INTRODUCTION A OCTAVE

C. CHARLES*

RESUME

Cette note technique est une initiation & GNU Octave, logiciel de haut
niveau pour le calcul numérique. Son objectif est d’apprendre au lecteur & utiliser
ses fonctionnalités de base. Ainsi, aprés la lecture de cette introduction, il sera
capable de manipuler dans Octave des vecteurs, matrices, chaines de caractéres,
tableaux et structures. Il sera également & méme de compléter le large panel des
fonctions d’Octave, en réalisant ses propres programmes et fonctions.

SUMMARY

This note aims to introduce GNU Octave, high level language, primarily
intended for numerical computations. The objective is to make known its basic
functionnalities. Therefore, after reading this note, the reader will be able to
handle with vectors, matrices, chains, tabulars and structures. He also will be
able to conceive his own scripts and functions.

1. INTRODUCTION

1.1. Historique

Aujourd’hui, le recours a ’analyse numérique s’est généralisé. Dans ce do-
maine, le logiciel Matlab (Matrix Laboratory), dont origine remonte & la fin
des années 70, est devenu presque incontournable. Son succés s’explique en par-
ticulier par ses nombreuses fonctions dans des domaines variés ainsi que par son
langage de programmation simple basé sur les matrices. Parallélement a cette
évolution, le mouvement en faveur des logiciels libres a pris une grande ampleur.
C’est ainsi que des logiciels analogues & Matlab ont vu le jour, GNU Octave
étant celui qui offre actuellement le meilleur degré de compatibilité par rapport
4 Matlab. Concu en 1988 en tant que logiciel spécifique dans le cadre d’un cours

*Chargée de cours a la Faculté universitaire des Sciences agronomiques de Gembloux (Unité
de Statistique, Informatique et Mathématique appliquées)

sur les réacteurs chimiques, Octave porte le nom d’un professeur, auteur de ma-
nuels basés sur ce logiciel [LEVENSPIEL, 1962]. Il a été repensé dés 1992 par J.
W. Eaton pour étre un logiciel de calcul numérique plus général et plus flexible.
La version 1.0 de GNU Octave est sortie en 1994.

1.2. Caractéristiques

Octave n’est pas un logiciel de calcul algébrique ou symbolique mais est un
logiciel de calcul numérique, de visualisation et de programmation trés perfor-
mant.

Ses données de base sont des matrices, pouvant évidemment se réduire &
des vecteurs et des scalaires. Ceci veut dire que, pour étre rapide, un programme
doit privilégier les commandes matricielles plutot que les boucles. Par exemple,
si A est une matrice de nombres & 1.000 lignes et 1.000 colonnes, la commande
A=A/2 divisera par deux chaque élément de la matrice A en 100 fois moins de
temps que les deux boucles imbriquées

for i=1 :1000 for j=1 :1000 a(i,j)=a(i,j)/2; end, end

utilisées de fagon similaire dans les autres langages de programmation.

Octave posséde un langage interprété, ce qui veut dire qu’il n’y a pas besoin
de compilation avant ’exécution d’un programme Octave. De plus, Octave ne
demande pas de déclarations. Ces deux caractéristiques facilitent ’apprentissage
d’Octave.

Octave est aussi un environnement de développement & part entiére : son
langage de haut niveau, doté de boucles et tests, de fonctions, de visualisation
2D et 3D, etc., permet & 'utilisateur d’élaborer ses propres fonctions, ainsi que
de véritables programmes.

Octave est un logiciel libre. Il n’occasionne aucun cott. Il est disponible sur
les trois plates-formes majeures que sont Windows, Linux et Mac. Octave fait
partie du projet GNU et est distribué sous licence GPL (General Public License).

Développé sous Unix/Linux et dans ’esprit de ce systéme d’exploitation,
Octave ne présente pas le caractére trés exclusif de Matlab. Au contraire, plutot
que d’intégrer toutes les fonctionnalités dans un logiciel, Octave coopére avec
d’autres outils complémentaires. Ainsi, il ne dispose pas de son propre moteur
graphique mais s’appuie sur Gnuplot.

1.3. Plan

Aprés cette introduction, le paragraphe 2 concerne U'installation d’Octave
ainsi que ses notions de base (espace de travail, chemin d’accés, caractéres spé-

ciaux et opérateurs). Le paragraphe 3 s’intéresse aux différents objets manipulés
par Octave : matrices, chaines, tableaux et structures. Le paragraphe 4 explique
les rudiments nécessaires pour concevoir ses propres scripts ainsi que ses propres
fonctions. Enfin, avant de conclure, le paragraphe 5 présente les principales com-
mandes graphiques et le paragraphe 6 illustre la large gamme de sujets traités
par Octave.

2. INSTALLATION ET NOTIONS DE BASE

2.1. Installation

Le téléchargement se fait & partir du site
http ://www.gnu.org/software/octave/download.html.

A la base, le progiciel Octave a été congu et développé sous Unix/Linux. Mais il
peut également étre installé sous Windows ou Mac.

Une fois installé, pour lancer Octave sur une machine Windows, on trouve le
raccourci de démarrage dans le menu Démarrer > Programmes. Dans sa version
de base, Octave n’offre qu’une fenétre de commandes.

2.2. Notionsde base
2.2.1. Exemples

Ci-dessous se trouvent deux exemples de programmation Octave. Ils vous
permettront de mieux comprendre la suite de la note. Le premier calcule les dix
premiers nombres de Fibonacci. Le deuxiéme illustre la formule Ax=Ax liant les
valeurs propres et les vecteurs propres d’une matrice A.

Ezxemple 1
fib=ones(1,2) ;
i=3;
while (i<=10) fib(i)=fib(i-1)+fib(i-2), i=i+1; end

Résultat de l’'exemple 1

fib=112
fib=1123
fib=11235

fib=112358
fibh=11235813
fibh=1123581321
fib=112358132134
fib=11235813213455

Ezxemple 2
A=[2 -2;1-1]
[vecp,valp]=eig(A) ;
x=A*vecp(:,1);
y=valp(1,1)*vecp(:,1);
% affichage
disp("x"),disp(x)
disp("y").disp(y)

Résultat de exemple 2
2 -2
A= 1 -1

X
0.89443
0.44721

y
0.89443
0.44721

Ces commandes peuvent étre encodées directement dans la fenétre de com-
mandes ou dans un fichier texte d’extension ".m". Dans ce cas, il faut appeler
le fichier depuis la fenétre de commandes, comme nous le verrons en détails par
la suite (paragraphe 4.3.).

2.2.2. Espace de travail

vari Téé u cours d’un ion ve interactivemen ui

Les variables créées au cours d’une session Octave interactivement depuis
nétr mman résident en mémoir nstituen u’on

la fenétre de co andes résident e émoire et constituent ce qu’on appelle

le "workspace" c’est-a-dire ’espace de travail. A moins d’étre sauvegardées sur

disque dans un "mat-file", les variables sont perdues lorsque la session est ter-

minée.

Les mat-files sont des fichiers binaires de variables qui n’ont pas d’exten-
sion. Il ne faut pas les confondre avec les "m-files" qui sont des fichiers texte de
scripts ou de fonctions qui ont ’extension *.m. La commande save mat-file (save
mat-file variables resp.) sauvegarde toutes les variables définies et présentes en
mémoire (ou seulement les variables spécifiées resp.) dans le mat-file. La com-
mande load mat-file (load mat-file variables resp.) charge en mémoire toutes les
variables (ou seulement les variables spécifiées resp.) du mat-file spécifié. Lors-
qu’il s’agit d’échanger des données entre Octave et d’autres logiciels, les mat-files
ne conviennent pas car ce sont des fichiers binaires. Une solution consiste & uti-
liser les commandes save et load présentées ci-dessus avec option -text ou -ascii
pour sauvegarder ou charger les variables sous forme de fichiers-texte (ASCII).
Avec la commande variable=load('fichier-texte'), les données du fichier-texte sont
chargées sur la variable de nom spécifié et non pas sur une variable de nom
identique au nom du fichier-texte.

Octave ne nécessite aucune déclaration préalable de type de variable et de
dimension de tableau. Lorsque Octave rencontre un nouveau nom de variable,
il crée automatiquement la variable et y associe I’espace de stockage approprié
dans l'espace de travail. Si la variable existe déja, Octave change son contenu
et, si nécessaire, lui alloue un nouvel espace de stockage. Un nom de variable
valide consiste en une lettre suivie d’'un nombre quelconque de lettres, chiffres
ou soulignés.

Octave posséde une série de variables dites "built-ins". Celles-ci ont des
valeurs par défaut (comme pi, inf pour I’infini ou nan pour not a number c’est-a-
dire un résultat indéterminé du style 0/0). L’utilisateur peut modifier ces valeurs
par défaut s’il le souhaite. La liste de ces variables built-ins s’obtient avec la
commande who -builtins. La commande variable=expression affecte & "variable"
le résultat de I’expression et affiche celui-ci. Par exemple, la commande i=3+2
affecte 4 i la valeur 5 et affiche i=5. La commande expression affecte & la variable
de nom prédéfini "ans" (pour answer) le résultat de I’expression. Par exemple,
la commande 3+2 affiche ans=5. La commande variable affiche le contenu de la
variable spécifiée. Pour notre exemple, la commande i affichera i=5. La com-
mande string = 'chaine de caractéres’ enregistre "chaine de caractéres” dans la
variable "string". Si la chaine contient une apostrophe, il faut la dédoubler. La
commande clear (clear variables resp.) efface tout (les variables spécifiées resp.)
de ’espace de travail.

Octave travaille toujours en double précision (32 bits). Le format d’affichage
des nombres dans la fenétre de commandes se fait & ’aide des commandes sui-
vantes. La commande format short affiche une notation décimale fixe & 5 chiffres
significatifs. Avec loption e (commande format short €), Octave utilise la no-
tation décimale flottante avec exposant. Les 5 chiffres significatifs concernent
la mantisse. La commande format long (e) est la méme que la précédente sauf
qu’elle utilise 15 chiffres significatifs.

2.2.3. Chemin d’accés

Octave procéde de la fagon suivante lorsqu’il évalue les commandes, fonc-
tions et expressions passées par l'utilisateur depuis la fenétre de commandes.
Si on tape abc, Octave cherche d’abord s’il existe une variable nommeée abc
dans l'espace de travail. S’il n’a rien trouvé, il cherche si abc est une fonction
d’Octave. Si tel n’est pas le cas, il recherche un m-file nommé abc.m (script ou
fonction) dans le répertoire courant de 'utilisateur. Enfin, si cette recherche n’a
pas donné de résultat, il parcourt dans l'ordre les différents répertoires définis
dans le chemin d’accés, aussi appelé path de recherche, afin de trouver un m-file
nommé abc.m. Cet ordre de recherche entraine que les définitions de variables
réalisées par l'utilisateur priment sur les fonctions d’Octave. Donc, pour avoir
accés & toutes les fonctions d’Octave, il ne faut jamais créer de variables ayant
le méme nom qu’une des fonctions d’Octave.

Le path de recherche indique le chemin d’accés aux différents répertoires
ol se trouvent les scripts et fonctions (m-files) invoqués par utilisateur. Ce
chemin d’accés est défini dans deux variables : DEFAULT _LOADPATH (réper-
toires ot sont définies les fonctions d’Octave) et LOADPATH (répertoires ou
sont définies les fonctions de l'utilisateur). La commande path affiche le chemin
d’accés. La commande addpath('chemins’) ajoute au début du chemin d’accés les
chemins spécifiés. La commande rmpath('chemins’) supprime du chemin d’accés
les chemins spécifiés.

2.2.4. Caractéres spéciaux

Dans le paragraphe 2.2.1., le lecteur a pu constater que certaines com-
mandes Octave sont suivies d’un point-virgule et d’autres pas. En réalité, non
suivie du point-virgule, une commande sera normalement exécutée et son ré-
sultat sera affiché. A contrario, suivie d’un point-virgule, une commande sera
normalement exécutée mais son résultat ne sera pas affiché.

Dans le premier exemple du paragraphe 2.2.1., la boucle while est écrite sur
une seule ligne. On remarque que la commande fib(i)=fib(i-1)+fib(i-2) est suivie
d’une virgule. En effet, la virgule est utilisée comme séparateur de commandes
lorsque ’on souhaite passer plusieurs commandes sur la méme ligne et qu’on ne
souhaite pas mettre de point-virgule. Les trois points "..." sont utilisés en fin de
ligne lorsque ’on veut continuer une instruction sur la ligne suivante.

Le symbole % indique que ce qui suit est considéré comme un commentaire.
Ceci est illustré dans 'exemple 2.

Notons enfin que les espaces ne sont pas pris en compte par Octave et
qu’Octave distingue les majuscules des minuscules.

2.2.5. Opérateurs et fonctions de base

Le tableau 1 reprend les opérations de base appliquées & des scalaires tandis
que le tableau 2 liste les fonctions élémentaires appliquées aux scalaires.

+ | addition

- soustraction
multiplication
division
puissance

** | puissance

Tableau 1. Opérateurs de base (scalaires).

sqrt(var) racine carrée de var

exp(var) exponentielle de var

log(var) logarithme népérien de var

log2(var) logarithme en base 2 de var

logl0(var) | logarithme en base 10 de var

cos(var) cosinus de var (angle exprimé en radian)

acos(var) | arc cosinus de var

sin(var) sinus de var

asin (var) | arc sinus de var

tan(var) tangente de var

atan(var) | arc tangente de var

abs(var) valeur absolue de var

round(var) | entier le plus proche de var

floor(var) | partie entiére inférieure de var

ceil(var) partie entiére supérieure de var

mod(x,y) | reste de la division entiére de x par y

sign(var) vaut -1 pour les négatifs, 1 pour les positifs
et 0 pour 0.

Tableau 2. Fonctions de base (scalaires).

3. OBJETS

3.1. Série

Pour créer une série numérique linéaire débutant par la valeur début, au-
toincrémentée de 1 et se terminant par la valeur fin, il faut utiliser la commande
début : fin. Elle crée donc un vecteur ligne. Pour créer une série numérique li-
néaire débutant par la valeur début, incrémentée ou décrémentée du pas spécifié
et se terminant par la valeur fin, il faut utiliser la commande début :pas :fin. Par
exemple, la commande p=0 :2 :10 retourne p =02 4 6 8 10.

3.2. Vecteur

Octave ne fait pas vraiment de différence entre une matrice, un vecteur
et un scalaire, étant donné que ces éléments peuvent étre redimensionnés dyna-
miquement. Une variable vecteur n’est donc qu’une matrice dégénérée en une
seule ligne ou une seule colonne. Les éléments du vecteur sont numérotés par
des entiers débutant par la valeur 1. Les commandes intéressantes & propos des
vecteurs sont reprises dans le tableau 3.

3.3. Matrice

Une matrice est un tableau rectangulaire & n lignes et m colonnes de
nombres réels ou complexes ou encore de caractéres. Les indices de ligne et de

vec=[vl v2 v3]

vec=[vl; v2; v3]
vec’

vec=début :pas :fin
vec(i)
vec(i :p
vec(i 3j)

3)
=l

length(vec)
vecl 4+ vec2
vecl - vec2
vecl * vec2
norm(vec)
dot(vecl,vec?)
cross(vecl,vec2)
min(vec)
max(vec)
sum(vec)
prod(vec)
sort(vec)
mean(vec)
std(vec)
var(vec)
median(vec)
any(vec)
all(vec)

création d’un vecteur ligne contenant les valeurs v1, v2
et v3

création d’un vecteur colonne contenant les valeurs v1,
v2 et v3

transposée du vecteur vec

affectation de la série linéaire a vec

désigne le iéme élément du vecteur vec

désigne les élements d’indice i & j avec un pas de p
destruction des éléments i & j du vecteur vec (qui est
redimensionné)

retourne le nombre d’éléments du vecteur vec

addition (vecteurs de méme dimension)

soustraction (vecteurs de méme dimension)

produit (nombre colonnes vecl = nombre lignes vec2)
calcule la norme du vecteur vec

calcule le produit scalaire des vecteurs vecl et vec2
calcule le produit vectoriel des vecteurs vecl et vec2
retourne le plus petit élément du vecteur

retourne le plus grand élément du vecteur

retourne la somme des éléments du vecteur

retourne le produit des éléments du vecteur

retourne vec trié par ordre croissant

retourne la moyenne arithmétique des éléments du vecteur
retourne l'écart-type des éléments du vecteur

retourne la variance des éléments du vecteur

retourne la médiane des éléments du vecteur

retourne 1 si au moins un élément de vec est différent de 0
retourne 1 si tous les éléments de vec sont différents de 0.

Tableau 3. Commandes appliquées aux vecteurs.

colonne sont des valeurs entiéres débutant par 1. Les commandes intéressantes
4 propos des matrices sont listées dans les tableaux 4 et 5.

3.4. Chainede caracteres

Octave stocke les chaines de caractéres sous forme de vecteur ligne dans
lequel chaque caractére est un élément du vecteur. La commande string="chaine
de caractéres’ enregistre la chaine de caractéres définie entre apostrophes sur la
variable string qui est ici un vecteur ligne. Si la chaine contient une apostrophe,

il faut la dédoubler.

mat=[vll v12 v13;
v21 v22 v23]
mat=[vecl vec2]
mat=[vecl ; vec2]
ones(n,m)
zeros(n,m)

eye(n,m)

mat
mat(i,j)

mat(i j.k :m)
mat(i, :)
EE. j))=l
[, m]=size(mat)
A+B

A-B

A*B

A*B

A\B

A/B

inv(mat)

det(mat)
rank(mat)

création d’une matrice 2 lignes 3 colonnes contenant
les valeurs mentionnées

construit la matrice mat par concaténation des vec-
teurs colonnes vecl et vec2

construit la matrice mat par concaténation des vec-
teurs lignes vecl et vec2

renvoie une matrice n lignes m colonnes dont tous les
éléments valent 1

renvoie une matrice n lignes m colonnes dont tous les
éléments valent 0

renvoie une matrice identité n lignes m colonnes dont
les éléments diagonaux valent 1 et les autres 0
transposée de la matrice mat

désigne ’élément de la matrice mat se trouvant a la
iéme ligne et a la jéme colonne

désigne la partie de la matrice dont les éléments se
trouvent dans les lignes i & j et dans les colonnes k &
m

désigne la ligne i

désigne la colonne j

destruction des lignes i & j de la matrice (qui est
redimensionnée)

retourne le nombre de lignes et de colonnes de la
matrice.

addition matricielle (A et B matrices de méme di-
mension)

soustraction matricielle (A et B matrices de méme
dimension)

produit matriciel (nombre colonnes de A = nombre
lignes de B)

produit élément par élément (A et B matrices de
méme dimension)

division matricielle & gauche (X=A\B est la solution
de A*X=B)

division matricielle & droite (X=A/B est la solution
de X*A=B)

inversion de la matrice carrée mat

retourne le déterminant de la matrice carrée mat
retourne le rang de la matrice mat.

Tableau 4. Commandes générales appliquées aux matrices.

3.5. Tableaumultidimensionnel

Les tableaux multidimensionnels concernent des matrices & plus de deux
indices. Toutes les commandes vues pour les matrices se généralisent facilement
aux tableaux multidimensionnels. Par exemple, mat(i,j,k) désigne 1’élément de la

min(mat)
max(mat)
min(mat,2)
max(mat,2)

norm(mat,p)
sum(mat)

mean(mat)
std(mat)
sum(mat,2)
mean(mat,2)
std(mat,2)

cond(mat)
[v, []=eig(mat)

poly(mat)

[u, s, v]=svd(mat)

[, u]=lu(mat)
chol(mat)

[g, 7]=qr(mat)

retourne un vecteur ligne contenant le plus petit élé-
ment de chaque colonne

retourne un vecteur ligne contenant le plus grand
élément de chaque colonne

retourne un vecteur colonne contenant le plus petit
élément de chaque ligne

retourne un vecteur colonne contenant le plus grand
élément de chaque ligne

retourne la p-norme de la matrice mat

retourne un vecteur ligne contenant la somme de
chaque colonne

retourne un vecteur ligne contenant la moyenne de
chaque colonne

retourne un vecteur ligne contenant l’écart-type de
chaque colonne

retourne un vecteur colonne contenant la somme de
chaque ligne

retourne un vecteur colonne contenant la moyenne
de chaque ligne

retourne un vecteur colonne contenant 1’écart-type
de chaque ligne.

retourne le conditionnement de mat

retourne les vecteurs propres (v) et les valeurs
propres (1) de mat

renvoie un vecteur contenant les coefficients du po-
lyndme caractéristique associé & mat

retourne la décomposition en valeurs singuliéres de
mat

retourne la décomposition lu de mat

retourne le facteur de la décomposition de cholesky
de mat

retourne la décomposition qr de mat.

Tableau 5. Commandes spécifiques appliquées aux matrices.

3.6. Structure

Une structure est un type d’objet d’Octave se composant de plusieurs
champs qui peuvent étre de types différents (chaines, matrices,...). On accéde
aux champs d’une structure avec la syntaxe structure.champ.

Imaginons que nous voulions créer une nouvelle structure appelée personne
avec trois champs, & savoir nom, prénom, dge. La création de la structure se fait

iéme ligne, de la jéme colonne et du kéme tableau de mat, tableau tridimension-

10

en définissant les attributs du premier individu. Par exemple,

personne.nom="dupont’
personne.prenom="pierre’
personne.age="30’

La commande personne permet alors de vérifier le contenu de la structure. Si
on veut définir un deuxiéme individu, il faut utiliser les commandes précédentes
en ajoutant (2) aprés personne. Par exemple, personne(2).nom="leclerc’. Avec
personne(1), on récupére la structure compléte correspondant a la premiére per-
sonne. Avec personne([1 3]), on retrouve un tableau de structures contenant la
premiére et la troisiéme personne. Avec personne(1).age, on obtient 1’age de la
premiére personne.

3.7. Tableaucellulaire

Le tableau cellulaire est un tableau bidimensionnel qui peut se composer
d’objets de types différents (chaine, matrice, structure,...). La différence par rap-
port au tableau ordinaire est ’utilisation d’accolades & la place de parenthéses.

Par exemple,
T{1,1}= 'bonjour’
T{1,2}=[12; 3 4]
définit un tableau cellulaire 1 ligne 2 colonnes. Pour accéder & 1’élément 1,1, on
utilise la commande T{1,1}.

4. PROGRAMMA TION

Les m-files sont des fichiers-texte, créés et édités avec n’importe quel édi-
teur, qui ont ’extension *.m et qui contiennent des instructions Octave. Octave
étant un langage interprété, les m-files n’ont pas besoin d’étre compilés pour
étre utilisés. On distingue deux types de m-files : les scripts (ou programmes)
et les fonctions. Les scripts manipulent directement les variables de ’espace de
travail (variables dites globales) alors que les fonctions agissent par défaut sur
les variables locales & la fonction (mis & part les arguments d’entrée et sortie).

4.1. Interaction avecl'utilisateur
Dans un script ou une fonction, on peut avoir besoin de donner de l'infor-

mation & l'utilisateur ou de lui en demander. Les principales commandes d’in-
teraction avec l'utilisateur sont reprises dans le tableau 6.

11

disp(variable) affiche le contenu de la variable
disp(’bonjour’) affiche bonjour
variable=input("Donner un chiffre’) | Octave affiche "Donner un chiffre”,
attend que l'utilisateur entre quelque
chose au clavier et appuie sur enter.
Octave met l'information donnée par
’utilisateur dans variable.
choix=menu(’n est’,’pair’,’impair’) affiche le titre "n est", puis un menu
avec deux options : (1) pair (2) impair.
Il faut répondre en tapant 1 ou 2.

Le numéro entré est renvoyé dans la
variable choix.

error("n est pair") affiche comme message d’erreur "n est
pair"
return quitte une fonction.

Tableau 6. Commandes d’interaction avec 'utilisateur.

4.2. Boucleset tests

Octave utilise des boucles et tests similaires & ceux des autres langages de
programmation (tableau 7).

Dans la boucle while et le test if, apparaissent des expressions logiques.
Dans ces cas, la syntaxe & utiliser s’inspire du tableau 8. L’exemple 1 de la sec-
tion 2.2.1. en est une illustration pour la boucle while.

4.3. Scripts

Un script n’est rien d’autre qu’une suite de commandes sauvegardées dans
un m-file. Par opposition aux fonctions, les scripts sont invoqués par 'utilisateur
sans passer d’arguments, car ils opérent directement sur les variables de ’espace
de travail. Un script peut donc lire et modifier les variables préalablement dé-
finies, ainsi que créer de nouvelles variables qui seront accessibles dans 1’espace
de travail une fois le script exécuté. Pour exécuter un script, on frappe dans la
fenétre de commandes son nom (sans extension ".m") suivi de enter.

4.4. Fonctions

Egalement programmées sous forme de m-file, les fonctions se distinguent
des scripts par leur mode d’invocation depuis la fenétre de commandes qui est
fondamentalement différent :

[var-sortiel,var-sortie2,...]=fonction(varl,var2,...)

12

boucle for

fori=d :p :f
commandes
end

pour i allant de d & f par pas de p
exécution de commandes

boucle while
while expression-logique

tant que expression-logique est vraie

case (v1), commandesl
case (v2), commandes2
otherwise commandes
end

commandes exécution de commandes
end

test

if expr-log-1 si expr-log-1 est vraie,
commandesl exécution de commandesl
elseif expr-log-2 autrement, si expr-log-2 est vraie,
commandes?2 exécution de commandes2
else sinon,

commandes exécution de commandes
end

switch-case

switch var

si var=vl, exécution commandesl
si var= v2, exécution commandes2
autrement, exécution commandes

sortie prématurée d’une boucle

break

Tableau 7. Boucles et tests.

test d’égalité
test de différence

expressionl & expression2
expressionl | expression2

< test d’infériorité

> test de supériorité

<= test d’infériorité ou égalité
>= test de supériorité ou égalité
~expression négation logique

ET logique
OU logique

Tableau 8. Expressions logiques.

Comme on peut le voir, on appelle une fonction par son nom en lui passant ses

arguments d’entrée entre parenthéses.

La fonction retourne une (des) valeur(s)

de sortie que 'on récupére par la (les) variable(s) a laquelle la fonction est affec-
tée lors de I’appel. Le nom du m-file doit étre rigoureusement identique au nom

de la fonction.

13

Le fichier fonction.m doit commencer en premiére ligne par la déclaration
de la fonction qui est

function [arg-sortiel,arg-sortie2,...]=fonction(arg-entréel,arg-entrée2,...)

Les commandes viennent aprés cette déclaration.

Le mécanisme de passage des paramétres se fait par valeur. Les variables
créées a 'intérieur de la fonction sont dites locales car elles sont inaccessibles en
dehors de la fonction. Si ’on tient cependant & ce que certaines variables de la
fonction soient visibles et accessibles a ’extérieur, on peut les rendre globales en
les définissant comme telles dans la fonction, avant qu’elles ne soient utilisées,
par une déclaration

global variable

Cette déclaration doit venir aprés la déclaration de la fonction qui est en pre-
miére ligne du fichier. Il faudra aussi faire une telle déclaration dans la fenétre
de commandes si on veut accéder & ces variables dans ’espace de travail.

Voici un exemple de fonction, écrit dans le fichier factorielle.m :

function rep=factorielle(n)
rep=1;

if (n<0)

error("pas de factorielles pour les négatifs") ;
endif

if (h==0)

return;

else

for i=2:n

rep=rep*i;

endfor

endif

end

Pour l'appeler, on tape par exemple f=factorielle(5) dans la fenétre de com-
mandes. Octave retourne f=120.

5. GRAPHIQUES

Alors que Matlab, logiciel commercial, ne compte que sur lui-méme, Octave
s’appuie davantage sur des outils externes, ce qui est notamment le cas pour les
fonctionnalités graphiques. Octave n’intégre donc pas de moteur graphique mais
utilise par défaut le logiciel de visualisation gratuit Gnuplot.

Nous décrivons ici les commandes & encoder dans Octave (sous Windows)
pour obtenir un graphique dans la fenétre des graphiques de Gnuplot (intitulée

14

"gnuplot graph") qui s’ouvre automatiquement. Ces fonctionnalités peuvent dif-
férer légérement sous Linux. Lorsqu’un programme Octave contenant des com-
mandes graphiques est lancé sous Windows, non seulement la fenétre gnuplot
graph apparait mais également une fenétre de commandes Gnuplot (console).
Celle-ci est a ’état "réduit" dans la barre des taches. Dans celle-ci défilent les
commandes Gnuplot générées par les ordres graphiques du programme Octave.
Ces deux fenétres ne doivent pas étre fermées manuellement. Pour fermer pro-
prement ces deux fenétres de Gnuplot, il faut utiliser la commande closeplot.

Tout d’abord, nous présentons les commandes graphiques relatives au graphe
en dimension 2 (tableau 9).

plot(x1,y1,x2,y2) dessine un graphique avec deux courbes.

xi contient les abscisses de la iéme courbe

yi contient les ordonnées de la iéme courbe.
Chaque paire de vecteurs (xi,yi) doit avoir le méme
nombre d’éléments. Celui-ci peut étre différent
d’une paire a 'autre.

plot(vec) équivaut a plot(x,vec) avec x=[1 2 3 4..]
fplot('f’,[xmin xmax]) | trace la fonction f entre les limites xmin et xmax.
La fonction spécifiée est une fonction d’Octave (par
exemple ’sin’) ou une fonction de l'utilisateur

(par exemple ’sqrt(3x+2)-+x’).

stairs(x,y) dessine une ligne en escalier pour la courbe définie par
les vecteurs x et y
scatter(x,y,size,color) dessine le semis de points définis par les coordonnées
(xy)-
size spécifie la taille des points et color leur couleur.
pie(val) dessine un camembert 2d sur base du vecteur val
bar(x,y) dessine les barres verticales définies par les vecteurs
x (position) et y (hauteur)
hist(y,n) détermine la répartition des valeurs de y selon n

catégories de méme largeur puis dessine cette
répartition sous forme d’histogramme.

Tableau 9. Commandes graphiques en dimension 2.

Ces commandes graphiques se généralisent facilement pour les graphes en
3 dimensions (tableau 10).

Les graphiques obtenus par ces commandes en dimensions 2 ou 3 peuvent
étre améliorés en jouant sur les axes, en introduisant une légende, un titre, etc.
Ceci justifie la présentation des commandes suivantes. Elles doivent étre placées
aprés la commande graphique.

Dans les commandes graphiques, on peut utiliser une option spécifiant le

15

plot3(x,y,z)

[xm, ym]=meshgrid(x,y) ;
z=f(xm,ym)
surf(x,y.z)

dessine une ligne passant par les

points (x,y,z)

permet de calculer f(x,y) en tous les
points du maillage défini par x et y

sans utiliser de boucle for

et de dessiner la surface correspondante.

Tableau 10. Commandes graphiques en dimension 3.

axis([xmin xmax ymin ymax))

xlabel(’'labelx’)
ylabel('labely’)

titre('titre’)
text(x,y,'mot’)

legend('motl’,'mot2")

Les limites inférieures et supérieures des axes
sont déterminés automatiquement par les
commandes graphiques. Cette commande-ci
est utilisée lorsqu’on ne veut pas que ce soit
automatique.

définit et affiche le texte de la légende de 'axe
des x
définit et affiche le texte de la légende de 'axe
des y

définit et affiche un titre de graphique
définit I’annotation mot qui est placé sur le
graphique aux coordonnées spécifiées

met la légende motl pour le premier graphe
et la légende mot2 pour le deuxiéme graphe.

type et la couleur du trait ainsi que le symbole utilisé. Cette option se définit
comme une combinaison de caractéres définis ci-dessous.

m

Foa RO

W 4+ %O

magenta

bleu foncé
rouge

vert clair
brun

ligne continue
petits traits
ligne pointillée
ligne trait point
losange

étoile

plus

croix

Par exemple, plot(x,y1,'r-0",x,y2,’'m :*') dessine la premiére courbe en trait continu
de couleur rouge et avec un losange en les points et la deuxiéme courbe en ligne
pointillée de couleur magenta et avec une étoile en les points. On peut bien sir
aller beaucoup plus loin et créer soi-méme sa table de couleurs et modifier les at-
tributs de lignes et symboles avec la technique "Handle Graphics" non vue dans
cette introduction. Il est également possible de faire des animations, d’importer
des images,... Pour cela, nous vous référons & la bibliographie.

16

Par défaut, Octave envoie tous les ordres graphiques & la méme fenétre
graphique appelée figure. Chaque fois que l'on dessine un nouveau graphique,
celui-ci écrase le précédent. Si 'on désire tracer plusieurs graphiques, les com-
mandes utiles se trouvent dans le tableau 11.

hold('on’) superpose les ordres de dessin qui suivent dans la méme figure
subplot(l,c,i) | découpe la fenétre graphique courante en 1 lignes et ¢ colonnes
et sélectionne la iéme comme espace de tracé courant

figure ouvre une nouvelle fenétre de graphique et en fait la fenétre
active

figure(i) en fait la fenétre active, si la fenétre i existe; sinon ouvre une
nouvelle fenétre portant ce numéro

clf efface le graphique de la fenétre courante.

Tableau 11. Commandes graphiques.

Les commandes graphiques décrites dans cette section agissent immeédiate-
ment sur le graphique courant si la variable automatic_replot vaut 1 (par défaut).
Si cette variable vaut 0, il faut passer la commande replot pour voir effet de ces

fonctions.

6. AUTRES COMMANDES

Octave posséde encore de nombreuses commandes qui permettent de ré-
soudre des problémes dans des domaines tout & fait différents. Le nombre de
commandes existantes est trés important. Le tableau 12 présente un minuscule
échantillon de commandes permettant d’illustrer la large gamme de sujets traités

par Octave.

fsolve(function,x0)
quad(f,a,b)
Isode(f,x0,t0)

ols(y,x)
anova(y,g)
interpl(x,y.xi)

trouve la racine de function avec pour point initial x0
intégre f entre a et b

résoud I’équation différentielle dx/dt=f(x,t) avec comme
points initiaux t0 et x0

moindres carrés

test statistique anova

interpole la fonction passant par (x,y) aux points définis
par xi

Tableau 12. Autres commandes.

17

7. EN GUISE DE CONCLUSION

Le principal avantage d’Octave (et de Matlab) est sa rapidité due & son
langage "matriciel". Il est donc important d’en tenir compte lors de la program-
mation et de privilégier les commandes matricielles plutot que les boucles (for
ou while). Pour un gain de temps, il est également utile de dimensionner les
matrices en les initialisant. Les autres avantages rencontrés par Octave sont la
facilité d’apprentissage du langage et sa richesse, ainsi que la gratuité du logiciel.

Cette trés bréve introduction & Octave a présenté les notions de base. Ce-
pendant, ce document est loin d’étre complet. Pour obtenir de plus amples infor-
mations, 'utilisateur consultera les références se trouvant dans la bibliographie
ou sur le site principal consacré & Octave :

http ://www.gnu.org/software/octave/docs.html.

Pour obtenir de ’aide en ligne, la commande help fonction affiche dans la fenétre
de commandes la description et la syntaxe de la fonction. Passée sans paramétre,
la commande help liste les rubriques d’aides principales. Enfin, 1a commande help
-i motclé donne des informations concernant le "motclé".

BIBLIOGRAPHIE

BONJOUR J.D. [1999]. Introduction 4 Matlab et GNU Octave. Support du cours
"Informatique de 'ingénieur" pour les étudiants en Sciences et ingénierie
de l’environnement de ’ENAC, EPFL & Lausanne.

(disponible sur http ://enacit1.epfl.ch/cours_matlab/ consulté le 21,/03/2008)

EATON J.W. [2005]. GNU Octave Manual. Network Theory Limited. 324pp.
LEVENSPIEL O. [1962]. Chemical Reaction Engineering. New York Wiley. 573pp.
O’DoNoVAN B. [2004]. GNU Octave : une introduction. Gazette Linux 109.
O’DoNOVAN B. [2005]. GNU Octave : fonctions et scripts. Gazette Linux 112.

18

