Effects of protein source and cooking procedure on intestinal microbiota and on fermentation end-products in rats

Christine POELAERT1,2, Xavier DESPRET1, Daniel PORTETELLE2, Marianne SINDIC3, Gauthier EPPE4, Bernard TAMINIAU5, Georges DAUBE5, Carine NEZER6, Yves BECKERS1, André THEWIS1 and Jérôme BINDELLE1

1Precision Livestock and Nutrition Unit, 2Microbiology and Genomics Unit, 3Laboratory of Agro-food Quality and Safety, Gembloux Agro-Bio Tech, University of Liege, 5030, Gembloux, Belgium, 4Center for Analytical Research and Technology (CART), Chemistry Department, University of Liege, 4000, Liège, Belgium, 5Department of Food Science, Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liege, 4000, Liège, Belgium, 6Quality Partner S.A., 4040, Herstal, Belgium.

Animal and plant proteins are major protein sources in the human diet. After their enzymatic degradation in the upper gastrointestinal tract, the undigested fraction of these proteins is available for fermentation by the microbiota of the large intestine leading to the production of short-chain fatty acids (SCFA), branched-chain fatty acids (BCFA), ammonia, biogenic amines, sulphur metabolites, phenols and indoles. As some of these compounds have genotoxic and cytotoxic effects, protein fermentation is considered as detrimental to the host’s epithelial health. BCFA are usually used as a marker of intestinal protein fermentation.

We studied in vivo the impact of proteins from animal and plant origin, raw or after a cooking procedure, on the composition of gut microbiota and on fermentation end-products. Weaning rats were used as models of the human gut microbiota. Eight experimental diets were formulated with beef meat (Longissimus dorsi), chicken meat (Pectoralis major), white pea beans (Phaseolus vulgaris), soybeans (Glycine max), used raw and cooked, as sole source of protein in the diet. One casein diet was used as control. All diets, formulated to contain 15% of raw protein, were given to seven rats for four weeks. After euthanasia, caecal contents were collected. Pyrosequencing analyses (Roche 454 GS Junior Genome Sequencer) were performed to study the microbial composition. SCFA and BCFA were measured using HPLC (Waters 2690).

Microbial composition in the caecum is associated to the type of dietary protein and to the cooking procedure applied. The proportion of BCFA in the caecal content is mainly affected by the type of protein. So BCFA represent respectively 04-06% and 35-44% of total SCFA with diets based on plant and on animal proteins. In conclusion, both the type of protein and the cooking procedure could impact the gut microbiota in terms of composition and of fermentative capacity.