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Abstract

In the design of micro-electromechanical systems, which require a high quality factor, the
dissipation mechanisms such as the thermoelastic damping have to be considered. In order
to assess the thermoelastic influence on the behavior of vibrating structures, analytical mod-
els may be used for simple configurations under very restrictive assumptions. In order to
study more complex structures, the finite element method may be used. Two simple cases
for which analytical models exist are investigated in this paper. An oscillating clamped-
clamped beam and a vibrating bar are modelled using thermoelastic finite elements. The
analytical and finite element analyses show that the thermoelastic coupling implies a nat-
ural frequency shift, an amplitude attenuation, a difference of phase between the thermal
and mechanical degrees of freedom and influences the quality factor of the resonating system.
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1 Introduction

In order to design resonant micro-systems with high quality factors, dissipation mechanisms
have to be minimized. Air damping, anchor damping, electronics damping and thermoelastic
damping have been identified as important loss mechanisms in micro-resonators [1]. However,
few predictive damping modeling techniques exist. This may be explained by the wide variety of
damping sources. Sorting out the various mechanisms is not straightforward. External sources
of damping, such as dissipation at interfaces or induced by the surrounding environment, are
difficult to model. However, these external sources of dissipation can be avoided or at least
decreased by modifying the system. For example, air damping can be eliminated by packaging
the mechanism under vacuum. Thermoelastic damping, which may be classified as an internal
source of dissipation, may be predicted analytically [2-4]. However, the models found in the lit-
erature are based on very restrictive assumptions and can only be used for simple configurations.
In order to investigate structures of more complex geometry, a numerical approach is required.
The first part of this paper presents the analytical models. Then, the finite element formulation
for thermoelastic problems is exposed. Finally, the developed F.E. formulation is validated on
two simple examples, for which analytical solutions are available. The first example considers
the axial vibrations of a bar, while the second one studies the vibrations of a beam in flexion.
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2 Analytical models

Physically, thermoelastic damping represents the loss in energy from an entropy rise caused by
the coupling between heat transfer and strain rate. Indeed, in isotropic solids with a positive
thermal expansion coefficient, an increase of temperature creates a dilation and inversely, a
decrease of temperature produces a compression. Similarly, a dilation lowers the temperature
and a compression raises the temperature. Therefore, when a thermoelastic solid is set in
motion, it is taken out of equilibrium, having an excess of kinetic and potential energy. The
coupling between the strain and the temperature fields induces an energy dissipation mechanism
which causes the system to return to its static equilibrium. The relaxation of the thermoelastic
solid is achieved through the irreversible flow of heat driven by local temperature gradients
that are generated by the strain field. This dissipation effect is not always measurable. When
the vibration frequency is much lower than the relaxation rate, the solid is always in thermal
equilibrium and the vibrations are isothermal. On the other hand, when the vibration frequency
is much higher than the relaxation rate, the system has no time to relax and the vibrations are
adiabatic. Hence, it is only when the vibration frequency is of the order of the relaxation rate
that the energy loss becomes appreciable.

2.1 Zener’s standard model

Zener [4] has developped expressions to approximate the thermoelastic damping. His theory
is based on an extension of Hooke’s law involving stress σ, strain ε as well as their first time
derivatives σ̇ and ε̇ [4]:

σ + τεσ̇ = ER(ε + τσ ε̇) (2.1)

This model is called the ”Standard Anelastic Solid” model. The three parameters τε, τσ and
ER have the following physical interpretation:

• τε is the relaxation time at which the stress relaxes exponentially when the strain is kept
constant.

• τσ is the relaxation time at which the strain relaxes exponentially when the stress is kept
constant.

• ER is the elastic modulus after all relaxations occurred.

The unrelaxed value of the elastic modulus EU can be defined using the three previous parame-
ters:

EU = ER
τσ

τε
(2.2)

In order to analyze the vibration characteristics of the solid, the stress and the strain are
considered to vary harmonically at the natural pulsation ωn. The dissipation in the solid can
be measured by Q−1, the inverse of the quality factor of the resonating beam, which is defined
as the fraction of energy lost per cycle:

Q−1 = ∆E
ωnτ

1 + (ωnτ)2
(2.3)

where τ =
√

τστε is the effective relaxation time and ∆E =
√

τσ
τε
−

√
τε
τσ

= EU−ER√
EREU

is the relax-
ation strength.



Thus, the dissipation exhibits a Lorentzian behavior as a function of ωnτ with a maximum
value of ∆E/2 when ωnτ = 1. This agrees with the previous qualitative explanation. When the
frequency is small compared to the relaxation rate, ωnτ << 1 and the thermoelastic dissipation
is negligible as the oscillations are isothermal. On the other hand, when the frequency is large
compared to the relaxation rate, ωnτ >> 1 and the oscillations are adiabatic. Therefore, it is
only when the frequency is of the order of the relaxation rate, i.e. ωnτ ≈ 1, that the thermoelas-
tic dissipation takes importance.

For a beam in flexion, assuming that the relaxation occurs only through the first transverse
conduction mode and that the thermoelastic natural frequency ωn can be approximated by the
isothermal frequency ωo,n, the inverse of the quality factor for a thermoelastic flexural beam
resonator can be expressed as follows

Q−1 =
Eα2To

Cv

2ζ2/π2

1 + (2ζ2/π2)2
(2.4)

where E is the Young modulus, α is the heat expansion coefficient, Cv is the heat capacity
at constant volume, To is the reference temperature and ζ is a dimensionless parameter which
depends on the thermal diffusivity χ = κ/Cv where κ is the thermal conductivity, the beam
thickness b and the isothermal frequency ωo,n: ζ = b

√
ωo,n

2χ .

The quality factor of a bar in axial vibrations has the same expression as equation (2.4) if it is
assumed that the relaxation occurs only through the first longitudinal thermal mode and that
the thermoelastic frequency can be approximated by its isothermal value. However, for a bar in
axial vibrations, b is replaced by l, which is the bar length.

According to equation (2.4), the influence of the thermoelastic coupling on the quality factor
is maximum when 2ζ2/π2 = 1. Hence, the importance of the thermoelastic effects depends on
the material thermal and mechanical properties as well as on the dimensions of the structure.
It can be shown that for a clamped-clamped beam in silicon, the thermoelastic damping is
maximum when the beam thickness and length satisfy the equation: b3/l2 = 1.8 10−8 m. When
b3/l2 >> 1.8 10−8 m, the beam is in adiabatic regime and inversely, when b3/l2 << 1.8 10−8

m, the beam is in isothermal regime. On the other hand, for a bar in silicon fixed at its center
and free at its ends, the thermoelastic effects are maximum when its length is 3.4 10−8 m. In
practice, bars are usually largely longer than 3.4 10−8 m so that they are in adiabatic regime.

2.2 Solutions of the thermoelastic equations for harmonic vibrations

The effects of the thermoelastic coupling do not only affect the quality factor but also influence
the resonance frequency. Although the change in the resonance frequency induced by the ther-
moelastic coupling can be neglected in most cases, it has to be taken into account in the design of
frequency-agile applications, e.g. micro-resonators. Zener’s theory [3], exposed previously, does
not allow to estimate the frequency shift induced by thermoelastic effects. The resolution of the
equations of linear thermoelasticity allows to assess the expression of the complex thermoelastic
pulsation ωn. The real part <(ωn) gives the new resonant pulsation of the beam in the presence
of thermoelastic coupling. The frequency shift can be calculated by (<(ωn) − ωo,n)/ωo,n. The
imaginary part =(ωn) induces an amplitude attenuation of the vibration, which is quantified by
=(ωn)/ωo,n.



Assuming that there is no longitudinal thermal relaxation, Lifshitz and Roukes [2] obtained an
expression for the complex thermoelastic pulsation for the flexion of a rectangular beam:

<(ωn) = ωo,n

[
1 +

∆E

2

(
1− 6

ζ3

sinh ζ − sin ζ

cosh ζ + cos ζ

)]
(2.5)

=(ωn) = ωo,n
∆E

2

(
6
ζ3

sinh ζ + sin ζ

cosh ζ + cos ζ
− 6

ζ2

)
(2.6)

Similarly, the complex pulsation of an axially vibrating bar can be assessed from the linear
thermoelastic equations. Assuming that the mechanical and thermal modes are not modified
due to the thermoelastic coupling, the thermoelastic pulsation of a bar fixed at its center and
free at both ends satisfies the following equation:

− ρ

E

(
l

π

)2

iω3
n −

ρ

E

(
l

π

)4 κ

Cv
ω2

n +

(
1 +

Toα
2E

Cv

)
iωn +

κ

Cv

(
l

π

)2

= 0 (2.7)

It should be noted that the thermal mode used considers that the temperature is fixed at both
ends, which is in agreement with the mechanical boundary conditions.

The quality factor can be expressed in terms of the imaginary and real parts of the frequency.
The inverse of the quality factor, which is the fraction of energy lost per radian, is given by

Q−1 =
2 |=(ωn)|√<2(ωn) + =2(ωn)

(2.8)

≈ 2
∣∣∣∣
=(ωn)
<(ωn)

∣∣∣∣ (2.9)

as the imaginary part of the resonant pulsation can be considered to be small compared to the
real part.

3 Finite Element Formulation

The analytical models are based on very restrictive assumptions and can only be used for simple
configurations such as a beam in flexion or a bar in extension. In order to investigate structures
of more complex geometry, a numerical approach is required. The finite element method is a
powerful technique, which provides solutions to many complex problems and is widely used in
engineering design.

The thermoelastic finite element formulation can be derived from Hamilton’s variational prin-
ciple in which both mechanical and thermal degrees of freedom are considered simultaneously.
The displacement field u and the temperature increment θ are related to the corresponding node
values uu and uθ by the mean of shape function matrices Nu and Nθ

u = Nuuu (3.10)
θ = Nθuθ (3.11)

Therefore, the strain field ε and the thermal field e are related to the vectors of degrees of
freedom through the shape function derivative matrices Bu and Bθ

ε = DNuuu = Buuu (3.12)
e = −∇Nθuθ = Bθuθ (3.13)



where ∇ is the gradient operator and D is the derivation operator defined so that ε = Du
according to the displacement compatibility equation. Hence, the dynamic equilibrium equation
governing the thermoelastic problem is:

(
Muu 0

0 0

)(
üu

üθ

)
+

(
0 0

Cθu Cθθ

)(
u̇u

u̇θ

)
+

+
(

Kuu Kuθ

0 Kθθ

)(
uu

uθ

)
=

(
Fu

Fθ

)
(3.14)

where Muu is the mass matrix, Cθu is the damping matrix due to the thermo-mechanical
coupling effect and Cθθ is the damping matrix due to the thermal field. The matrix Kuθ is the
stiffness matrix due to the thermo-mechanical coupling. Matrices Kuu and Kθθ are the stiffness
matrices due to mechanical and thermal fields, respectively. Vectors Fu and Fθ are the force
vectors due to mechanical and thermal fields, respectively.

As explained in section 2, the thermoelastic coupling modifies the quality factor of the response,
induces both damping and resonance frequency shift. Equation (3.14) takes the general form

Mq̈ + Cq̇ + Kq = 0 (3.15)

where C and K are non-symmetric matrices. This problem may be transformed into a linear
problem of twice the size through a linearization procedure. Partitioning the eigenvectors into
thermal and mechanical degrees of freedom and substituting the time derivative of the thermal
degrees of freedom by their values, the eigenvalue problem to solve may be rewritten in the form



−Kuu −Kuθ 0

0 −Kθθ 0
0 0 Muu







xu

xθ

ẋu


 = λ




0 0 Muu

Cθu Cθθ 0
Muu 0 0







xu

xθ

ẋu


 (3.16)

If the number of mechanical and thermal degrees of freedom is denoted nu and nθ, respectively,
the eigenvalue problem (3.16) has 2nu conjugate complex eigenvalues and nθ real eigenvalues.
The 2nu eigenvalues correspond to the mechanical eigenfrequencies and the nθ ones to the ther-
mal eigenfrequencies.

Based on the thermoelastic finite element formulation, bar and beam elements have been de-
veloped. The degrees of freedom of the bar element correspond to the temperature increment
and to the axial displacement at the end nodes. The beam elements are based on the Euler-
Bernoulli assumption and have two thermal and two mechanical degrees of freedom per node.
The thermal degrees of freedom correspond to the temperature increment and the transverse
thermal gradient at the neutral axis of the beam. These elements assume that the transverse
temperature distribution is a cubic function of the thickness and that the upper and lower sur-
faces are thermally insulated. Both bar and beam elements use linear shape functions for the
longitudinal variation of both the displacement and the temperature.

4 Applications

The finite element formulation developed in this work has been validated on two simple examples,
for which analytical solutions are available. The first example considers the axial vibrations of a
bar, which is fixed at its center and free at its ends; moreover, the temperature at its ends is fixed
to the ambient temperature. The second example consists in a vibrating clamped-clamped beam
in which the transverse thermoelastic relaxation is studied. The thermal boundary conditions



impose a fixed temperature at the ends of the neutral fibre of the beam. Moreover, the upper
and lower surfaces are considered to be thermally insulated as assumed in the thermoelastic
beam finite element formulation. The material considered is silicon, as it is largely used in
micro-technology. Its thermal and mechanical properties are: E = 1.6581011 N/m2, ν = 0.2,
ρ = 2300 kg/m3, cv = 711 J/kgK, α = 2.510−6 K−1 and κ = 170 Wm−1K−1.

4.1 Axial vibration of a bar

As discussed in section 2, thermoelastic damping is maximum when the length of the bar is equal
to 3.4 10−8m. In practice, this dimension is too small. This is the reason why thermoelastic
effects are studied here for bars whose length varies from 0.5 µm to 1000 µm.
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Figure 4.1: Variation of the frequency shift versus the bar length.
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Figure 4.2: Variation of the amplitude attenuation versus the bar length.



Figures 4.1 and 4.2 represent the variation of the frequency shift and the amplitude attenuation
versus the bar length. When the length is larger than 5 µm, the frequency shift remains con-
stant and the bar can be considered to be in adiabatic regime. Moreover, for large bar lengths,
the amplitude attenuation is less than 10−7, which is negligible in most applications. Figure
4.3 shows the variation of the quality factor for different bar lengths. It is observed that the
thermoelastic quality factor varies linearly with the bar length. All these results show that the
analytical models and the finite element simulations are in good agreement.
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Figure 4.3: Variation of the inverse of the quality factor of the axial vibration of a beam.

4.2 Bending of a clamped-clamped beam

As stated by the analytical models, the thermoelastic effects on the behavior of an oscillating
beam depend on the aspect ratio of the beam. Indeed, the thermoelastic effects are maximum
when h3/l2 = 1.8 10−8m. In this example, they are investigated for a beam of 90 µm length
and for different beam thicknesses. According to the analytical model, for a beam length of 90
µm, the thickness for which the thermoelastic damping is maximum is 5.3 µm. Therefore, the
beam thickness is varied from 3 µm to 9 µm, while the beam width is fixed to 4.5 µm.

Figure 4.4 represents the variation of the frequency shift and the amplitude attenuation. It is
observed that the frequency shift increases with the thickness of the beam. For small beam
thicknesses, the frequency shift is nought, i.e. the beam behavior is isothermal. When the beam
thickness becomes large enough, the slope decreases so that the frequency shift tends to reach
an upper limit of 7.5 10−5, which is the frequency shift between the adiabatic and isothermal
values. The amplitude attenuation presents a maximum value of 4 10−5 for a beam thickness
of 5.3 µm, i.e. the beam thickness for which the thermoelastic effects are maximum according
to the analytical models. Figure 4.5 shows the variation of the inverse of the quality factor
Q−1 =

∣∣∣2=(ωn)
<(ωn)

∣∣∣ with the thickness of the beam. The inverse of the quality factor reaches a
maximum of 7.9 10−5 for a beam thickness of 5.3 µm as predicted by the analytical model.



Thermoelasticity introduces complex eigenfrequencies and complex eigenmodes. Thermal and
mechanical degrees of freedom are found to be out of phase. It means that the maximum of the
temperature increment does not occur when the deformation is maximum. This is due to the
relaxation which occurs through heat conduction. The difference of phase between the thermal
and mechanical degrees of freedom depends on the magnitude of the thermoelastic effects as
shown in figure 4.6.
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The analytical and finite element models gives similar results even if the finite element results
are smaller than the analytical ones. However, the beam thickness for which the thermoelastic
effects are maximum is the same in both approaches. The difference between the analytical



and finite element results can be explained by the different inherent assumptions on which they
are based. Indeed, the finite element model assumes that the tranverse temperature variation
is a cubic function while in the analytical formulation, the thermal modes are trigonometric
functions when they are not influenced by thermoelastic coupling. Another difference lies in
the fact that the analytical models neglect the longitudinal thermal relaxation. However, this
assumption is not too restrictive as the longitudinal thermoelastic effects are negligible for a
length of 90 µm.
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Figure 4.6: Variation of the difference of phase between the thermal and mechanical degrees of
freedom.

5 Conclusion

In order to assess the thermoelastic influence on the behavior of micro-structures, thermoelas-
tic finite element simulations were carried out on two simple cases for which analytical results
are available. The analytical and finite element models give similar results. They show that
thermoelastic coupling implies a shift in the natural frequency, an amplitude attenuation and
modifies the quality factor of the resonant device. Moreover, the finite element analysis allows
to quantify the difference of phase between the thermal and mechanical degrees of freedom. It
is also shown that the importance of the thermoelastic effect depends on the dimensions of the
micro-structure (e.g. length of the bar).

The development of thermoelastic finite elements will allow to consider the study of complex
structures in the future and to quantify the influence of parameters such as the thermal boundary
conditions on the quality factor of micro-resonators.
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