Nonlinear analysis of compliant mechanisms: application to tape springs

F. Dewalque and O. Brüls
Department of Aerospace and Mechanical Engineering
University of Liège, Belgium

Tape springs

Definition: Thin strip curved along its width commonly used in deployable structures

Assets:
- Passivity and self-actuation
- Elastic deformations
- Self-locking
- Simplicity
- Lightness
- Various combinations
- Compact folded configuration

Theoretical mechanical behaviour:

Bending moment M

M_{max}

M_{*}

θ_{max}

Equal sense bending

Opposite sense bending

Nonlinear finite element models

Quasi-static analyses:
- Shells
- Newmark or generalised-\(\alpha\) method
- Adaptive time stepping procedure
- High numerical damping
- Control on the bending angle

Dynamic analyses:
- Shells
- Generalised-\(\alpha\) method
- Adaptive time stepping procedure
- Low numerical damping
- Importance of the structural damping

Experimental validation and damping estimation

Motion sensors with 4 sensor units
(Codamotion CX1®)

Force plate
(Kistler®)

Deployment tests:

Small amplitude vibration tests:

Motion dominated by the first bending mode:

\(\Rightarrow\) estimation of the structural damping based on the exponential decay of the response

Contact details

Florence Dewalque, f.dewalque@ulg.ac.be, +32 (0)4 366 92 13
Allée de la Découverte 13A (B52/3), B-4000 Liège, Belgium