximum battery power

In order to validate the proposed methodology with a 15-min
time step, we should check the error linked to the simulation
time-resolution. To that end, the French historical profile (one-
minute time step) is simulated for 2012 with three different time
steps: one minute, 15 min, and one hour. It is assumed that there
is no constraint on the battery charging/discharging power. The
simulations indicate that higher time-resolution leads to lower
self-sufficiency since fast variations are smoothed out at low
time-resolution (Fig. 7). However, the error is limited, with a max-
imum difference in the SSR value of 1.5% at Rbat ¼ 0. It disappears
almost entirely when a battery is added.



Fig. 8. Influence of the battery’s maximum charging/discharging power on the self-
sufficiency rate.

Fig. 9. Influence on SSR of PV system and battery size.

Fig. 10. SSR0 as a function of PV size fitted with a hyperbolic function.
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It is also useful to evaluate the impact of the battery’s maximum
charging/discharging power on self-consumption. In most cases,
this limitation is not directly linked to the battery itself, but to
the power electronics (i.e. the internal DC/DC converter). In this
study, we assume that the maximum charging and discharging
powers are equal and constant in time. This is a simplifying
hypothesis since in a real application is might depend on the state
of charge. At low power, the highest peaks in the load profile
cannot be covered (see Fig. 3), which reduces the battery’s
power-offsetting capacity and thus the level self-consumption.
Fig. 8 indicates that there are significant differences in the com-
puted SSR values, but that these tend to disappear completely
when maximum battery power reaches 4–5 kW.

5. Bivariate regression

The main aim of this section is to provide a tool for predicting
SSR as a function of PV system and battery size. This kind of tool
is particularly useful for evaluating the profitability of such sys-
tems, because it allows us to calculate the volumes of energy that
are self-consumed, sold to the grid and bought from the grid. It
should be simple to implement, accurate and computationally
efficient.

As in the univariate analysis, the dispatch algorithm is first run
for all the household profiles and for an array of RPV and Rbat values.
The SSR surfaces are then averaged for one geographical area or for
the whole set of profiles. Fig. 9 shows the result of this procedure
when all profiles are included. It is worthwhile to highlight that
this SSR mapping is an average over all household profiles. Simi-
larly to Fig. 5, it can vary significantly from one household to the
other. As an example, for RPV ¼ 1 and Rbat ¼ 0, the standard devia-
tion is 5.9% and the coefficient of variation (i.e. the standard devi-
ation divided by the SSR value) is 0.18. For RPV ¼ 1 and Rbat ¼ 4, the
standard deviation is 7.3% and the coefficient of variation is 0.10.
This variation is significant and shows that the SSR map cannot
be used deterministically when considering one household alone.
It is only relevant to evaluate overall self-consumption levels for
a large number of household in a given geographical area.

The challenge is to fit a two-dimensional function to this SSR
surface, with the following desired characteristics:

� good overall accuracy between the model and the original
values;

� exact number for SSR0 with RPV ¼ 1, since this value is very
commonly used;
� excellent accuracy for the prediction of SSR vs RPV with Rbat ¼ 0
since it corresponds to the common case in which there is no
battery;

� excellent accuracy for the prediction of SSR vs Rbat with RPV ¼ 1,
since this is also a common case;

� SSR ! 100% for RPV ! 1 or Rbat ! þ1;
� SSR ! 0 if RPV ! 0.

Because the shape of the univariate curves SSR vs RPV (Fig. 10) or
SSR vs Rbat (Fig. 6) is nearly asymptotical at SSR = 100%, it can be
fairly well approximated by a hyperbolic tangent function com-
bined with a linear term.

Also, because some SSR values (Fig. 9) require a higher accuracy
than others, a three-steps regression methodology is proposed.

First, a reference value of SSR is obtained directly from the data
and imposed to the further steps:

SSR0;1 ¼ SSRRbat¼0;RPV¼1 ð19Þ
Then, the univariate data at RPV ¼ 1 and Rbat ¼ 0 is fitted using

the following analytical expressions:

SSRRPV¼1 ¼ SSR0;1 þ a1 � tanhða2 � RbatÞ þ a3 � Rbat ð20Þ
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SSRRbat¼0 ¼ b4 � tanhðb5 � RPV Þ þ b6 � RPV þ b7 �
ffiffiffiffiffiffiffi
RPV

p
ð21Þ

where ai and bi are the coefficients determined by minimizing the
root mean square error (RMSE) between the function and the data.
These coefficients should remain positive to ensure that SSR grows
monotonously with Rbat and RPV .

Finally, the 2D regression is performed by imposing the two
univariate curves (coefficients a1!3 and b4!7) and fitting additional
coefficients c8!15. In order to improve accuracy, the regression pro-
cedure is split in two (RPV 6 1 and RPV > 1). The final expression of
the regression is given by:

SSR ¼ W � n1 þ ð1�WÞ �maxðRPV ; n2Þ ð22Þ
where W is a weighting function between 0 and Wmax given by:

W ¼ min 1;max 0;
Rbat

Wmax

� �� �
ð23Þ

Wmax is taken equal to 0.4.
n1 provides the dependency of SSR with Rbat and RPV . It is divided

in two to ensure a good fit at RPV ¼ 1:
If RPV P 1:

n1 ¼ ðc8 þ c9 � RbatÞ � tanhðc10 � ðRPV � 1ÞÞ þ c11 � ðRPV � 1Þ þ SSRRPV¼1

ð24Þ
If RPV < 1:

n1 ¼ ½c12 � tanhðc13 � ð1� RPV ÞÞ þ SSRRPV¼1� � RPV ð25Þ
n2 ensures that the regression remains accurate for low Rbat

values:

n2 ¼ SSRRbat¼0 � ½1þ c14 � tanhðRbatÞ� þ c15 � tanhðRbatÞ ð26Þ
A total of 15 empirical coefficients is needed to ensure that the

regression fulfils the requirements. These coefficients are provided
in Table 2 for three different cases that are representative of the
results obtained in this study: a southern European country (Portu-
gal), the average for all countries and a northern European country
(Denmark). The quality of the regression can be evaluated using
the coefficient of determination, leading to R2 ¼ 99:84% for the
overall average, R2 ¼ 99:87% for Portugal and R2 ¼ 99:91% for
Denmark; this is deemed acceptable.

The implementation of the final function can be cross-checked
with the following values (in the ‘‘average” case):

SSRRbat¼0:8;RPV¼0:8 ¼ 52:67610%

SSRRbat¼1:2;RPV¼1:2 ¼ 66:55167%
Table 2
Coefficients of the fSSR function.

Average Portugal Denmark

SSR0;1 32.603 33.438 32.184
a1 38.220 47.093 30.685
a2 0.854 0.715 0.844
a3 1.019 0.081 0.968
b4 13.268 15.802 11.238
b5 2.092 2.496 2.120
b6 �4.760 �4.463 �5.381
b7 24.589 22.350 26.751
c8 8.998 9.459 10.694
c9 1.742 1.245 1.516
c10 1.379 1.347 0.841
c11 1.221 0.954 1.854
c12 34.320 22.511 67.400
c13 1.459 2.676 0.782
c14 0.373 0.282 0.441
c15 15.027 16.318 8.756
6. Example test case

This section illustrates how the analytical expression derived in
Eq. (22) can be used to optimize and evaluate the profitability of
the PV/battery home system, taking into account the benefits of
self-consumption.

Fig. 11 describes the rationale whereby a prosumer maximises
SSR. Germany is taken as an example because its tariff structure
is favourable to solar home batteries: the large price difference
between buying electricity (at the retail price) and selling it (at
the feed-in-price) can justify investing in self-consumption.

In such a context, households optimise their solar home battery
investment by comparing the levelised cost of storage and of the
PV installation with the residential electricity tariff. The latter
includes network tariffs, taxes, levies and other surcharges that
can be avoided when consuming self-produced PV electricity
instead of purchasing from the grid. The tariff structure can thus
be seen as creating an indirect financial incentive to self-
consumption.

It should be noted that this mechanism is unsustainable in a
scenario in which such systems enjoy significant uptake, since it
generates revenue shortfalls for government, municipalities and
system operators. These losses of revenue need to be compensated,
either by increasing the network tariffs or by changing the tariff
structure, e.g. switching from a volume (per kWh) remuneration
to a hybrid scheme involving fixed or capacity-dependent remu-
neration for the grid connection. Interestingly, tariff structures
are already being adjusted in this way in several EU countries [1].

Fig. 12 shows the influence of the PV system and battery sizes
on the LCOE for the conditions of Table 3. Note that the battery cost
function is much lower than the current price levels. It is represen-
tative of a hypothetic future situation in which battery costs keep
decreasing. In these conditions, an optimum clearly appears, in
terms of both PV size and battery size: if the battery is oversized,
its utilisation is low, which leads to excessive investment costs.
On the other hand, for small batteries, the displaced load is low
and the impact on the self-consumption is marginal. The same is
true for the PV system, whose revenues are significantly higher
Fig. 11. Average retail tariff structure in Germany (2015) and impact on self-
consumption.



Fig. 12. LCOE as a function of the PV system and battery sizes.

Table 3
Cost parameters of the test case.

Variable Unit PV Battery

Lifetime (N) Years 20 10
Investment (I) EUR 1500/kWp 300 + 200/kWh
O&M EUR/year OM ¼ 1:5% � I
Discount rate % WACC ¼ 4:16%
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for the self-consumed generation than for the energy fed to the
grid. The optimal design of such a system can therefore be
expressed as mixed-integer non linear programming optimisation
(MINLP) problem. Since there are only two binary variables (pres-
ence of a battery system, presence of a PV system), the problem is
solved with two optimisations performed in parallel (the third cor-
responds to the trivial case RPV ¼ 0 and Rbat ¼ 0). The case in which
a battery is installed without a PV system is irrelevant and not sim-
ulated. The global optimum is finally obtained by selecting the
minimum of the objective functions.

To compute the break-even variable cost of the battery system,
we conduct a parametric study by re-optimizing the system for a
number of cost values. On the basis of the results in Fig. 13, we
can draw the following conclusions:
Fig. 13. Optimal values of RPV and Rbat as a function of battery costs.
� the battery stops being profitable when its variable cost exceeds
EUR 214/kWh; at this break-even point, the optimisation stops
investing in the battery system, the cost of which becomes
prohibitive;

� the optimal share of PV is lower in the absence of a battery. This
is explained by the fact that the battery shifts a part of the PV
generation to self-consumption, which is more profitable. This
increases the profitability of the PV system, whose optimum
size is thus increased.

7. Conclusions

The main objective of this study was to evaluate the level of
self-consumption that can be expected for a household installing
a PV system with or without battery. To be relevant, such analysis
must be performed for a large number of different (stochastic)
household consumption profiles. We therefore built up a database
of profiles from monitoring data and generated a number of addi-
tional stochastic profiles.

The analysis has revealed the following:

� Self-consumption is a non-linear, almost horizontally asymp-
totic function of PV and battery size. Achieving 100% self-
consumption (i.e. allowing for full off-grid operation) is not
realistic without excessively oversizing the PV system and the
battery;

� The SSR varies widely between households: for a given house-
hold, the volume of self-consumption can therefore not be pre-
dicted in a deterministic way;

� For an average European household, the SSR in the absence of
battery varies between 30% and 37%. The value tends to be
slightly higher in southern countries;

� The SSR can be significantly impacted by the maximum charg-
ing and discharging power of the battery, especially for high
battery capacities;

� The benefits of self-consumption stem from the tariff structure
and the difference between electricity buying and selling prices.
They are therefore largely linked to the local regulation;

� A scenario of high penetration of self-consumption solutions
might lead to an unfair distribution of network charges, taxes
and levies, which self-consumers do no have to pay. This
explains why the regulatory framework is currently changing
in several EU countries;

� Depending on the financial inputs, there may be optimum PV
and battery sizes: adding a battery to the system can result in
a larger optimum PV array size;

� With the assumptions made for this study, a home battery sys-
tem becomes profitable if its variable cost is below EUR 214/
kWh (for a fixed cost of EUR 300). This is well below the current
(January 2016) battery prices [6], which tends to indicate that
further price reductions are required before there is a real
uptake of these systems. These results are in line with those
presented in [7]: PV systems are profitable in the current Ger-
man context, but batteries become profitable only in longer-
term scenarios with significantly lower prices.

To ensure that this work is easily reproducible, the database of
household consumption profiles, the dispatch algorithm, the finan-
cial module and the optimisation procedure are provided as an
electronic annex to this paper.1

Finally, it should be noted that the economic analysis presented
here is mainly for illustrative purposes. It does not aim to cover the
full spectrum of possible regulations and market tariffs. It can
1 https://github.com/squoilin/Self-Consumption/releases/tag/v1.0.

https://github.com/squoilin/Self-Consumption/releases/tag/v1.0
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therefore not be considered a comprehensive evaluation of the
profitability of home batteries. Future work will focus on using
the self-consumption evaluation tool for policy support, in partic-
ular to evaluate the impact of the current developments in EU reg-
ulations on self-consumption and the future deployment of solar
home battery systems.
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