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Abstract 

In the present paper, a detailed description of the formulation of the new SSH3D solid-shell element is 

presented. This formulation is compared with the previously proposed RESS solid-shell element [1, 2]. 

Both elements were recently implemented within the LAGAMINE in-house research finite element 

code. These solid-shell elements possess eight nodes with only displacement nodal degrees of freedom 

(DOF). In order to overcome various locking pathologies, the SSH3D formulation employs the well 

known Enhanced Assumed Strain (EAS) concept originally introduced by Simo and Rifai [3] and 

based on the Hu-Veubeke-Washizu variational principle combined with the Assumed Natural Strain 

(ANS) technique based on the work of Dvorkin and Bathe [4]. For the RESS solid-shell element, on 

the other hand, only the EAS technique is used with a Reduced Integration (RI) Scheme. A particular 

characteristic of these elements is their special integration schemes, with an arbitrary number of 

integration points along the thickness direction, dedicated to analyze problems involving non-linear 

through-thickness distribution (i.e. metal forming applications) without requiring many element layers. 

The formulation of the SSH3D element is also particular, with regard to the solid-shell elements 

proposed in the literature, in the sense that it is characterized by an in-plane full integration and a large 

variety in terms of (i) enhancing parameters, (ii) the ANS version choice and (iii) the number of 

integration points through the thickness direction. The choice for these three parameters should be 

adapted to each problem so as to obtain accurate results and to keep the calculation time low.  

Numerous numerical examples are performed to investigate the performance of these elements. These 

examples illustrate the reliability and the efficiency of the proposed formulations in various cases 

including linear and non-linear problems. SSH3D element is more robust thanks to the various options 

proposed and its full in-plane integration scheme, while RESS element in more efficient from a 

computational point of view.  

KEY WORDS: Enhanced Assumed Strain, Assumed Natural Strain, Solid-shell, Stabilization 

technique 

1 Introduction 
A large number of research works were devoted to the development of low-order 3D finite elements 

for the modeling of thin shell structures. This is due to their efficiency in term of computational cost 

and their wide range of applicability in several types of mechanical analysis. In this context, several 

published works were focused on the development of solid-shell elements (e.g. see [5-13]) which form 

a class of finite element models that are intermediate between the conventional solid and shell 

elements. Despite their attractive features, low-order solid-shell displacement-based finite elements 

suffer from different types of locking effects. This phenomenon, which occurs under certain 

circumstances, is characterized by a severe underestimation of the element nodal displacements, i.e. 

the structural response is too stiff and it has “locked” itself against the deformations. The locking 
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phenomena can be overcome by various modifications on the low order element formulation. On the 

other hand, the use of high-order formulations can be effective due to their high capacity to capture the 

actual geometry of curved shell structures, but these formulations are very sensitive to mesh distortion. 

In addition to the order of the special interpolation, the integration scheme has a large effect on the 

occurrence of the locking phenomena and the overall performance of the element. In this context, two 

main integration schemes are usually used in the development of 3D eight node isoparametric finite 

elements: (i) full integration (FI), where eight (2x2x2) integration points located at certain particular 

positions within each Finite Element defined by the Gauss coordinates, are used; and (ii) reduced 

integration (RI), which is based on one integration point located at the element center. Both schemes 

have their benefits and drawbacks. 

For instance, the reduced integration allows reducing significantly locking pathologies, being; in 

addition very attractive from the computational point of view. But, at the same time, it can lead to 

serious problems in the Finite Element model, such as numerical instabilities (the well-known 

‘hourglass phenomenon’) and also convergence problems, which require the use of complicated 

stabilization techniques (for further details on RI schemes see [1, 14, 15]). For these reasons, full 

integration scheme is more frequently used for the development of 3D finite elements such as in the 

case of solid-shell elements (e.g. [5, 6, 16-19]) even if it suffers from several locking pathologies. In 

order to reduce these locking effects, several techniques are available in the literature for low-order 

fully integrated solid and solid-shell formulations. Among these techniques, the B-Bar and the 

selective reduced integration (SRI) techniques are considered as the most efficient, especially in the 

treatment of volumetric locking. These methods were initially proposed by Malkus et al. [20] and by 

Hughes [21] for shell and plate elements.  

In addition to the above techniques, two very popular and effective techniques are used in the 

development of 3D low-order solid-shell finite elements to eliminate locking problems: The enhanced 

Assumed Strain (EAS) and the Assumed Natural Strain (ANS) techniques. 

In 1990, Simo and Rifai present in their work [3] the first four-node finite element, for geometrically 

linear problems, based on the three field variational principle of Hu-Washizu which is called by ‘the 

Enhanced Assumed Strain method’. Later, this method was extended for the analysis of non-linear 

problems based on the enhancement of the deformation gradient tensor F in the works of Simo and 

Armero [22] and Miehe [16]. The EAS procedure was also applied directly to enhance the Green-

Lagrange strain tensor E in several works (e.g. Klinkel et al. [23, 24], Vu-Quoc and Tan [6, 7], Alves 

de Sousa et al. [1, 25], Parente et al. [26], Schwarze et al. [27], among others).  

Comparing these different ways to introduce the EAS technique is not obvious. In reference [6], 

departing from a numerical experimentation, the authors indicate that the EAS formulation based on 

the Green-Lagrange strain E is more efficient than the EAS formulation based on the enhancing of the 

deformation gradient F like the formulation described in [16]. Additionally, according to [6], the same 

results are obtained with both approaches when the same EAS parameters are used.  

In [28], Andelfinger and Ramm applied the Enhanced Assumed Strain for the development of a four 

node membrane, plate and shell elements and a 3D eight node solid element. In this reference, 

equivalence of some formulations based on the EAS method and Hellinger-Reissner principle is 

discussed.  

Despite the fact that the Enhanced Assumed Strain is very attractive when it is used to overcome 

locking pathologies and to improve the element accuracy, it is considered as inefficient in term of 

computational time. Therefore, the choice of the optimal EAS parameters is a crucial matter for 

several published works (e.g. Betsh et al [29], Andelfinger and Ramm [28], Vu-Quoc and Tan [6], 

Klinkel et al. [18], Alves de Sousa et al. [25], Miehe [16], Rah et al. [12]). This choice should depend 

on the type of analysis for which the element is used. Unfortunately, this method has some limitations 

in the solving of certain particular locking pathologies, especially in the modeling of very thin 
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structures and in the case of mesh distortion. Therefore, another very popular technique is used in 

several research works in the few last decades and known as the Assumed Natural Strain (ANS) 

method.   

The Assumed Natural Strain (ANS) method is considered among the most efficient techniques, which 

have been frequently used to overcome transverse shear and curvature thickness locking. This 

technique uses a very straightforward procedure to treat these locking pathologies, especially in 

bending situation. It consists in modifying the interpolation scheme of certain strain components that 

are plagued by locking phenomena (the transverse shear strain components E13 and E23 to tackle the 

transverse shear locking and the transverse normal component E33 to tackle the curvature thickness 

locking). These strain components are firstly calculated using the classical interpolation method in the 

element domain at the so-called ‘sampling points’, which are located where the parasitic strain 

distributions vanish. Thereafter, the calculated components are evaluated at the Gauss points using 

bilinear or linear interpolation functions (depending on the number of sampling points) from their 

values at the sampling points.  

This method was originally applied for four shell elements by Dvorkin and Bathe [4] ant it has proven 

to be efficient, very robust and to give very good results for four node plate bending theory based on 

Mindlin/Reissner plate theory in [30] (applied on the transverse shear strain components E13, E23). This 

method was later extended to overcome the curvature thickness locking by modifying the interpolation 

of the transverse normal strain component E33 for four-node shell elements, as proposed by Betsch and 

Stein [29] and also Bischoff and Ramm [31]. In the recent development of solid-shell elements, 

numerous formulations are developed based on the combination of the EAS and ANS methods such as 

the work of Hauptman et al. [5], Miehe [16], Klinkel et al. [18], Vu-Quoc and Tan [6], Cardoso et al. 

[32], Schwarze and Reese [10] and the recent works of Rah et al. [12] and Pramin et al. [33]. 

Taking all these references and achievements in the literature, the main goal of the present paper is to 

present the formulations of the SSH3D (=Solid-SHell element in 3D) and RESS (=Reduced Enhanced 

Solid-Shell element) solid-shell elements. Then, to assess the elements for some numerical results, 

which were achieved thanks to the LAGAMINE in-house research finite element code, in which these 

elements are implemented. The code is an implicit non-linear FE program with an updated Lagrangian 

formulation and it is adapted to large strains and large displacements. It has been under development 

at the ArGEnCo department of the university of Liège since 1982 and was initiated by Cescotto in 

order to simulate the rolling process [34]. In addition to rolling, the code has been applied to several 

other forming processes, such as forging [35], continuous casting [36], deep drawing [37], incremental 

forming [38], and to various other applications. 

The present paper is outlined as follows. In Section 2.1, the most disturbing locking phenomena which 

occur in solid-shell elements are briefly summarized. The different techniques used to overcome these 

locking pathologies are presented in Sections 2.2, 2.3, 2.4 and 2.5. Then, the numerical tests are given 

in Section 3 to evaluate the performance of the present formulations in linear and non-linear cases. 

This numerical evaluation shows the good performance of both elements. Finally some conclusions 

and discussions are given. 

2 Formulations of the SSH3D and RESS solid-shell elements 

2.1 Locking phenomena in 3D solid-shell elements and possible remedies 

The most disturbing locking problems infecting low-order 3D solid-shell elements can be classified as 

follows: 
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2.1.1 Volumetric locking 

This phenomenon generally occurs for nearly incompressible material behavior (e.g. elastic behavior 

with Poisson’s ratio approaching 0.5 or elastoplastic behavior). This phenomenon is caused by missing 

terms in the normal strain components. Therefore, the constraint of an incompressible material cannot 

be fulfilled by the normal strain of a pure displacement-based formulation.  

Volumetric locking is a much more serious problem than shear locking, because it cannot be avoided 

by refining the mesh. In addition, all the standard fully integrated finite elements will lock in the 

incompressible limit, and some elements show very poor performance even for Poisson’s ratios as 

small as 0.45. Fortunately, metallic materials have Poisson’s ratios around 0.3, so standard elements 

can be used for most linear elasticity and small strain plasticity problems (where the plastic 

compressibility constraint is not predominant compared to the elastic behavior). Several methods, such 

as the EAS, SRI and B-Bar methods, have been proposed in the literature to overcome this locking 

phenomenon. 

2.1.2 Transverse Shear locking 

In 3D elements, due to their trilinear shape functions, pure transversal bending state cannot be 

represented without leading to accompanying parasitic transversal shear strain. This problem can occur 

when the element is used in the analysis of shell structures with bending dominated loading (see 

Klinkel et al. [23]). For solid-shell elements, the two very popular techniques, the Enhanced Assumed 

Strain (EAS) and the Assumed Natural Strain (ANS), are often used to remove shear locking. 

2.1.3 Curvature locking 

Due to the poor approximation of the low-order interpolation functions, parasitic thickness normal 

strains ε33 are always present at a Gauss point. This effect is particularly severe when coarse meshes 

and strong curvatures of the shell geometry exist. This locking phenomenon can be avoided by 

applying the ANS method on the element’s transverse normal strain ε33, as proposed by Betsch and 

Stein [39]. 

 

More locking pathologies and their possible remedies are described in detail by Caseiro et al. [40]. 

2.2 Variational formulation of the EAS method 

The starting point of the Enhanced Assumed Strain method is the well-known Hu-Washizu three-field 

variational principle which can be written in the following form:  

     int extπ , , = π , , + πu ε σ u ε σ u , (1) 

where the internal potential 
int  is expressed as: 

  T s

int
Ω Ω

π , , = W( )dV + ( - )dV u ε σ ε σ u ε , (2) 

and the potential energy of external forces can be written as: 

 
σ

ext 0
Ω Ω

π = ρ dV + dA
 u bu tu , (3) 

where W is the stored strain energy and σ, u, ε are the actual stress, displacement and strain fields 

respectively. Here,   is the volume of the studied body, 
   in (3) is its external surface where 

surface tractions are applied and 
S is the symmetric gradient operator. Here, b and t are the 

prescribed body forces and traction vectors, respectively. Finally, 0 is the density of the material. 

The variation of (1), with respect to the three independent variables u, ε and σ respectively, is 

calculated via the so-called Gâteaux derivatives and leads to the following equations: 
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T s

ext
Ω

δ dV - π (δ ) = 0 σ u u  (4) 

T

ε
Ω

δ ( W - )dV = 0 ε σ  (5) 

T s

Ω
δ ( - )dV = 0 σ u ε  (6) 

Within the elastoplastic FE framework, W  (in equation (5)) should return the stress computed by 

the constitutive law at material point x for the strains ε, therefore it should preferably be noted  m ,x εσ  

where m stands for material.  

The kinematic of this formulation is based only on displacement degrees of freedom (DOFs). 

Therefore, and relying the isoparametric concept, the standard shape functions for eight node 

hexahedral elements are used to approximate the position vector of the reference configuration X and 

the displacement vector U via the following relations: 

 
8

=1

= Ni k ik

k

ξ,η,ζX X  and  
8

=1

= Ni k ik

k

ξ,η,ζu U , (7) 

where the index ‘i’ (= 1, 2, 3) refers to the three directions of the local axes system. Also,  N ξ,η,ζk

with (k=1 to 8) in (7) denote the shape functions defined in natural coordinate system and which can 

be expressed as follows: 

   
1

N ( ) = 1+ 1+ 1+
8

k k k kξ,η,ζ ξ ξ η η ζ ζ , (8) 

where ( ξ ,η ,ζk k k ), Xik and Uik denote the natural coordinates, the global nodal coordinates and the 

nodal displacements of node k, respectively. From equation (8), it can be seen that the shape functions 

vary linearly in the ξ , η and ζ directions. Therefore these shape functions are usually called tri-linear 

functions. 

The aim of the EAS method is to remove the artificial stiffening of the standard eight-node 

displacement-based solid elements due to the low order of the shape functions. This undesirable 

excessive stiffness generally lead to inaccurate results in bending dominated problems as well as in 

modeling of nearly incompressible materials. These two problems are related to the transverse shear 

locking and the volumetric locking, which are considered in the present work as the major locking 

phenomena to be studied. These two types of locking are responsible for the low quality of the 

standard displacement elements. 

The key idea of the EAS technique is therefore to improve the classical compatible strain field by 

adding the enhanced part via the following equation: 

   c α= + = +ξ,η,ζ ξ,η,ζε ε ε B U G α , (9) 

where ε
c
 is the compatible strain field computed as the symmetric gradient of the interpolated 

displacement field U. Using the element nodal displacement in (7), ε
c
 contains the 24 compatible 

modes and can be obtained thanks to the well-known strain-displacement matrix B. 

As the shape functions Nk are defined in terms of the natural coordinates ( ξ,η,ζ ) to obtain the 

derivatives with respect to the global coordinates (x, y, z) in the strain displacement matrix B, a chain 

rule of partial differentiation needs to be used: 

-1

NN

N N
=

N N

kk

k k

k k

ξx

y η

z ζ

  
      
   
   
  
   
      

J  (10) 
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where J is the Jacobian matrix. This equation serves to transform the strain-displacement matrix from 

the element natural coordinate system to the global coordinate system. The Jacobian matrix can be 

defined by: 

  =

x x x

ξ η ζ

y y y
ξ,η,ζ

ξ η ζ

z z z

ξ η ζ

   
 
  
 
   
 
   
   
 
   

J  (11) 

The enhanced part of the strain field 
α
ε , defined in the global coordinates (x,y,z), is computed 

according to: 

0 -T

0=
J

G F M
J

, (12) 

where J and 0J are the Jacobian determinant evaluated at the considered point in the element 

domain and in the center of the element respectively. In this equation, F0 denotes the 6x6 

transformation matrix, expressed at the element center, already described by Andelfinger and Ramm 

[28]. It permits to transform the strain vector from the natural coordinates ( ξ , η , ζ ) to the global ones 

(x, y, z). M is the matrix containing the enhancing modes [28] which are expressed in the intrinsic 

coordinate system in a form which is independent of the element spatial configuration. Matrix M can 

be split in three parts:  

 1 2 3=M M M M , (13) 

with M1 grouping the linear terms: 

1

25 26 27 28 29 30 31 32 33

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

ξ

η

ζ

ξ η

ξ ζ

η ζ

 
 
 
 
 
 
 
 
 
 
 

M , (14) 

while M2 contains the bilinear terms: 

2

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

= 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

ξη ξζ

ξη ηζ

ξζ ηζ

ξζ ηζ ξη

ξη ηζ ξζ

ξη ξζ ηζ

 
 
 
 
 
 
 
 
 
 
 

M , (15) 

and, finally, the trilinear terms are included in M3: 
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3

49 50 51 52 53 54

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

= 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ξηζ

ξηζ

ξηζ

ξηζ

ξηζ

ξηζ

 
 
 
 
 
 
 
 
 
 
 

M  (16) 

In sub-matrices (14), (15) and (16) , the modes having non-zero terms in the three upper rows are 

related to the enhancement of the normal strain components and are therefore contributing to the 

treatment of the volumetric issue. Conversely, the modes with non-zero terms in the three lower rows 

correspond to shear strains and are used to solve shear locking.  

The 30 EAS modes, corresponding to the 30 columns of (13) are selected to enhance the strain fields 

(9) up to a complete trilinear function in ξ , η  and ζ and to be linearly independent from the 24 

compatible strain modes included in the strain-displacement matrix B: 

= G B  (17) 

For instance, the first EAS mode in (14) corresponds to a linear variation of the strain component ξξε

along the first axis ( ξ ), and, similarly, the effect of each EAS modes on the element’s strain field can 

be identified. This effect differs from one mode to another which is proved by Andelfinger and Ramm 

in [28], who also showed that the EAS modes of the third sub-group M3 in equation (16) lead to no 

significant improvement on the overall element performance. Thus, in order to reduce the 

computational cost, these six modes are generally not used.   

As presented by Simo and Rifai [3], once the B and G matrices have been obtained, the internal forces 

for the displacement dofs U and the residual for the EAS dofs α can be written, in the element domain 

Ωe, under the following expressions: 

e

u T m= dV
R B σ  (18) 

e

α T m= dV
R G σ  (19) 

These integrals (18) and (19) are calculated numerically as follows: 

u T m

=1

= ( ) W
Npi

ipi ipi ipiipi
ipi

ξ,η,ζR B σ J  (20) 

α T m

=1

= ( ) W
Npi

ipi ipi ipiipi
ipi

ξ,η,ζR G σ J  (21) 

Where J
ipi

and Wipi  are the determinant of the Jacobian matrix (11) and the weights at the Gauss 

points. To fulfill the equation of the variational principle (1), the residual R
α
 should be equal to zero 

while R
u
 represents the internal forces of the element which should be in equilibrium with the 

externally applied forced (whose virtual work is included in 
extπ (η) ). 

The linearization for the displacement U and the EAS modes α leads to the following system of 

equations at the element level: 

uu uα u

ext

αu αα α

Δ -
=

Δ -

    
    
    

UK K F R

αK K R
 (22) 

with: 
u

uu =




R
K

U
, 

α
αu =





R
K

U
, 

u
uα =





R
K

α
 and 

α
αα =





R
K

α
 (23) 

Here, the exponents u and α denote the displacement-based and enhanced-based terms. 
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Since the finite element interpolation for the enhanced strain 
α
ε  is not connected across the element 

boundaries, the EAS modes can be eliminated at the element level by static condensation before 

assembling the element matrices to the global matrices. By solving the second equation in (22), the 

increment of the additional dofs Δα yields, at element level, to the following form: 
-1

αα α αuΔ =- ( + Δ )  α K R K U  (24) 

Now, replacing Δα by its expression in the first equation of the discrete linearized system of equations 

in (22), the global stiffness matrix and the force vectors can be written, at the element level, as: 
EAS EAS

ext  K U F R  (25) 

with the global element matrices: 
EAS uu uα αα 1 αu( ) K K K K K  (26) 

EAS u uα αα 1 α( ) R R K K R  (27) 

The incremental displacement U  can be calculated according to (25), and thus the displacement U 

can be updated. Subsequently the increment Δα  can be calculated with (24) using the incremental 

displacement U and then it will be used to update the EAS parameterα . 

It should be noted here that K
EAS

 and R
EAS

 are calculated at the element level. The equations (26) and 

(27) must be assembled for all elements and solved globally and lead to the following forms: 
nelem

EAS EAS

G
=1

A
elem

K K  (28) 

nelem
EAS EAS

G
=1

A
elem

R R  (29) 

with A representing the finite element assembling operator. 

2.3 Integration schemes 

An important characteristic of a finite element is the numerical integration scheme. It consists in the 

number and the location of the integration points inside the element and it can have a significant 

influence on its mechanical behavior. For instance, the reduced integration or the selective reduced 

integration schemes are often used to avoid volumetric locking issues for hexahedral elements with an 

isochoric or nearly isochoric material behavior. 

Despite their efficiency in term of locking treatment and computational time, reduced integration 

schemes have certain drawbacks such as the rank deficiency of the stiffness matrix, which can lead to 

no solution at all, or erroneous solutions in (25); thereby to the element instability which is known as 

‘hourglass effect’. 

In the development of a solid-shell element dedicated to the modeling of thin-walled structures, an 

improved integration scheme with a large number of integration points along the thickness direction 

was considered. It is indeed expected that a high gradient of stress and strain along the thickness 

direction is present during the deformation of thin materials (during e.g. a bending deformation mode). 

The classical full integration of brick elements (with two integration points along each direction) is not 

able to accurately capture such large gradients. In this respect, in the present formulations, the stress is 

computed along a user-defined number of integration points along the thickness direction ( ζ axis), as 

shown in Figure 1. 
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(a) (b) 

Nodal points (NP) Gauss points (GP). 

Figure 1.RESS (a) and SSH3D (b) integration schemes with n Gauss points through the thickness 

direction. 

For the in-plane computation, the RESS element uses a reduced integration scheme with only one 

Gauss point to improve its computational efficiency, while the SSH3D employs a full integration 

scheme with four Gauss points. 

Comparing the two integration schemes proposed for RESS and SSH3D formulations, it can be 

expected that, in term of accuracy in bending situations the SSH3D element is better both in the cases 

of in and out of plane bending. In term of stability, no complex stabilization technique is required with 

the fully integrated element, which is not the case for the reduced integration. Despite these 

advantages, the use of the full integration scheme presents some drawbacks in terms of computational 

efficiency and treatment of locking pathologies.   

2.4 The Assumed Natural Strain (ANS) method in SSH3D 

Traditionally, in addition to the EAS method, several previous research works employ the well-known 

Assumed Natural Strain method (ANS) to overcome transverse shear locking.  

The key idea of the method is to determine some selected strain components at certain sampling points 

(SP) and thereafter the resulting value are interpolated at the element’s Gauss points (GP). To clarify, 

this procedure is described in details in Figure 2.  

 Classical strain interpolation: 

    

                                            

 

 

 ANS strain interpolation: 

 

 

 

 

 

 

Figure 2. Interpolation of certain strain components in the ANS method. 

In a general application of the ANS method, three parameters have to be determined, firstly the strain 

components to be replaced, then the number and position of the sampling points and finally the 

interpolation adopted for the independently assumed strains. 

Different versions of the ANS method can be developed according to these choices (see Figure 3). 

2 3

1 4

6 7

5 8





ζ

2 3

1 4

6 7

5 8

.







Nodal displacement U 
Strain at the Gauss point (GP) 

com S= = ( )GP GP GPξ,η,ζε u B U  

Strain-

displacement 

matrix (B) 

Nodal displacement U 
Strain at the sampling point (SP) 

com S= = ( )SP SP SPξ,η,ζε u B U  

Strain-

displacement 

matrix (B) 

Strain at the Gauss point (GP) 

1 2

ANS com com

GP SP SP= f( , ,...)ε ε ε  

Linear interpolations of the 

strain components 
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Due to its simplicity this method becomes very popular and used in several commercial codes in the 

improvement of the performance of 3D linear elements in the analysis of thin shell structures. 

   
 

(a) (b) (c) 

Nodal points (NP) Sampling points (SP) 

Figure 3. Number and location of the sampling points for different versions of the ANS method. 

 

As introduced in Dvorkin and Bathe in [4], the first ANS approach (Figure 3 (a)) was dedicated to the 

treatment of transverse shear locking. Focusing on the transverse shear strain components, the 

sampling points are defined in isoparametric coordinates by A(1,0,0), B(0,1,0), C(-1,0,0) and D (0,-

1,0). The modified (ANS) transverse shear strains are then determined by means of a linear 

interpolation of the compatible shear strains E13 and E23 evaluated at these sampling points (thanks to 

the classical B-matrix interpolation) and expressed in the natural coordinates: 
ANS B D

13 13 132E =(1+ )E +(1- )Eη η  (30) 
ANS A C

23 23 232E =(1- )E +(1+ )E   (31) 

According to (30) and (31), the transverse shear strains are assumed to be constant in ξ  and linear in 

η  direction for E13 and to be constant in η  and linear in ξ  direction for E23. Several published works 

showed that this approximation is sufficient for thin structures [5, 6].  

In Figure 3(b), a second version of the ANS interpolation is presented. For this version, the ANS 

technique is applied to transverse shear strains E13 and E23 
to treat transverse shear locking. These 

strain components are obtained using the same interpolation functions already defined in (30) and 

(31).  

In addition to the modifications on the interpolation of the transverse shear strains E13 and E23, and 

similarly to the version proposed in [6, 23], a bilinear interpolation of the transverse normal strain 

sampled at the four corners E, F, G, H of the element mid-surface is applied to cure curvature 

thickness locking. The modified E33 component can be expressed as follows: 

  ANS

33 33

=E,F,G,H

1
E = 1+ 1+ E

4

i

i i

i

ξ ξ η η  (32) 

Where 33Ei
 is the classical transverse normal strain defined at the sampling point i located on the mid-

surface of the solid element ( ζ=0 ). The coordinates of these sampling points are E (1,-1, 0), F (1,1,0), 

G (-1,1,0) and H(-1,-1,0). 

The third approach of the ANS technique is presented in Figure 3(c), where all the modified strain 

components are interpolated with four sampling points. These sampling points are located at the 

corners of the three mid-surface corners ( ξ=0 , η=0  and ζ=0 ). These components are interpolated in 

the natural axes system using the following functions: 

  ANS

33 33

=A,B,C,D

1
E = 1+ 1+ E

4

i

i i

i

ξ ξ η η  (33) 
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  ANS

13 13

=I,J,K,L

1
E = 1+ 1+ E

4

i

i i

i

η η ζ ζ  (34) 

  ANS

23 23

=E,F,G,H

1
E = 1+ 1+ E

4

i

i i

i

ξ ξ ζ ζ  (35) 

It should be noted that for all ANS approaches presented above the remaining strain components are 

not modified. 

Finally, it must be emphasized that the strain tensor E modified by the ANS technique has to be 

expressed in the (ξ,η,ζ)  reference frame linked to the element (and not the global (x,y,z) frame). In the 

same way as the transformation used for the EAS technique (12), the transformation of the strain 

tensor from the isoparametric reference frame (ξ,η,ζ) , noted E, to the global reference frame (x, y, z), 

noted , is adapted:   

0ANS -T ANS

0= . .
J

ε F E
J

 (36) 

With the combination of the EAS and ANS technique, the equation (9) becomes: 
ANS α= +ε ε ε  (37) 

Klinkel et al. [23] proved that the third ANS version using two planes and eight sampling points for 

the two modified transverse shear strains (as presented in Figure 3 (c)), does not lead to significant 

improvement with respect to the second version, when full integration is used. Therefore in some 

previous works describing fully integrated solid-shell elements using the ANS method (see e.g. the 

work of Hauptmann et al. [5], Vu-Quoc and Tan [6], Rah et al. [12]), only two sampling points per 

transverse shear strain component are usually taken into account. On the other hand, for reduced 

integrated solid-shell elements as presented in [9, 33, 41], based on numerical tests, these authors 

observed that the use of two sampling points may lead to non-physical zero eigenvalue of the element 

stiffness matrix and thus decrease the stability of the element. For this reason, four sampling points 

should be used for each transverse shear strain component.  

In their current development, the SSH3D element implemented in LAGAMINE code can be used with 

the three ANS versions of Figure 3, while the RESS does not use the ANS method. 

2.5 The stabilization technique in RESS 

The integration scheme used for RESS finite element leads to a rank-deficiency of the formulation, 

coming exclusively from the reduced integration procedure in the element plane, as can be seen in 

Figure 1 (a). To reduce the occurrence of hourglass problems the physical stabilization procedure, 

originally suggested for a shell formulation [42], is extended to cover 3D solid elements.  

The compatible strain tensor from displacement field (ε
c
) term, included in equation (9), can be 

rewritten into a convenient manner by the decomposed standard strain-displacement matrix B: 

 c c ξ η ζ ξη ξζ ηζ= + + + + + +ξ η ζ ξη ξζ ηζε B B B B B B B U  (38) 

Where U is the nodal displacements vector and the sub-terms of equation (38) are detailed in Alves de 

Sousa et al. [1]. In fact, for the special integration scheme (see Figure 1 (a)) where ξ = 0  and η = 0  

for each integration point, the calculation of the strain-displacement matrix B, described in equation 

(13), turns out to be simply: 
c ζ= + ζB B B  (39) 

Under the in-plane reduced integration scheme adopted in this formulation, the constant c and ζ  terms 

for the stabilization procedure are intentionally removed, since the used integration doesn’t cancel 

them. The ζ term is not required due to the arbitrary number of integration points through the 
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thickness direction. For this reason, the strain-displacement sub-matrices that contribute to element 

stabilization and define the stabilization matrix (B
H
) are: 

H ξ η ξη ξζ ηζ= + + + +ξ η ξη ξζ ηζB B B B B B  (40) 

Also, it is useful to decompose B
H
 matrix by lines and to add a parameter in the formulation: 

H ξ η ξη ξζ ηζ

ξξ ξξ ξξ ξξ ξξ ξξ= + + + +ξ η ξη ξζ ηζB B B B B B  

(41) 

H ξ η ξη ξζ ηζ

ηη ηη ηη ηη ηη ηη= + + + +ξ η ξη ξζ ηζB B B B B B  

H ξ η ξη ξζ ηζ

ζζ ζζ ζζ ζζ ζζ ζζ= + + + +ξ η ξη ξζ ηζB B B B B B  

H ξ η ξη ξζ ηζ

ξη ξη ξη ξη ξη ξη= + + + +ξ η ξη ξζ ηζB B B B B B  

H ξ η ξη ξζ ηζ

ξζ ξζ ξζ ξζ ξζ ξζ
= + + + +β ξ η ξη ξζ ηζB B B B B B  

H ξ η ξη ξζ ηζ

ηζ ηζ ηζ ηζ ηζ ηζ
= + + + +β ξ η ξη ξζ ηζB B B B B B  

Accordingly, when applying this formulation for thin-walled structures, the β  parameter of equations 

(41) can be set to zero, not adding transverse shear energy and avoiding transverse shear locking [1].  

Once the B
H
 matrix is defined in natural frame, it is transformed to the global frame, applying the 

transformation matrix -T

0F , similarly to equation (12): 

H -T H

0
ˆ =B F B  (42) 

To avoid the volumetric locking phenomenon which occurs in solids finite elements, the B-bar 

approach is adopted as introduced by Malkus and Hughes [20]. Accordingly, the hourglass counterpart 

of the strain-displacement operator is divided into its volumetric (dilatational) and deviatoric 

components, the dilatational part being computed at the element centre: 

     H H H

dev dil
ˆ ˆ ˆ= + 0,0,0ξ,η,ζ ξ,η,ζB B B  (43) 

Where 
H

dev
B̂  and 

H

dil
B̂  are further expanded according to equation (41). 

Following an incremental-iterative Newton-Raphson scheme, both the stiffness matrix and the internal 

force vector on the equilibrium equations (25) must be corrected, resulting into a modified expression 

for nodal displacements calculation: 
EAS H EAS H

ext( + )Δ = - ( + )K K U F R R  (44) 

The following decomposition is considered for the hourglass stiffness K
H
 and the increment of 

hourglass forces R
H
: 

H ξ η ξη ξζ ηζ= + + + +K K K K K K  (45) 

H ξ η ξη ξζ ηζ= + + + +R R R R R R  
(46) 

Where the increment of hourglass forces (R
H
) is calculated at the mid-step configuration as explained 

by Alves de Sousa et al. [1].  

Each hourglass stiffness term of equation (45) is detailed below: 

 
T

ξ ξ e ξ 2

0
Ω

= dVξ 
   JK B C B  (47) 

 
T

η η e η 2

0
Ω

= dVη 
  K B C B J  (48) 

 
T

ξη ξη e ξη 2 2

0
Ω

= dVξ η 
  K B C B J  (49) 

 
T

ξζ ξζ e ξζ 2 2

0
Ω

= dVξ ζ 
  K B C B J  (50) 

 
T

ηζ ηζ e ηζ 2 2

0
Ω

= dVη ζ 
  K B C B J  (51) 
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Where the isoparametric domain is chosen such as dV 8


  and 0J , is the Jacobian determinant 

computed at the element centre.  

Similarly, each hourglass force (R
H
) component of equation (46) is written as: 

 
T

ξ ξ ξ

0
Ω

= dVξ 
  R B σ J  (52) 

 
T

η η η

0
Ω

= dVη 
  R B σ J  (53) 

 
T

ξη ξη ξη

0
Ω

= dVξη 
  R B σ J  (54) 

 
T

ξζ ξζ ξζ

0
Ω

= dVξζ 
  R B σ J  (55) 

 
T

ηζ ηζ ηζ

0
Ω

= dVηζ 
  R B σ J  (56) 

The increments of the Cauchy stress σ are given as: 
ξ ξ=    ξσ CB U  (57) 
η η=   ησ CB U  (58) 

ξη ξη=  ξησ CB U  (59) 
ξζ ξζ=  ξζσ CB U  (60) 
ηζ ηζ=  ηζσ CB U  (61) 

Where C (6x6) is the constitutive stress-strain law tensor. In the set of equations (47) to (56), the non-

constant terms can be calculated analytically: 

2 2

Ω Ω

8
dV dV

3
ξ η    (62) 

2 2 2 2 2 2

Ω Ω Ω

8
dV dV dV

9
ξ η ξ ζ η ζ      (63) 

It should be noted that no numerical integration is required at this stage, which results in saving a 

considerable computational time. More details on this solid-shell element formulation can be found in 

the published works of Alves de Sousa et al. [1, 2, 41]. 

2.6 Comparison between SSH3D and RESS formulations 

To summarize the main features of the two developed formulations are listed in the following table: 

Feature SSH3D RESS 

EAS User defined number of modes: from 1 to 

30. 

Only one EAS mode is implemented: 

Mode number 27 in (14). 

ANS Three ANS versions. Not implemented. 

Integration 

scheme 

In plane four integration points with a 

user defined number of integration points 

through the thickness direction  

(from 2 to 10) 

In plane reduced integration (1 point) 

with an arbitrary number of integration 

points through the thickness direction. 

Stabilization Not necessary Stabilization technique using the method 

from the paper of Cardoso et al. [42]. 

Table 1. Features of the SSH3D and RESS solid-shell elements. 

It should be noted that for both formulations it is essential that the element orientation is considered 

within the mesh generation, since the EAS, ANS techniques and the integration schemes described 

below depend on the element thickness direction.  
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3 Numerical applications 
In this section, some numerical examples are selected to assess the accuracy and the efficiency of the 

developed elements in several situations. This section is divided into two main parts; in the first one, 

some simulations of linear elasticity problems cited in previous research works will be presented. 

Secondly, the performances of the present elements are evaluated in non linear elastoplastic cases 

using some sheet forming process simulations. In addition, the accuracy of SSH3D and RESS solid-

shell elements is assessed in the prediction of springback phenomenon. In order to test the effect of the 

different techniques used to improve the performance of the solid-shell element SSH3D, numerical 

simulations were previously achieved with different sets of EAS modes and ANS versions. From these 

tests, we found out that the use of the second or the third ANS version (see Figure 3) leads almost to 

the same results. This observation agrees with the remark of Cardoso et al. [32] and Schwarze and 

Reese [10] concerning the use of a full integration scheme. Therefore, the second ANS version is used 

for SSH3D solid-shell element. In addition, despite the fact that the choice of the adequate EAS modes 

should strongly depend on the type of analysis and structure, it was found that the use of only 14 

enhancing parameters leads to accurate results. The selected EAS parameters include the linear and 

bilinear modes used to enhance the membrane strains [E11, E22, 2E12] and the transverse normal strain 

E33 ( i.e. 25 to 29, 34 and 35, 40 to 46) in the enhancing matrix (13). In contrast to certain optimal EAS 

solid-shell elements presented in the literature which can suffer from some locking pathologies since 

they are dedicated to the analysis of specific types of structures such as in Vu-Quoc and Tan [6] and 

Rah et al. [12] for the analysis of multilayer composites, the present SSH3D formulation with 14 EAS 

parameters can be used for the analysis of thin shell-like structures in several situations such as near 

incompressible cases e.g. elastoplastic analyses, highly distorted meshes and bending dominated 

problems. The RESS solid-shell formulation employs only one EAS parameter (mode 27 in (13)) to 

enhance the transverse normal strain E33 and an in-plane reduced integration scheme with and arbitrary 

number of integration points along the element thickness. 

All obtained results are compared with experimental and numerical results published in previous 

research works and taken as reference solutions for the present formulations.  

Through the following numerical tests, many finite element formulations were investigated for 

comparison purposes. Their main features are presented in Table 2 For the sake of brevity, the 

following abbreviations are employed: 

Name Description 

HCiS12 Eight node fully integrated EAS element with 12 internal variables proposed in 

reference [25]. 

VQT7 Solid-shell element based on EAS concept with 7 EAS modes and ANS technique 

developed by Vu-Quoc and Tan [6]. 

S4E6P5 Degenerated four-node shell element presented by César de Sá et al.[43]. 

Table 2. Nomenclature for the tested solid-shell, solid and shell formulations. 

3.1 Linear elastic problems 

For elastic applications, since the stress distribution over the thickness is linear in bending situation, 

only two integration points through the thickness direction are sufficient. Therefore, in order to save 

computational time, two Gauss points are used for SSH3D in the following examples. While RESS 

employs three integration points through thickness (the minimum number as described in Alves de 

Sousa et al. [1]. 
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3.1.1 Plate bending 

This example is related to the analysis of a clamped square plate of dimension LxLxt with L= 100 and 

the thickness t = 1 or 0.1 (see Figure 4). The plate is subjected to a concentrated force F=16.367 at the 

center. It is considered as a classical shell example, hence it is presented in several research works (see 

[12, 25, 28]). The material parameters used for this example are an elasticity modulus E=10000 and 

Poisson’s ratios ѵ=0.3 or 0.499. Owing to the symmetry of the problem, only one quarter of the plate 

is modeled with one layer of 2x2 or 4x4 solid-shell elements. 

This test is used to exanimate the performance of the present formulations in the analysis of very thin 

plates under very critical conditions, i.e. high aspect ratios, coarse meshes and nearly incompressible 

material. 

 

Figure 4. Clamped square plate with concentrated load 

The theoretical deflection, which will be taken as a reference, is obtained thanks to Kirchoff plate 

theory according to the following relation: 
2FL

W = 0.0056
D

 (64) 

Where D is the flexural rigidity of the plate which is obtained from Young’s modulus E, Poisson’s 

ratio ѵ and the plate thickness t as follows: 

3

2

Et
D =

12(1- ν )
 (65) 

In Table 3, the numerical results of the present solid-shell formulations are normalized using the 

Kirchhoff plate solution and compared to other formulations from the literature for different Poisson’s 

ratios, thicknesses and meshes.  

ν t/L Mesh RESS (UEL) HCiS12 SSH3D RESS 

0.3 

1/100 
2x2 0.893 0.869 0.881 0.893 

4x4 0.978 0.970 0.973 0.979 

1/1000 
2x2 0.886 0.866 0.869 0.891 

4x4 0.975 0.966 0.971 0.974 

0.499 

1/100 
2x2 0.906 0.875 0.889 0.904 

4x4 0.984 0.973 0.978 0.982 

1/1000 
2x2 0.896 0.868 0.883 0.900 

4x4 0.976 0.968 0.971 0.976 

Table 3. Normalized transverse normal deflection of the clamped plate bending. 

As shown in Table 3 the present solid-shell formulations provide good results even when material 

incompressibility is combined with high aspect ratio. This proves the excellent performance of SSH3D 

and RESS when volumetric and transverse shear locking can be an issue. On the other hand, it can be 

seen that the RESS element behaves slightly better than SSH3D. This can be explained by the fact that 

the use of in-plane reduced integration scheme is less sensitive to certain locking pathologies.  

3.1.2 Cantilever plate out of plane bending 

This example is performed to evaluate the out of plane bending behavior of the present formulations. 

It has been studied in numerous research works such as Simo et al. [44], Valente et al. [45], Vu-Quoc 

L

t
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x

y
z

L

L
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et al. [6]. As depicted in Figure 5, the modeled structure consists in a cantilever plate of length L= 10, 

width w=1 and thickness t=0.1, fully clamped at one end and subjected to a pair point load F. The 

external load is increased up to a total force F= 40 . 10
3 
t
3
. Material parameters are a Young's modulus 

E=10
7
 and to test the effect of the material incompressibility on the numerical prediction three 

Poisson's ratios were used ν=0, 0.3 and 0.499. In addition, to investigate the mesh refinement effect, 

the structure has been discretized into 10, 12 and 16 SSH3D and RESS solid-shell elements along its 

length direction and only one element on each of the two other directions.       

 
Figure 5. Out of plane cantilever beam - Geometry and boundary conditions. 

 

For the three meshes and for a Poisson's ratio ѵ=0.3, Figure 6 compares the numerical results obtained 

by SSH3D and RESS elements with the theoretical solution according to the Timoshenko beam 

theory.  

 
Figure 6. Out of plane cantilever beam - deflection values vs. load level - Poisson's ratio = 0.3. 

This test was also used to investigate the sensitivity of the present solid-shell formulations to material 

incompressibility. To this end numerical analyses with 16x1x1 mesh and different Poisson’s ratios 

were carried out. The results are presented in Figure 7. 
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Figure 7. Out of plane cantilever beam - deflection values vs. load level - 16x1x1 mesh. 

It can be seen that the proposed formulations are in good agreement with the reference solution for the 

three meshes with a slight improvement by using more elements along the plate length direction. 

The results show also the excellent performance of the present formulations and their insensitivity for 

the various levels of Poisson’s ratios.   

It should be mentioned that the non-linearity observed in Figure 6 and Figure 7 comes from the large 

displacements encountered (geometric non linearity) rather than from material non linearity. 

The remark of Vu-Quoc and Tan in [6] states that for flat plate undergoing small deformation, it is 

sufficient to consider the ANS treatment for only the transverse shear strain E13 and E23 (the additional 

ANS treatment for the transverse normal strain E33 being unnecessary). Accordingly, SSH3D element 

was tested with the first, the second and the third ANS versions (see Figure 3). In agreement with Vu-

Quoc observations, it appeared that the modification of the normal strain component E33 by ANS did 

not influence the results. On the other hand, the SSH3D formulation without ANS method provided 

very poor results (with a final deflection w of 5.26) compared to the theoretical solution (w≈7). Hence 

we can conclude that the use of ANS method has a considerable influence for this test.  

3.1.3 Cantilever beam in plane bending 

This example is a very popular benchmark for geometrically nonlinear mixed finite element 

formulation, it was investigated in several published works (e.g. Simo et al. [46], Betsch et al. [29], 

Miehe [16] and Vu-Quoc and Tan [6]). This test is mainly used to evaluate the performance of the 

proposed solid-shell formulations in in-plane bending situation.  

The geometry of the beam is characterized by a length of 1mm and a section of 0.1x0.1. The beam is 

clamped on one side and subjected to a transverse force F=1000 at the other side. Material properties 

considered are a Young's modulus E=10
7
 and a Poisson’s ratio ѵ=0.3. 

In order to evaluate the sensitivity of the present formulations to mesh distortion, the beam is modeled 

by ten solid-shell elements with two different meshes: the first is regular and the second is highly 

distorted as presented in Figure 8.   
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(a) (b) 

Figure 8. In plane bending: deformed and undeformed regular (a) and distorted (b) meshes with 10 

solid-shell elements. 

 

The beam deflection curves obtained by SSH3D and RESS are plotted and compared to the solution 

presented by Vu-Quoc and Tan (VQT) [6] in Figure 9 and Figure 10 for the nodes A and B 

respectively.  

 

Figure 9. Cantilever beam in plane bending: point A, SSH3D and RESS results versus references [6]. 
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Figure 10. Cantilever beam in plane bending: point B, SSH3D and RESS results versus references [6]. 

 

It can be seen that the SSH3D and VQT7 formulations are superior to the RESS element for both 

regular and distorted mesh. This could have been expected since the RESS formulation uses an in-

plane reduced integration scheme and the direction of the load is transversal. On the other hand, the 

proposed formulations show a high insensitivity to mesh distortions, and by comparing the SSH3D to 

the VQT (taken as reference), its good accuracy and performance are clearly demonstrated.  

As discussed above the poor performance of RESS element is due to the fact that this formulation has 

the thickness as preferred direction. This can be clearly approved by the results depicted in Figure 11 

and Figure 12 where the cantilever beam is bent in the element thickness direction.   
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Figure 11. Cantilever beam: bending in Z direction - point B, SSH3D and RESS results versus 

references [6]. 

 

Figure 12. Cantilever beam: bending in Z direction - point C, SSH3D and RESS results versus 

references [6]. 

The above figures show the good performance and the insensitivity of both RESS and SSH3D solid-

shell formulations when the cantilever beam bending is applied in the element thickness direction.  

3.1.4 Pinched hemisphere with 18° hole 

The pinched hemisphere with an 18° hole is a popular benchmark and one of the most stringent 

examples to test the behavior of the finite element formulation in geometrical non-linear domain due 

to its double curvature [6, 8, 10, 22, 47, 48]. As shown in Figure 13 the problem consists in a 

hemispherical shell with an 18° hole at the top subjected to concentrated forces, i.e. two equal and 
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opposite concentrated loads are applied in the x and y directions. Due to the double symmetry of the 

problem, the model includes only one quarter of the hemisphere meshed with 8x8 and 16x16 meshes 

of solid-shell elements. The material is linear elastic and its properties consist in a Young’s modulus 

E=6.825x10
7
 and a Poisson’s ratio ν =0.3. The geometric parameters are the radius R=10 and the 

thickness t=0.04 of the shell. The hole at the top has a radius of 3.0902 since 18° in the meridional 

direction from the top is removed. Additional details on this problem can be found for instance in the 

work of Vu-Quoc [6]. 

 
Figure 13. Pinched hemispherical shell with 18° hole. 

The load is taken to increase up to the final value F=100.0. To assess the convergence behavior, the 

results are compared to shell elements presented in [22, 48]. 

The numerical results are plotted in Figure 14 and Figure 15 and compared to the solution published in 

the works of Valente et al. [48] to assess the performance and the convergence behavior of the present 

two solid-shell elements.  

 
Figure 14. Pinched hemisphere with 18° hole: load – deflection diagram (along OX direction).  
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Figure 15. Pinched hemisphere with 18° hole: load – deflection diagram (along OY direction). 

The results obtained by the proposed formulations are in good agreement with those provided by the 

reference. The mesh of 16x16 elements shows some improvement with respect to the results obtained 

with the 8x8 mesh. Besides, the SSH3D element is slightly stiffer than the RESS element which 

proves excellent performances for this test. These results show the good accuracy of the proposed 

solid-shell elements in modeling of structures with geometrical non-linearity. 

3.2 Elastoplastic problems and springback prediction 

In this section the performance of the proposed solid-shell elements are assessed in the analysis of 

sheet metal forming and springback predictions in presence of geometric, material and contact non-

linearities. The present solid-shell elements SSH3D and RESS are characterized by their special 

integration schemes with an arbitrary number of integration points through the thickness direction. 

This characteristic makes it very competitive in the analysis of sheet metal forming problems 

involving strong non-linear through-thickness stress distribution. Therefore, in this section, the 

simulations carried out with the proposed elements use only one layer through the thickness with 

seven integration points to provide accurate solutions. 

3.2.1 Hemispherical cup deep drawing 

The hemispherical cup deep drawing is the benchmark test proposed at Numisheet 1999. According to 

the proceeding of Numisheet 1999 [49] the tools consist in a hemispherical punch of a diameter 100 

mm ± 0.1 mm and a drawing die with an outer diameter of 220 mm ± 0.1 mm and an inner diameter 

(punch opening) of 102.4 mm ± 0.1 mm, the sheet thickness is 1.0 mm. More details on the 

geometrical dimensions are given in Figure 16. Benefiting from symmetry conditions, only a quarter 

of the model is analyzed. The sheet was modeled with a single layer of 752 solid-shell elements (see 

Figure 17). The tools (punch, die and blank-holder) are modeled as rigid bodies and discretized by 

triangle elements as shown in Figure 16. For each tool, one pilot node is associated to define the 

position of the tool and apply boundary conditions during the simulation. The analysis process consists 

in two phases. First, a constant blank holder force of 80 KN is applied during the simulation. This 

force creates an initial pressure distribution between blank-holder, blank and die. Once the blank 
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holder force is applied, the punch is moved to a total depth of 85 mm. During the process, the pilot 

node of the die remains fixed. In order to ensure the contact between the blank and the tools, contact 

elements are required. A Coulomb friction coefficient of 0.15 is used to define the contact. The blank 

is made of DDQ mild steel. The material properties are E= 2 x 10
5
 MPa and ѵ=0.3 in elastic region; in 

the plastic range, the uniaxial stress strain curve is given by the swift’s law: 
n

0σ = k(ε + ε)  (66) 

where k=557.11 MPa, n =0.2186 and ε0=0.001562 are the hardening parameters. σ and ε are 

respectively the Cauchy stress and the natural strain (logarithmic strain) along the rolling direction of 

the sheet (taken as reference direction). The material anisotropic plasticity behavior is modeled by the 

Hill quadratic anisotropic yield criterion with the parameters F=0.655, G=0.771, H=1.222 and 

N=L=M=2.3844. 

 

 
 

Figure 16. Hemispherical cup deep drawing: problem set-up, tools and FEM meshes 

  

Figure 17. Hemispherical cup drawing: Initial and deformed meshes of the blank with one layer of 752 

solid-shell elements. 

 

In order to validate the proposed solid-shell element formulations, a comparison of the punch force-

punch displacement curves predicted by numerical simulations with the experimental results (BE) 

reported in the proceeding of Numisheet 1999 [49] is depicted in Figure 18.  
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Figure 18. Punch force versus punch displacement curves for the hemispherical deep drawing.  

In addition, Figure 19 compares the numerical predictions of the draw-in of the blank at the final 

punch displacement 85 mm as a function of the angle from the rolling direction using SSH3D and 

RESS solid-shell formulations with the experimental ones (BE-01, BE-02, BE-03 and BE-04). 

  

 

Figure 19. Draw-in in different angles from rolling at punch stroke = 85 mm 

From Figure 18, it is possible to infer that the results provided by the SSH3D and RESS solid-shell 

elements are within the range of results obtained experimentally. Additionally, it can be seen in Figure 

19 that the draw-in predicted by FE simulations show a good agreement with the ones measured 

experimentally with a small difference. This difference can be explained by the imprecision on the 

values of the friction coefficient, the blank-holder force or certain material parameters.   
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3.2.2 Springback analysis 

In the previous example, the proposed solid-shell formulations showed a good performance; when 

sheet-metal forming is modeled without taking into account the unloading step. In this section, the 

unconstrained cylindrical bending test, which is one of the Numisheet 2002 benchmarks [50], is 

investigated to assess the performance of the proposed SSH3D and RESS solid-shell formulations in 

the prediction of the springback phenomenon. It has been considered in several previous research 

works [2, 10, 51-53] to evaluate the accuracy of some finite element formulations and constitutive 

models. The test is called “unconstrained” bending because of the absence of a blankholder. 

In this study, two sheets with the same dimensions and made of High Strength Steel (HSS) and 6111-

T4 Aluminum Alloy are considered. The material parameters are summarized in Table 4 and Table 7. 

Owing to symmetry, only one quarter of the structure was modeled. The sheet consists in a rectangular 

blank of 120 mm of length, 30 mm of width and a thickness of 1 mm. As shown in Figure 20, in the 

sheet plane, the mesh is divided into three mesh zones with lengths of 17, 18, 25 mm discretized by 

23, 15 and 10 elements respectively. Nine solid-shell elements are used along the width direction and 

only one element layer is considered with seven integration points through its thickness direction. 

 
Figure 20. Finite element mesh with one layer of 432 elements. 

 

 Springback of unconstrained cylindrical bending (case 1) 

In this example, the sheet is made of High Strength Steel, which is described by mean of the von 

Mises plasticity and obeying the yield stress function of Swift type (
n

0σ = k(ε + ε) ) where the 

parameters are given in Table 4: 

Elasticity  Hardening 

E (MPa) ν  K (MPa) ε0 n 

215980 0.3  620.19 0.005128 0.24557 

Table 4. Blank material properties: Material parameters of HSS steel. 

The interactions of the surfaces punch/sheet and die/sheet is defined by a coulomb friction coefficient 

μ=0.15.  

As illustrated in Figure 21, the tools are composed of a cylindrical punch with a radius R1=23.5 mm 

and a die with a cavity radius R2=25 mm and a die-fillet radius R3=4mm. 

 

 
Figure 21. Tools for unconstrained bending process. 
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The springback is qualified by the angle ψ measured just after forming (at the maximum punch 

displacement) and at the end of the process (when the punch is removed). In addition, the angular 

distance between points of contact Φ  is measured for different punch strokes to check the accuracy of 

the proposed formulations in predicting the forming behavior during the process (see Figure 22). 

 

Figure 22. Definition of the angles for springback measurements. 

In order to assess the accuracy of the present two solid-shell formulations SSH3D and RESS, the 

results obtained by numerical simulations are compared to experimental measurements (BE-01, BE-

02, BE-03 and BE-04) reported in Numisheet 2002’s benchmark [50] and the numerical results of 

RESS (UEL) presented in Alves de Sousa et al. [2]. 

The springback angle ψ measured from the deformed shape before (at the end of punch travel) and 

after springback (when the punch is removed) is given in Table 5 . 

 High strength steel 

Experiment [50]  Simulation 

 BE-01 BE-02 BE-03 BE-04  RESS (UEL) [2] SSH3D  RESS 

Before springback 22.77 22 23.02 20.86 23 22.73 23.01 

After springback 37.42 35.67 30.90 35.36 37 33.54 33.89 

Table 5. Springback angle ψ: comparison between experimental and numerical values 

In addition, the angle Φ between the two punch-blank contact points which are the farthest from the 

centerline (see Figure 22) for different punch strokes is presented in Table 6:  

 High strength steel 

Experiment [50]  Simulation 

Punch stroke (mm)  BE-01 BE-02 BE-03 BE-04  RESS (UEL) [2] SSH3D RESS 

7   22.58 20.47 46.81 32.15 36 29.94 30.04 

14   61.91 61.89 89.91 76.09 74 76.09 46.18 

21  111.29 107.50 133.43 123.79  126 125.17 123.07 

28.5  157.73 150.60 180.71 161.02  164 159.86 168.45 

Table 6. Angle   for different punch stroke: comparison between numerical and experimental results. 

The evolution of the punch force predicted with the two proposed solid-shell elements are compared to 

the experimental results in Figure 23.  
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Figure 23. Unconstrained cylindrical bending: Punch force versus punch displacement 

 Springback of unconstrained cylindrical bending (case 2) 

As described in the work of Yoon et al [51], in this example the die geometry and dimensions are 

similar to those of the previous example but with a minor difference in the depth of the cavity (R2 is 

measured at the blank bottom surface). The new dimensions are illustrated in Figure 24.  

 
R1= 23.5 mm R2= 25 mm R3= 4 mm 

 

Figure 24. Tools geometry for unconstrained cylindrical bending (modified version). 

 

An isotropic model of von Mises with isotropic hardening was taking into account. The stress-strain 

curve is given by the following relation: 

σ = A - B exp(-cε)  (67) 

The material parameters for the 6111-T4 aluminum alloy are summarized in Table 7: 

 

Elasticity  Hardening 

E (MPa) ν  A (MPa) B (MPa) C 

70 500 0.342  429.8 237.7 8.504 

Table 7. Blank material properties: 6111-T4 aluminum alloy,  

For this example, the springback angles ψ measured before and after springback are summarized in 

Table 8 and compared to the experimental measurements reported in Yoon et al. [51] and the 

numerical results predicted by RESS (UEL) presented in Alves de Sousa et al. [2]. 
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 Aluminum alloy 6111-T4 

Experiment  Simulation 

 Yoon et al. [51]  RESS (UEL) [2] SSH3D RESS 

Before springback 35 37 38.52 38.22 

After springback 68 67 68.16 71.37 

Table 8. Springback angle: comparison between experimental and numerical values.  

For the two springback analyses described above, it can be clearly seen the good concordance between 

the results measured experimentally and predicted by numerical simulations. This confirms the good 

performance and excellent accuracy of the proposed solid-shell elements SSH3D and RESS in 

predicting springback and analyzing bending-dominant problems with high non-linearities and 

complex contact constraints.  

4 Conclusions 
In this work two 3D solid-shell element formulations, namely SSH3D and RESS are presented. The 

main difference between these formulations is the number of Gauss points for the in-plane integration 

(full integration with four Gauss points for the SSH3D and reduced integration with only one point for 

the RESS). To assess the performance of these formulations, several numerical tests from the literature 

were simulated. The proposed elements have remarkable characteristics such as the use of multiple-

point integration along the thickness which can more accurately describe the bending effect in sheet 

metal forming, especially when an elastoplastic material is used. 

The comparison of the numerical results obtained with two different solid-shell formulations allowed 

us to highlight the drawbacks and advantages of each one with respect to the other.  In addition, 

despite the computationally expensive calculation, the results show a remarkable increase in quality, 

and therefore also in efficiency compared to standard solid and shell elements.   

In conclusion, the numerical examples show that very robust and excellent results can be achieved by 

the SSH3D and RESS formulations. In addition, their ability to accurately analyze sheet metal forming 

and springback even with only one element layer has been demonstrated.  Compared to RESS, SSH3D 

solid-shell element is more general in the sense that it can behave better in different directions (not 

only the thickness direction) thanks to its in-plane full integration. It is also more versatile with regard 

to the various options proposed to the user. While for RESS, a relatively poor performance was shown 

in the shell plane (overestimated flexibility during in-plane bending). However, from a computational 

point of view, RESS is more efficient than SSH3D thanks to its in-plane reduced integration and the 

use of only one EAS mode. 

Future targeted applications for the use of these solid-shell formulations are the modeling of the 

mechanical behavior of multilayer materials such as composite structures and coated metal sheets.  

Generally, the optimal number of EAS parameters to alleviate locking pathologies are defined based 

on the type of analysis and can be obtained by numerical testing. In this purpose, an analysis of the 

efficiency of the EAS method using the framework of the subspace analysis is now underway and will 

be reported in future publications. This method was initially developed by César de Sà and Owen [54] 

for 2D elements and successfully applied later for 2D plane strain quadrilateral in [55, 56], shell 

elements [43, 48], 3D solid-shell elements by Alves de Sousa et al. [25] and Caseiro et al. [40]. 
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