# Part III ACTUARIAL APPLICATIONS

- 7. Specific tools
- 8. Risk process
- 9. Various topics



Sometimes,

- the premium is paid by a taker of insurance (≠ insured person)
- the intervention is paid to a beneficiary
   (≠ insured person)
- b) Randomness is present in any domain of management (e.g. in finance), and the manager try to eliminate it

Two domains where randomness is the basis of human activity

- gambling
   (consumer pays to play against the hazard)
   insurance
- (consumer pays to get rid off the hazard)

## c) Classification life vs non-life

| Nb of claims         | Intervention   |                     | Contract          |          | Period      |          |
|----------------------|----------------|---------------------|-------------------|----------|-------------|----------|
| any positive integer | (claim amount) | unknown             | standard          |          | 1 year      | Non-life |
| 0 or 1               | the contract)  | generally known (in | (function of age) | specific | (very) long | Life     |

d) Here: non-life insurance, even if some topics are also adapted to life insurance

### Chapter 7

## Specific tools

- Convolution
- Random sums
- Counting process
- Markov chains

### Convolution

- Definition
- For the m.g.f.
- For discrete r.v.
- Case of positive integer r.v.
- o Case of Poisson r.v.
- For the c.d.f.
- For continuous r.v.
- Generalization

#### **Definition**

The problem is to determine the probability distribution of the sum of independent r.v.

### For the m.g.f.

If X and Y are independent r.v.,

$$m_{X+Y}(t) = m_X(t) \cdot m_Y(t)$$

Proof

$$E(e^{t(X+Y)}) = E(e^{tX} \cdot e^{tY})$$
$$= E(e^{tX}) \cdot E(e^{tY})$$

## For discrete r.v.

## Case of positive integer r.v.

Consider two independent r.v.

$$X \sim \begin{pmatrix} 0 & 1 & \dots & n & \dots \\ p_0 & p_1 & \dots & p_n & \dots \end{pmatrix}$$

$$Y \sim \begin{pmatrix} 0 & 1 & \dots & n & \dots \\ q_0 & q_1 & \dots & q_n & \dots \end{pmatrix}$$

For any  $k \in \mathbb{N}$ ,

$$Pr[X + Y = k] = \sum_{j=0}^{k} Pr([X = j] \cap [Y = k - j])$$

$$= \sum_{j=0}^{k} Pr[X = j] \cdot Pr[Y = k - j]$$

$$= \sum_{j=0}^{k} p_j q_{k-j}$$

So,

 $X_1 + X_2 \sim \mathcal{P}(\lambda_1 + \lambda_2)$ 

## Case of Poisson r.v.

Consider two independent Poisson r.v.

$$X_i \sim \mathcal{P}(\lambda_i)$$
  $i = 1$ ,

For any  $k \in \mathbb{N}$ ,

$$\Pr[X_1 + X_2 = k] = \sum_{j=0}^{k} e^{-\lambda_1} \frac{\lambda_1^j}{j!} \cdot e^{-\lambda_2} \frac{\lambda_2^{k-j}}{(k-j)!}$$

$$= e^{-(\lambda_1 + \lambda_2)} \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} \lambda_1^j \lambda_2^{k-j}$$

$$= e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^k}{k!}$$

### For the c.d.f.

$$F_{X+Y}(t) = \Pr[X + Y \le t]$$

$$= E(\mathbf{1}_{[X+Y \le t]})$$

$$= E(E(\mathbf{1}_{[X+Y \le t]}|X))$$

But, by (R7),

$$E(\mathbf{1}_{[X+Y\leq t]}|X) = E(E_Y(\mathbf{1}_{[Y\leq t-X]})|X)$$

so that,

$$F_{X+Y}(t) = E\left(E_Y(\mathbf{1}_{[Y \le t-X]})\right)$$
$$= E(F_Y(t-X))$$

$$F_{X+Y}(t) = \int_{-\infty}^{+\infty} F_Y(t-x) dF_X(x)$$
$$= \int_{-\infty}^{+\infty} F_X(t-y) dF_Y(y)$$
$$= (F_X * F_Y)(t)$$

## For continuous r.v.

$$F_{X+Y}(t) = \int_{-\infty}^{+\infty} F_Y(t-x) f_X(x) dx$$
  
= 
$$\int_{-\infty}^{+\infty} dx f_X(x) \int_{-\infty}^{t-x} f_Y(y) dy$$

and, by derivation w.r.t. t,

$$f_{X+Y}(t) = \int_{-\infty}^{+\infty} f_X(x) f_Y(t-x) dx$$
$$= \int_{-\infty}^{+\infty} f_X(t-y) f_Y(y) dy$$
$$= (f_X * f_Y)(t)$$

In particular, if the two r.v. are positive,

$$(f_X * f_Y)(t) = \int_0^t f_X(x) f_Y(t - x) \, dx$$
$$= \int_0^t f_X(t - y) f_Y(y) \, dy$$

## Generalization

For more than two r.v.,

$$F_{X+Y+Z}(t) = F_{(X+Y)+Z}(t) = F_{X+(Y+Z)}(t) = (F_X * F_Y * F_Z)(t)$$

and, if  $\,X_1,X_2,...,X_n\,$  are i.i.d., then

$$F_{X_1 + \dots + X_n}(t) = (F_{X_1} * \dots * F_{X_n})(t) = F_X^{*n}(t)$$

## Random sums

- Definition
- Cumulative distribution function
- Moment generating function
- Moments
- Expectation
- o Variance

#### **Definition**

A random sum is a sum of r.v. with a random number of terms

Consider a sequence of i.i.d. r.v.  $X_1, ..., X_n, ...$  and a positive integer r.v.  $N_i$  independent of the  $X_k$ 's

$$S = \sum_{k=1}^{N} X_k$$

Illustration : if the random situation has a finite number of possible outcomes  $\Omega=\{\omega_1,\omega_2,\omega_3\}$  and if the probability law of N and the  $X_k$ 's is given by

| $\omega_3$  | $\omega_2$  | $\omega_1$ |       |
|-------------|-------------|------------|-------|
| 3           | 2           | 1          | N     |
| $\chi_{13}$ | $\chi_{12}$ | $x_{11}$   | $X_1$ |
| $\chi_{23}$ | $\chi_{22}$ | $x_{21}$   | $X_2$ |
| $\chi_{33}$ | $x_{32}$    | $x_{31}$   | $X_3$ |
| $\chi_{43}$ | $\chi_{42}$ | $x_{41}$   | $X_4$ |
| :           | :           | :          | :     |

$$S(\omega_1) = x_{11}$$

$$S(\omega_2) = x_{12} + x_{22}$$

$$S(\omega_3) = x_{13} + x_{23} + x_{33}$$

#### Example

- a) Tossing 2 coins (N = number of tails)
- b) Throwing N dice
- $\rightarrow S = \text{sum of the points of the dice}$

$$N \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix} \quad X_k \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

 $S[\Omega] = \{0,1,2,...,12\}$ 

$$\Pr[S = 0] = \Pr[N = 0] = \frac{1}{4}$$

$$\Pr[S = 1] = \Pr([N = 1] \cap [X_1 = 1]) = \frac{1}{2} \cdot \frac{1}{6}$$

$$\Pr[S = 2] = \Pr([N = 1] \cap [X_1 = 2])$$

$$+ \Pr([N = 2] \cap [X_1 = 1] \cap [X_2 = 1])$$

$$= \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{6} \cdot \frac{1}{6}$$

$$S \sim \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 36 & 12 & 13 & 14 & 15 & 16 & 17 & 6 & 5 & 4 & 3 & 2 & 1 \\ 144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 \end{pmatrix}$$

$$E(S) = \frac{7}{2} \qquad var(S) = \frac{217}{24}$$

## **Cumulative distribution function**

$$F_{S}(t) = \Pr[X_{1} + \dots + X_{N} \leq t]$$

$$= E\left(\mathbf{1}_{[X_{1} + \dots + X_{N} \leq t]}\right)$$

$$= E\left(E\left(\mathbf{1}_{[X_{1} + \dots + X_{N} \leq t]} | N\right)\right)$$

But, by (R7),

$$E(\mathbf{1}_{[X_1 + \dots + X_N \le t]} | N) = E(E_X(\mathbf{1}_{[X_1 + \dots + X_N \le t]}) | N)$$
  
=  $F_X^{*N}(t)$ 

so that

$$F_S(t) = E\left(F_X^{*N}(t)\right)$$

Then,

$$F_S(t) = \sum_{k=0}^{\infty} F_X^{*k}(t) \cdot \Pr[N=k]$$

## **Moment generating function**

$$m_{S}(t) = E(e^{t(X_{1}+\cdots+X_{N})})$$

$$= E(E(e^{t(X_{1}+\cdots+X_{N})}|N))$$

$$= E(m_{X_{1}+\cdots+X_{N}}(t))$$

$$= E(m_{X}^{N}(t))$$

$$= E(e^{N \cdot \ln m_{X}(t)})$$

$$= m_{N}(\ln m_{X}(t))$$

#### **Moments**

#### **Expectation**

$$E(S) = E(E(X_1 + \dots + X_N | N))$$
  
=  $E(N \cdot E(X))$   
=  $E(N) \cdot E(X)$ 

#### Variance

$$var(S) = E(var(S|N)) + var(E(S|N))$$
$$= E(N \cdot var(X)) + var(N \cdot E(X))$$
$$= E(N) \cdot var(X) + var(N) \cdot E^{2}(X)$$

## **Counting process**

- Counting process
- Poisson Process
- Definition
- o Probability distribution
- o Time between 2 occurrences

## **Counting process**

= "pure jump process"

Let us assume that "events" occur during time (accident claims for an insurance portfolio e.g.)



= representation of one outcome ( $\omega$ )

 $au_k = ext{epoch of the } k ext{-th event}$ 

to time t (in the example,  $N_{t_0} = 5$ ) Let  $N_t$  denote the number of occurred events up

Sample path:



## Poisson process

Notation

$$f(h) = o(h) \iff \lim_{h \to 0} \frac{f(h)}{h} = 0$$

(f(h)) tends to  $\,0\,$  more rapidly than  $\,h\,$  itself)

#### **Definition**

such that Let us consider a counting process  $\{N_t : t \ge 0\}$ 

$$- N_0 = 0$$

-  $\left(N_{t}
ight)$  has independent and stationary increments

- No multiple occurrences

$$r[N_{t+h} - N_t \ge 2] = o(h)$$

 $\Pr[N_{t+h} - N_t \ge 2] = o(h)$  Occurring with rate  $\lambda$  (> 0)

$$\Pr[N_{t+h} - N_t = 1] = \lambda h + o(h)$$

Consequence:

$$\Pr[N_{t+h} - N_t = 0] = 1 - \lambda h + o(h)$$

## **Probability distribution**

For n = 0, 1, 2, ...

$$p_n(t) = \Pr[N_t = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

Proof (by induction)

$$p_0(t+h) = p_0(t) \cdot \Pr[N_{t+h} - N_t = 0]$$
  
=  $p_0(t) \cdot (1 - \lambda h + o(h))$ 

$$\frac{p_0(t+h) - p_0(t)}{h} = -\lambda p_0(t) + \frac{o(h)}{h}$$

$$p_0'(t) = -\lambda p_0(t)$$

$$p_0(t) = e^{-\lambda t} \cdot C$$

$$p_0(t) = e^{-\lambda t}$$

• 
$$p_n(t+h) = p_n(t) \cdot \Pr[N_{t+h} - N_t = 0]$$
  
+  $p_{n-1}(t) \cdot \Pr[N_{t+h} - N_t = 1]$   
+  $\sum_{k=2}^{\infty} p_{n-k}(t) \cdot \Pr[N_{t+h} - N_t = k]$   
=  $p_n(t) \cdot (1 - \lambda h + o(h))$   
+  $p_{n-1}(t) \cdot (\lambda h + o(h)) + o(h)$ 

$$\frac{p_n(t+h) - p_n(t)}{h} = -\lambda p_n(t) + \lambda p_{n-1}(t) + \frac{o(h)}{h}$$

$$p'_n(t) = -\lambda p_n(t) + \lambda \cdot e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}$$

$$e^{\lambda t} \cdot (p'_n(t) + \lambda p_n(t)) = \lambda \cdot \frac{(\lambda t)^{n-1}}{(n-1)!}$$
$$= (e^{\lambda t} p_n(t))'$$

$$\int_0^t \left( e^{\lambda s} p_n(s) \right)' ds = \frac{\lambda^n}{(n-1)!} \int_0^t s^{n-1} ds$$

$$e^{\lambda t}p_n(t) - 0 = \frac{\lambda^n}{(n-1)!} \cdot \frac{t^n}{n} = \frac{(\lambda t)^n}{n!}$$

## Time between 2 occurrences

$$\begin{aligned} \Pr[t < \tau_n &\leq t + h] \\ &= F_{\tau_n}(t+h) - F_{\tau_n}(t) \\ &= p_{n-1}(t) \cdot \Pr[N_{t+h} - N_t \geq 1] \\ &= p_{n-1}(t) \cdot (\lambda h + o(h)) \\ &= p_{n-1}(t) \cdot \lambda h + o(h) \end{aligned}$$

$$\frac{F_{\tau_n}(t+h) - F_{\tau_n}(t)}{h} = \lambda p_{n-1}(t) + \frac{o(h)}{h}$$

$$f_{\tau_n}(t) = \lambda p_{n-1}(t) = \lambda^n e^{-\lambda t} \frac{t^{n-1}}{(n-1)!}$$

$$m_{\tau_n}(t) = \int_0^{+\infty} e^{tx} f_{\tau_n}(x) dx$$

$$= \lambda^n \int_0^{+\infty} e^{(t-\lambda)x} \frac{x^{n-1}}{(n-1)!} dx$$

$$= \lambda^n \cdot I_{n-1}$$

$$(t < \lambda)$$

$$I_{n-1} = \int_{0}^{+\infty} \left(\frac{e^{(t-\lambda)x}}{t-\lambda}\right)' \frac{x^{n-1}}{(n-1)!} dx$$

$$= \left[\frac{e^{(t-\lambda)x}}{t-\lambda} \cdot \frac{x^{n-1}}{(n-1)!}\right]_{0}^{+\infty}$$

$$= \frac{1}{t-\lambda} \cdot I_{n-2}$$

$$= \frac{1}{\lambda-t} \cdot I_{n-2}$$

$$= \frac{1}{(\lambda-t)^{2}} \cdot I_{n-3}$$

$$= \cdots$$

$$= \frac{1}{(\lambda-t)^{n-1}} \cdot I_{0}$$

$$= \frac{1}{(\lambda-t)^{n-1}} \int_{0}^{+\infty} e^{(t-\lambda)x} dx$$

$$= \frac{1}{(\lambda-t)^{n}}$$
So,
$$m_{\tau_{n}}(t) = m_{T_{1}+\cdots+T_{n}}(t) = \left(\frac{\lambda}{\lambda-t}\right)^{n}$$

 $m_{\tau_n}(t)=m_{T_1+\cdots+T_n}(t)=\left(\frac{1}{\lambda}\right)$  In particular,  $m_{T_1}(t)=\frac{\lambda}{\lambda-t}$  and

$$m_{T_1 + \dots + T_n}(t) = \left(m_{T_1}(t)\right)^n$$

Then,  $T_1, T_2, \dots$  are i.i.d. r.v. with

$$f_T(t) = f_{\tau_1}(t) = \lambda e^{-\lambda t}$$
  $(t > 0)$ 

= exponential distribution with parameter  $\lambda$ 

$$E(T) = \frac{1}{\lambda}$$
  $var(T) = \frac{1}{\lambda^2}$   $\gamma_1 = 2$   $\gamma_2 = 6$ 



Note: a sequence of i.i.d. r.v. representing successive durations is a renewal process

A Poisson process generate an exponential renewal point process, and reciprocally

## Markov chains

- Stochastic matrices
- Homogeneous Markov chains
- Definitions
- Properties
- Reachability
- Classification of states
- Definitions
- Properties
- Regular Markov chains
- Definition
- Properties

## Stochastic matrices

ullet Definition : real square matrix P such that

$$\left\{ egin{aligned} p_{ij} &\geq 0 & \forall i,j \ \sum_{j} p_{ij} &= 1 & \forall i \end{aligned} 
ight.$$

 Property: the product of two stochastic matrices is a stochastic matrix

Proof : every  $(PQ)_{ij}$  are positive and

$$\sum_{j} (PQ)_{ij} = \sum_{j} \sum_{k} p_{ik} q_{kj}$$

$$= \sum_{k} p_{ik} \sum_{j} q_{kj}$$

$$= \sum_{k} p_{ik}$$

$$= \sum_{k} p_{ik}$$

- A stochastic matrix is regular if there exists  $k \in \mathbb{N}_0$  such that every elements of  $P^k$  are strictly positive (and then, that is true for  $P^l \ \forall l \geq k$ ).
- Example

$$P = \begin{bmatrix} . & 0.5 & 0.5 \\ 0.2 & 0.8 & . \\ 0.7 & . & 0.3 \end{bmatrix}$$

$$P^2 = \begin{bmatrix} 0,45 & 0,40 & 0,15 \\ 0,16 & 0,74 & 0,10 \\ 0,21 & 0,35 & 0,44 \end{bmatrix}$$

P (and  $P^2$ ) is stochastic P is regular

## **Homogeneous Markov chains**

#### **Definitions**

- Context
- Discrete time set :  $T = \{0, 1, 2, ...\}$

$$(X_t): X_0, X_1, ..., X_n, ...$$

Finite state space :

$$S = \{i, j, \dots\} = \bigcup_{t=0}^{\infty} X_t[\Omega]$$

- At each time  $t \in T$ , the "system" is in one (and only one) state
- Between two successive times, the "system" moves from a state to a state

« At time n, the system is in state i » :  $[X_n = i]$ 

• Markov property :  $\forall n \in \mathbb{N}, \ \forall i, j, k, l \in S$ 

$$\Pr([X_{n+1} = j] | [X_n = i] \cap [X_{n-1} = k] \cap ... \cap [X_0 = l])$$
  
= 
$$\Pr([X_{n+1} = j] | [X_n = i])$$

Interpretation: the probability of a future event, knowing the present and the past, does not depend on the past  $\rightarrow$  modelling a dependence phenomenon with a first order memory

- ullet Homogeneity: the Markov property is independent of n.
- Definition: an homogeneous Markov chain is a stochastic process described by the previous « context » and
- satisfying the Markov property;
- homogeneous

In the sequel, « MC » = homogeneous Markov chain

### Probabilities

- state probabilities :  $p_i(n) = \Pr[X_n = i]$
- initial probabilities :  $p_i(0) = \Pr[X_0 = i]$
- transition probabilities :

$$p_{ij} = \Pr([X_{n+1} = j] | [X_n = i])$$

- vector p(n)
- $\rightarrow$  matrix P

#### Example

$$P = \begin{bmatrix} . & 0.5 & 0.5 \\ 0.2 & 0.8 & . \\ 0.7 & . & 0.3 \end{bmatrix}$$

$$0.3 \longrightarrow 3 \longrightarrow 0.7 \longrightarrow 1 \longrightarrow 0.5 \longrightarrow 2 \longrightarrow 0.8$$

#### **Properties**

a) The transition matrix is stochastic

$$\sum_{j} p_{ij} = \sum_{j} \Pr([X_{n+1} = j] | [X_n = i])$$

$$= \Pr([X_{n+1} \in S] | [X_n = i])$$

$$= 1$$

b) Evolution of the state probabilities:

$$p^t(n+1) = p^t(n) \cdot P$$

$$(p^{t}(n) \cdot P)_{j}$$

$$= \sum_{i} p_{i}(n)p_{ij}$$

$$= \sum_{i} \Pr[X_{n} = i] \cdot \Pr([X_{n+1} = j] | [X_{n} = i])$$

$$= \Pr[X_{n+1} = j]$$

c)The m-step transition matrix  $P^{(m)}$ 

$$p_{ij}^{(m)} = \Pr([X_{n+m} = j] | [X_n = i])$$

Is equal to  $P^m$ . Then, it is stochastic.

$$p_{ij}^{(2)} = \Pr([X_{n+2} = j] | [X_n = i])$$

$$= \sum_{k} \Pr([X_{n+2} = j] \cap [X_{n+1} = k] | [X_n = i])$$

$$= \sum_{k} \frac{\Pr([X_{n+2} = j] \cap [X_{n+1} = k] \cap [X_n = i])}{\Pr([X_{n+2} = j] \cap [X_n = i])}$$

$$\times \frac{\Pr([X_{n+1} = k] \cap [X_n = i])}{\Pr([X_{n+1} = k] \cap [X_n = i])}$$

$$= \sum_{k} \Pr([X_{n+1} = k] | [X_n = i])$$

$$= \sum_{k} p_{ik} p_{kj}$$

$$= \sum_{k} p_{ik} p_{kj}$$

d) We have

$$p_{ij}^{(m+n)} = \sum_{k} p_{ik}^{(m)} p_{kj}^{(n)}$$

$$p^t(m+n) = p^t(n) \cdot P^{(m)}$$

### Reachability

The state j is reachable from i if there exists n>0 such that  $p_{ij}^{(n)}>0$ 

Notation :  $i \rightarrow j$ 

## **Classification of states**

#### **Definitions**

Starting in state  $\it i$ , the probability that  $\it i$  is  $\it «$  visited  $\it »$  at least once is denoted by  $\it f_i$ 

Starting in state  $\,i,$  the probability that there are infinitely many occurrences of  $\,i\,$  is denoted by  $f_i^{(\infty)}$ 

The state i is recurrent or transient according wether  $f_i=1$  or  $f_i<1$ 

Note: the probability that, starting in state  $\it i$ , the event  $\it A$  occurs is denoted by

$$\Pr(A|[X_0 = i]) = p_i(A)$$

#### **Properties**

- a) If the state i is recurrent and  $i \rightarrow j$ , then j is recurrent
- $p_j$  (we will eventually reach i) = 1 for iff not, i would not be recurrent :  $f_i < 1$

In particular,  $j \rightarrow i$ 

We define

 $\alpha = p_i$  (we will return to *i* without ever hitting *j*)

 $\alpha < 1$  because  $j \rightarrow i$ 

 $p_i$  (we will make n return visits to i without ever hitting j) =  $\alpha^n$ 

$$p_i$$
 (we will eventually reach  $j$ )
$$= \lim_{n \to \infty} (1 - \alpha^n) = 0$$

- Summarizing, starting in j,
- we are certain to reach  $\,i\,$
- we are certain to come back to  $\,j\,$
- so, j is recurrent
- b) Corollaries,
- i is recurrent iff  $f_i^{(\infty)}=1$
- Starting in a recurrent state, we must always remain in recurrent states

c) Starting in a transient state i, we must eventually reach a recurrent state

 $p_i$  (we will never return to i) =  $1 - f_i$ 

 $p_i$  (we will return to i exactly n times) =  $f_i^n(1-f_i)$ 

 $p_i$ (there are only a finite return visits to i)

$$= \sum_{k=0}^{k} f_i^k (1 - f_i) = 1$$

So, starting in a transient state, the set of transient states is visited (with Pr 1) only a finite number of times. Then, we must eventually reach a recurrent state

### d) Corollaries

- i is transient iff  $f_i^{(\infty)} = 0$
- There are at least one recurrent state in a Markov chain

## **Regular Markov chains**

#### Definition

A Markov chain is regular if its transition matrix is regular

#### **Properties**

- a) In a regular Markov chain, every states are recurrent and,  $\forall i, j \in S, i \rightarrow j$
- b) For a regular Markov chain, we have

- 
$$\lim_{m \to \infty} P^{(m)} = \Pi$$
 where the rows  $\pi^t$  of  $\Pi$  are identical and with strictly positive elements

independently of p(0),  $\pi$  is the stationary probability vector :  $\lim_{n\to\infty}p^{(n)}=\pi$ 

$$\lim_{n\to\infty}p^{(n)}=n$$

 $\pi$  is the unique solution of the system  $\pi^t(P-I)=0$  with strictly positive elements having a sum equal to 1

(without proof)

Example

$$P = \begin{bmatrix} . & 0.5 & 0.5 \\ 0.2 & 0.8 & . \\ 0.7 & . & 0.3 \end{bmatrix}$$

$$P^2 = \begin{bmatrix} 0,45 & 0,40 & 0,15 \\ 0,16 & 0,74 & 0,10 \\ 0,21 & 0,35 & 0,44 \end{bmatrix}$$

 $P^{16} = \begin{bmatrix} 0,2373\\ 0,2372\\ 0,2374 \end{bmatrix}$ ... 3 0,5931 0,1696 2 0,5934 0,1694 4 0,5929 0,1697

Moreover, the solution of

$$\begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix} \begin{bmatrix} -1,0 & 0,5 & 0,5 \\ 0,2 & -0,2 & . \\ 0,7 & . & -0,7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

with  $\pi_1 + \pi_2 + \pi_3 = 1$  is

$$\begin{cases} \pi_1 = \frac{14}{59} = 0,237288 \\ \pi_2 = \frac{35}{59} = 0,593220 \\ \pi_3 = \frac{10}{59} = 0,169492 \end{cases}$$