Modeling of flexible link robots for end-effector trajectory tracking tasks

Arthur Lismonde1, Valentin Sonneville2 and Olivier Brüls1

1University of Liège, Belgium
Department of Aerospace and Mechanical engineering

2University of Maryland, USA
Aerospace engineering
Context

Current trend in robotics:
• Optimize energy consumption.
• Improve mass to pay-load ratio.
• Improve safety of robots.

⇒ Elastic deformation and vibrations can be taken care of using the control system: feedback and feed-forward commands.

Design of lightweight and compliant robots that could have elastic deformation issues.
Context

- Computation of a **feed-forward action** that takes into account elastic deformations.
- For trajectory tracking tasks, the **inverse dynamics** of such flexible multibody systems (MBS) has to be solved.

- But **flexible systems** might have **unstable internal dynamics** (non-minimum phase).
- Time integration methods lead to **unbounded solutions**.
Particular methods to solve the inverse dynamics of flexible MBS:

1. Stable inversion method:
 Boundary value problem, [Seifried 2013], [Devasia et al 1996].

2. Optimal control method:
 Minimization of objective function, [Bastos et al 2013] for 2D systems.

Both lead to similar solution that are non-causal but bounded.
Objective and originality

- Solve the **inverse dynamics** of **3D flexible MBS** for **trajectory tracking** tasks:
 1. **Model** using finite elements with **SE(3) formalism** to avoid direct parameterization of 3D equation of motion.
 2. **Optimal control formulation** to avoid the definition of suitable boundary conditions (as for the stable inversion).

- The **method** is developed to deal with **general flexible MBS**: serial or parallel systems, localized or distributed flexibility, 1-6 controls,...
Formulation

• To illustrate, we first consider the following 3D serial manipulator:
 1. Robot with 3 dof.
 2. Made up of a rigid and a flexible link.
 3. Point mass end-effector that follows a prescribed trajectory over time.
Formulation

Finite element formalism on SE(3): [Sonneville et al 2014, 2015]
- Rigid, flexible elements and kinematic joints.
- Spatial discretization of flexible bodies (e.g., beam finite elements).
- Kinematics described using position & orientation of the N nodes.

Configuration variable: $H = \text{diag}(H_1, ..., H_N)$
Formulation

Optimal control problem as a NLP problem:
- **Objective** function J: strain energy and controls of the system.

\[
\min_{\mathbf{H}} J = \min_{\mathbf{H}} \frac{1}{2T} \int_{t_i}^{t_f} \left[\mathbf{e}^T(H) \mathbf{K} \mathbf{e}(H) + \mathbf{u}^T \mathbf{G} \mathbf{u} \right] dt
\]

- **Constraints** of the NLP: equation of inverse dynamics of the MBS.

\[
\dot{\mathbf{H}}_I = \mathbf{H}_I \ddot{\mathbf{v}}_I \quad \text{Compatibility equation}
\]

\[
\mathbf{M} \dot{\mathbf{v}} + \mathbf{g}(\mathbf{H}, \mathbf{v}) + \mathbf{B}^T \lambda = \mathbf{A} \mathbf{u} \quad \text{Equation of motion}
\]

\[
\Phi(\mathbf{H}) = 0 \quad \text{Kinematic constraints}
\]

\[
\mathbf{y}_{\text{eff}}(\mathbf{H}) - \mathbf{y}_{\text{presc}}(t) = 0 \quad \text{“Servo” constraints}
\]
Method

Use of the direct transcription method:
• **Discretization** of all states into “s” time steps (of size “h”).
• Optimization variables at each time steps “k” (k = 1, ..., s).
• Optimum after “n” iterations.
Method

Resulting **discrete form** of the NLP problem:

- **Objective function** J:

$$
\min_{H^1, \ldots, H^s} J = \min_{H^1, \ldots, H^s} \frac{1}{2T} \sum_{k=1}^{s} [\epsilon^{k,T}(H^k)K\epsilon^k(H^k) + u^{k,T}Gu^k]\eta
$$

- **Constraints of the NLP**:

\[
\begin{align*}
\dot{H}^k_I - H^k_I \tilde{v}_I^k &= 0 \\
M^k \ddot{v}^k + g(H^k, v^k) + B^k,T \lambda^k - Au^k &= 0 \\
\Phi(H^k) &= 0 \\
y_{eff}(H^k) - y_{presc}(t^k) &= 0
\end{align*}
\]
Method

Need for **additional time constraints** between time steps:

- Standard methods (e.g., Euler-implicit type) are **not acceptable**:
 \[H_{I}^{k+1} = H_{I}^{k} + h\dot{H}_{I}^{k+1} \notin SE(3) \]

- On \(SE(3) \), exponential mapping can be used:
 \[H_{I}^{k+1} = H_{I}^{k} \exp_{SE(3)}(\widetilde{\Delta Q}_{I}^{k}) \in SE(3) \]

where \(\Delta Q^{k} = (\Delta Q_{1}^{k}, ..., \Delta Q_{N}^{k}) \) is the **change in configuration between two consecutive times** \(k \) and \(k + 1 \).
Method

• Possible set of optimization variables would be
 \[(H^1, v^1, \dot{v}^1, \lambda^1, u^1, ..., H^s, v^s, \dot{v}^s, \lambda^s, u^s)\]
 with \(H \in SE(3)\), which can not be dealt with by classical NLP solvers.

• Alternative: use of a new vector \(\Delta q = (\Delta q_1, ..., \Delta q_N)\) which is the change in configuration between the initial guess states and the optimized states, through the exponential mapping

\[H^k_{I,n} = H^k_{I,0} \exp_{SE(3)}(\Delta q^k_{I,n})\]

• At the end, the optimization variables are

\[x = (\Delta q^1, v^1, \dot{v}^1, \lambda^1, u^1, ..., \Delta q^s, v^s, \dot{v}^s, \lambda^s, u^s)\]
Method

- **Important remark:**

 Difference between “time” related mapping

 \[H_{I}^{k+1} = H_{I}^{k} \exp_{SE(3)}(\Delta Q_{I}^{k}) \]

 and “iteration” related mapping

 \[H_{I,n}^{k} = H_{I,0}^{k} \exp_{SE(3)}(\Delta q_{I,n}^{k}) \]
Computation

• NLP problem is very **large but sparse**.

• Tests using NLP solvers such as KNITRO, IPOPT and **FMINCON**.

• Use of the "**interior point**" algorithm with large scale and sparse options and **analytical gradients are provided**.
Results – Serial robot

• Serial robot with 3 dof.
• Made up of 2 links:
 1. **Rigid link:**
 Alu, 1 x 0,02 x 0,02 m.
 2. **Flexible link** (4 beams):
 Alu, 1 x 0,005 x 0,005 m.
• **Point mass** at the end-effector (0,1 kg).
• Trajectory: **half-circle** with 0,5 m radius in the **yz plan**, to be completed in 1 s.
• Analysis: 1st unstable pole at 8 Hz.
Results – Serial robot

s = 300 (h = 0.005s, 70k var.), 20 min. and RMS error from 5.2% to 0.1%

Commands before and after optimization

Actual trajectories with both commands
Results – Parallel robot

- Parallel robot with **3 dof**.
- Made up of 2 links:
 1. **Rigid links** (3):
 - Alu, 0.25 x 0.02 x 0.02 m.
 2. **Flexible links** (3 x 4 beams):
 - Alu, 0.51 x 0.005 x 0.005 m.
- **Point mass** at the end-effector (0.1 kg).
- Trajectory: **half-circle** with 0.1 m radius in the **xy plan**, to be completed in **1 s**.
- Analysis: **1st unstable pole** at 14 Hz.
Results – Parallel robot

\[s = 150 \ (h = 0.01s, \ 110k \ var.), \ 40 \ min. \ and \ RMS \ error \ from \ 2\% \ to \ 0.7\% \]

![Graph showing commands before and after optimization](image1)

![Graph showing actual trajectories with both commands](image2)

Commands before and after optimization

Actual trajectories with both commands
Summary

• **In this work:**
 • Use of a \textit{SE}(3) formalism to reduce non-linearity in the equations of 3D flexible MBS problem.
 • Formulation of the inverse dynamics problem as an \textit{optimal control} problem.
 • New \textit{vectorial variable} is introduced to solve the optimization with classical NLP tools.
 • Method successful for 3D flexible \textit{serial} and \textit{parallel} systems.

• **On going work and perspectives:**
 • Feed-forward solution on \textit{robotic testbed} (adding feedback).
 • Consider compliant joints.
 • Consider contact problems with end-effector.
Thank you for your attention.
Modeling of flexible link robots for end-effector trajectory tracking tasks

Arthur Lismonde1, Valentin Sonneville2 and Olivier Brüls1

1University of Liège, Belgium
Department of Aerospace and Mechanical engineering

2University of Maryland, USA
Aerospace engineering