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Nomenclature

A = panel area, m2

b = semichord, m
c = chord, m
Cd = sectional drag coefficient
Cl = sectional lift coefficient
D = panel drag, N
F = force vector, N
h = plunge displacement, m
k = reduced frequency
L = panel lift, N
l = vortex segment vector
M = number of chordwise panels
N = number of spanwise panels
n = panel normal vector
P = orthogonal projection operator
s = nondimensional time
U = velocity vector, m · s−1

t = time, s
α = angle of attack, rad
∆b = panel span, m
∆c = panel chord, m
∆p = pressure drop
Γ = circulation, m2 · s
ω = angular velocity, rad · s−1
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ρ∞ = freestream air density, kg ·m−3

τ = panel tangential vector

Subscript

i = panel index in the chordwise direction
j = panel index in the spanwise direction

Superscripts

(˙) = time derivative
(̂ ) = unit vector
(̄ ) = amplitude

I. Introduction
The Unsteady Vortex Lattice Method (UVLM) [1] is an approach widely used to estimate the

aerodynamic loads in unsteady subsonic flows. It is based on modeling the camber surface of
a lifting body by means of bound vortex rings. Additional vortex rings are shed at the trailing
edge in order to model the wake. Even though this method has been known and used for several
decades, there is little discussion of the modeling of the leading-edge suction in the literature. To
address this concern, Simpson et al. [2] presented a comparison of two different ways to model
this effect for the case of uncambered airfoils and wings in harmonic pitch or plunge motions of
small amplitude. One method was found to converge significantly faster than the other.

The present note is an extension of the study by Simpson et al. to cambered lifting surfaces.
It shows that the presence of camber changes radically the convergence performance of the two
methods.

II. Method
Simpson et al. studied two approaches for calculating the aerodynamic forces for the UVLM.

The first one, based on the theory of circulatory forces is referred to as the Joukowski method in
their paper; the second one, developed by Katz and Plotkin [1] is based on the computation of the
pressure jump across the airfoil and is referred to as the Katz method. For convenience, the same
terminology will be employed here.

A. Joukowski method

This procedure requires the calculation of the force contributions of all the bound vortices in order
to model the effects of leading-edge suction. The total force generated by each vortex ring is
divided in two parts: (quasi)steady and unsteady. The steady contribution of one vortex segment
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m is simply calculated from the Joukowski theorem as:

Fst
m = ρ∞Γm(Um × lm) (1)

with lm the vortex segment vector, Um the local flow velocity evaluated at the center of the segment
and Γm the circulation of that segment. In general, the circulation of each segment is equal to the
circulation of the panel: Γm = Γij; the only exception is for the segments of the trailing edge,
where the circulation of the first wake segments (Γw

1j) must be subtracted: Γm = Γij − Γw
1j = 0

(Kutta condition).
The unsteady contribution arises from the unsteady part of Bernoulli’s equation and acts along

the normal n of each vortex ring panel [5]

Funst
ij = ρ∞

∂Γij

∂t
Aijnij (2)

with Aij the panel’s area. Finally the total force contribution from the whole panel can be calcu-
lated from the steady contribution of each of its vortex segments and the unsteady contribution of
the panel:

Ftot
ij =

4∑
m=1

Fst
m + Funst

ij (3)

B. Katz method

For this method, the unsteady Bernoulli equation is used to determine the pressure jump across
each panel:

∆pij = ρ∞

(
(Um

ij + Uw
ij).τ

c
ij

Γij − Γi−1,j

∆cij
+ (Um

ij + Uw
ij).τ

s
ij

Γij − Γi,j−1

∆bij
+
∂Γij

∂t

)
(4)

where Um
ij is the velocity due to the surface motion and Uw

ij is the velocity due to the wake vorticity,
all taken at the panel’s collocation point. The bound vorticity contribution is approximated by the
gradient of circulation along the direction of the panel’s tangential vectors, τ c

ij and τ s
ij respectively

for the chordwise (∆cij) and spanwise (∆bij) directions. The lift can be computed from

∆Lij = ∆pijAij cos(αij) (5)

with αij the panel’s angle of attack.
This procedure is only valid for the lift calculation since it does not account for the leading-

edge suction force, overestimating the drag [1]. Instead of using the pressure difference for the
calculation of induced drag, Katz and Plotkin define the drag as the force component parallel to
the flight direction. After calculating the component of downwash that acts along the local lift
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vector, each panel’s contribution to the induced drag is given by

∆Dij = ρ∞

(
(Ubc

ij + Uw
ij).(PÛm

ij
nij)(Γij − Γi−1,j)∆bij +

∂Γij

∂t
Aij sin(αij)

)
(6)

with Ubc
ij the velocity at the panel’s collocation point calculated considering only the bound chord-

wise vortices. The second term arises from the unsteady Bernoulli equation. The term (PÛm
ij
nij) is

an orthogonal projection of the normal to the panel in the plane of the flow and therefore it ensures
that only the downwash component of the velocities is taken [2]. The projection operator is defined
as PÛm

ij
= I − Ûm

ij Û
mT

ij , where the unit vector Û = U/|U| describes the direction of the local
flow velocity. Finally, the total aerodynamic load acting on each panel is

Ftot
ij = ∆DijÛ

m
ij + ∆Lij(PÛm

ij
nij) (7)

C. Comments

The two methods have each their drawbacks and advantages. Moreover, only the chordwise-
oriented segments contribute to Ubc

ij with the Katz method, which can also lead to approximation
errors, especially in the presence of cross wind. On the other hand, the Katz approach is less com-
putationally expensive than the Joukowski method. For a given discretisation of M chordwise and
N spanwise panels, the number of points required for the calculation of velocities with the Katz
method is

npoints = M ×N (8)

while for the Joukowski method the number of points is

npoints = (M + 1)×N︸ ︷︷ ︸
spanwise segments

+ (N + 1)×M︸ ︷︷ ︸
chordwise segments

(9)

In general, the Joukowski method will require approximately three times more computing effort
because it calculates the local velocities at more than twice the points than the Katz technique.

III. Results
The two methods were first applied to a 2D uncambered airfoil and benchmarked against the

analytical solution by Theodorsen [4] and Garrick [3], as was done by Simpson et al.. Excellent
agreement with the analytical solutions was obtained. Then, the convergence of the two methods
was analyzed for airfoils and finite wings of different camber.
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A. Kinematics

Two motions are studied: harmonic plunging, specified by h = h cos(ks) and harmonic pitching,
described by α = α sin(ks); where h and α are oscillating amplitudes, s = U∞t/b is a nondi-
mensional time and k = ωb/U∞ is the reduced frequency. The downwash induced by the motions
depends on ḣ, α and α̇, all of which can be calculated analytically.

All the cases studied in this note involve a prescribed wake, i.e. the wake panels are convected
with the free stream velocity. To ensure that the newly shed wake panels have the same area as the
bound panels, the time step is set to ∆t = c/(U∞M) [2]. In order to avoid disturbances due to the
impulsive start of the flow, the simulation is conducted until the wake length reaches 25 times the
chord length or until at least two complete cycles of oscillation are simulated, whichever is longer.
The results presented hereafter correspond to the values over the last cycle.

B. 2D Airfoils

For 2D flow cases the wing is modelled with an extremely large aspect ratio (AR = 4000) and
without any spanwise discretisation (N = 1); this ensures that the wing tip effects remain negligi-
ble, and thus the problem is quasi 2D [2].

Simpson et al. [2] already showed that both methods present a good match to the linear theory.
A convergence study can be carried out for the two methods. Here, this analysis is performed
with respect to the chordwise discretisation only. The error in the drag coefficient estimate Cd is
computed as

error(M) =
RMS [Cd(Mmax)− Cd(M)]

max
t
|Cd(Mmax)|

× 100 [%] (10)

The finest discretisation is set to 50 chordwise panels (Mmax = 50), as this value results in ad-
equately converged aerodynamic load predictions. The convergence of the two methods is com-
pared on two airfoils, one uncambered and one with the NACA 64xx camber line. The results are
presented in Fig. 1a and 1b , which plots the variation of error in Cd prediction against M for the
uncambered airfoil and two values of the reduced frequency. Convergence is very fast in the plunge
case but the Joukowski method performs better than the Katz approach. In pitch however there is
very little difference in the convergence of the two methods (the Joukowski method is marginally
faster for the first few values of M tested, but rapidly the difference in error becomes negligible).

For the cambered plate (Fig. 1c and 1d) the results are quite different. For both reduced fre-
quencies, the Joukowski method presents a small advantage over the Katz technique, but only in
plunge. In pitch, the Katz approach is marginally faster. Similar behaviours were observed at re-
duced frequency values of k = 0.2 and k = 0.8. Other cambered profiles were studied (NACA
14xx, 24xx, 34xx, 44xx, 54xx) for a reduced frequency of k = 0.2 . For all these profiles, the
Katz approach converges faster in pitch, but the Joukowski method is slightly faster in plunge.
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c) NACA 64xx, k = 0.1
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Figure 1. Convergence for pitching and plunging at k = 0.1 and at k = 0.5, for uncambered and cambered
airfoils.

Moreover, the difference in convergence rate was found to decrease with camber in pitch, while
no significant difference was found for the plunging motion. In general, convergence is slower for
high camber values due to a poorer approximation of the cambered surface by linear panels. The
approximation becomes particularly poor when M < 10, as the collocation points lie significantly
below the camber line.

C. 3D wings

The same pitch and plunge kinematics are used for finite wings as for 2D airfoils. The aspect ratio
is set to AR = 4 and the number of spanwise panels is set to N= 24. Convergence tests are
carried out on two finite wings, one uncambered and one with the NACA 64xx camber line. The
error in drag coefficient is again calculated using equation 10 and is plotted against M in Fig. 2 for
pitching or plunging wings at two reduced frequencies. For the uncambered wing (Fig. 2a and 2b),
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M
0 5 10 15 20 25 30 35 40 45 50

E
rr

o
r 

C
d
 [
%

]

0

2

4

6

8

10

12

14
Katz method (Plunging)
Joukowski method (Plunging)
Katz method (Pitching)
Joukowski method (Pitching)

b) NACA 00xx, k = 0.5
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c) NACA 64xx, k = 0.1
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Figure 2. Convergence for pitching and plunging at k = 0.1 and at k = 0.5, for uncambered and cambered
finite wings.

the conclusions drawn by Simpson et al. [2] are confirmed. The Joukowski method converges
even faster than in the 2D case, although the convergence rate decreases with increasing reduced
frequency (this slowdown was confirmed by carrying out additional simulations at k = 0.2 and
k = 1). At high values of the reduced frequency, the added mass component of the aerodynamic
loads becomes dominant. As added mass effects are uniform over the span, the convergence pattern
becomes similar to the one observed in the 2D case for high k.

The results are markedly different for the cambered wing (Fig. 2c and 2d). The convergence
of the Katz approach is found to be notably faster than that of the Joukowski method, both in
pitch and in plunge. Furthermore, as in the 2D case, the reduced frequency and kinematics seem
to have little influence on the convergence rate of the two approaches. Other cambered wings
(NACA 00xx, 14xx, 24xx, 34xx, 44xx, 54xx, 64xx) of aspect ratio AR = 4 and reduced frequency
k = 0.2 were also investigated. In all cases it was found that the Katz method was converging
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significantly faster in both pitch and plunge. The variation of the error on the drag coefficient with
camber is shown in Fig. 3. The results presented in this figure are for finite wings of AR = 4,
pitching or plunging at a reduced frequency of k = 0.2 and for a chordwise discretisation of
M = 28. It is clear that in both cases, the error of the Katz method is higher for uncambered
wings but becomes lower than the Joukowski error as soon as camber is introduced. In general,
the difference in error is increasing with camber, leading to a clear advantage for the Katz method.
The lack of monotonicity may arise from the fact that the errors presented here are relative to a
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Figure 3. Errors in pitch and plunge at k = 0.2 for different wing profiles of AR = 4 and with 28 chordwise
panels.

specific chordwise discretisation (M = 50).

D. Comments

As mentioned earlier, the Joukowski method is more computationally expensive; this is especially
true in 3D. Fig. 4 plots the variation of computation time with chordwise discretisation for an
uncambered finite wing in pitch at k = 0.2. The cost of the Joukowski approach is approximately
three times higher than that of the Katz technique. The simulations were run on a iMac computer
(21.5-inch, Late 2013), using Matlab 2014b and C-language functions compiled as mex files.

The results of the previous section clearly show that the Katz method converges much faster for
cambered wings. This phenomenon is due to the position of the points where local flow velocities
are computed. Those points are shown schematically in Fig. 5. According to the VLM methodol-
ogy commonly employed, the wing is split into geometric panels and vortex rings are placed on the
quarter-chord of each panel. The collocation points lie on the the 3/4 chord points of the geometric
panels. The Katz method calculates the local flow velocity on these collocation points (squares
in Fig. 5), while the Joukowski method uses the mid-points of the vortex segments (circles). The
spanwise segments lie on the geometric panels but the chordwise segments lie below the geomet-
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Figure 4. Computation time for a NACA 00xx finite wing in pitch at k = 0.2 .

ric panels. This means that two of the four points on which the Joukowski method calculates the
flow velocity lie very far from the camber line, which explains why this approach converges more
slowly than the Katz method as soon as camber is introduced. In the case of a flat plate all the
points lie perfectly on the wing, and therefore, the Joukowski approach converges faster.

The placement of the vortex rings on the quarter chord of the geometric panels is a convention
that has been commonly employed by the majority of VLM researchers. Moving the vortex rings
to the leading edge of the vortex panels would resolve the discretisation error issues that affect the
Joukowski method. However such a modification would have to be investigated in detail in order
to determine its effects on all aspects of the VLM solution.

Camber line
Wing panels
Vortex rings
Collocation points

Figure 5. Camber line, wing panels, vortex rings and collocation points .
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IV. Conclusions
The Katz and Joukowski approaches for calculating the induced drag of lifting surfaces by the

UVLM method were applied to cambered wings. Special attention was drawn to the convergence
rate of the drag coefficient with increasing chordwise discretisation for unsteady small oscillations.

For 2D uncambered airfoils, the Joukowski method was found to converge faster than the Katz
technique, as already demonstrated by Simpson et al. [2]. For cambered airfoils, the Joukowski
method converged slightly faster, but only in plunging motion; the Katz method converged faster
for pitching motion. The difference in convergence rates decreased with camber, but only in pitch.
In general, all convergence rates became slower with increasing camber, due to a poor representa-
tion of the cambered surface by linear panels.

In the 3D case, the drag coefficient converged significantly faster with the Joukowski method
for the uncambered wing. In contrast, the Katz approach performed much better than the Joukowski
technique for all cambered wings. Again, all convergence rates were found to be nearly indepen-
dent of reduced frequency. The difference in convergence rate was found to increase with camber,
making the Katz method even more advantageous at high camber values. It was found that the
Joukowski method is less efficient for cambered wings because two of the four points where it cal-
culates the local flow velocity for each panel lie very far from the camber line. This is especially
true in 3D, where the number of points far from the camber line is M ∗ (N + 1), while in 2D there
are only 2 ∗M such points.

The present work completes the analysis by Simpson et al. [2] by investigating the performance
of the two methods on cambered wings. Other factors may affect their convergence rates, such as
larger amplitudes for the displacements, or geometrical considerations such as taper, sweep, twist
etc, but these investigations are beyond the scope of the present note.
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