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Introduction

● MEMS devices, e.g. accelerometers, digital mirrors, pressure sensors, resonators
● Successfully applied in the industry. E.g. accelerometers for air bag systems

● Stiction: a common failure of MEMS
● Due to dominance of surface adhesive forces at the micrometer scale

● E. g., van der Waals forces and capillary forces

● In humid conditions, the capillary forces are dominant

● Depends on the surface topologies

● The physical contact happens at the high asperities
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Stiction failure in a MEMS sensor
 ( Jeremy A.Walraven Sandia National 
Laboratories. Albuquerque, NM USA)  

Water condensing between
 two surfaces
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Cantilever beams array 
[Boer et al. 2013]
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Motivation
● Construct a numerical model for micro cantilever beam structures

● To predict the crack length     and its uncertainties from the surface topology
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* The crack length     characterizes the required energy to release the cantilever beam out of the failure 
configuration
* The crack length     characterizes the required energy to release the cantilever beam out of the failure 
configuration
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Methodology
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● Multiscale model
● Probabilistic multiscale model

● Direct Monte-Carlo multiscale method (high computational cost)

● Stochastic model-based multiscale method (acceptable computational cost)
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● Conclusions and perspectives
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Multiscale model
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● Lower scale: surface characterization and surface generator

● Meso-scale: evaluate the contact forces by a semi-analytical contact model

● Upper-sale: Integrate the contact forces as contact law into FE model 
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Multiscale analysis
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● Semi-analytical contact model for adhesive contact problem
● Based on DMT spherical asperity contact model

● Rough surface contact model
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Direct Monte-Carlo multiscale method
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Direct Monte-Carlo multiscale method
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Stochastic model-based multiscale method
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Stochastic model-based multiscale method
15

Generate 
contact forces

Spectral 
density

Generate 
surfaces

Evaluate 
contact forces

Solve 
FE model

Estimate
Probability

Stochastic model
of contact forces

● Direct Monte-Carlo multiscale method (high computational cost)● Direct Monte-Carlo multiscale method (high computational cost)

● Stochastic model-based multiscale method (acceptable computational cost)● Stochastic model-based multiscale method (acceptable computational cost)

Generate 
surfaces

Evaluate 
contact forces

Stochastic model
of contact forces

Generated 
forces

Evaluated 
forces



Stochastic model-based multiscale method
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Stochastic model-based multiscale method
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● Stochastic model for apparent contact forces: generalized polynomial chaos expansion (gPCE)
● Parameterization of the apparent contact force using a modified Morse potential
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Stochastic model-based multiscale method
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● Stochastic model for apparent contact forces: generalized polynomial chaos expansion (gPCE)
● Parameterization

● Representing the parameters vectors by a truncated gPCE model: order Nd

● The higher the order Nd, the better the approximation

● The coefficients are identified by the projection of the iso-probabilistic transformation 
on the polynomial chaos system 
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Stochastic model-based multiscale method
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● Stochastic model for apparent contact forces: generalized polynomial chaos expansion (gPCE)
● Generate apparent contact forces
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Numerical results

● Using the two methods: direct Monte-Carlo multiscale vs Stochastic-model based multiscale 
method to evaluate

● Distribution of apparent contact forces parameters

● Distribution of crack lengths

● Input:  a constructed isotropic self-affine spectrum density function of the contacting 
surfaces based on experiments report in [Boer et al. 2013] 
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Cantilever beams array 
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Numerical results
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● To obtain the distribution: 1000 realizations are required

● Good approximation and acceptable computation cost
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Numerical results

● Validation: comparison with experimental results [Boer et al. 2013]
● Accurate prediction of the experimental results at high humidity levels
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Conclusions & Perspectives

● A Stochastic model-based multiscale method for stiction problems taking the surface 
topology into account by

● Using spectral density to characterize the AFM surface measurements and generate  
numerical surfaces
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● To reduce efficiently the computational cost
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● Applying the model to evaluate the failure percentage of MEMS designs such as
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● The stiction of MEMS gears system
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Q&A

Thank you for your attentionThank you for your attention
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