(non random)

Um rt ___ Insured A-_o.qwﬂ.:.:w&--v. Insurance Company|
ACTUARIAL APPLICATIONS e

Sometimes,
7. Specific tools - the premium is paid by a taker of insurance
8. Risk process (# insured person)
9. Various topics - the intervention is paid to a beneficiary

(# insured person)

b) Randomness is present in any domain of
management (e.g. in finance), and the
manager try to eliminate it

Two domains where randomness is the basis of
human activity
- gambling
(consumer pays to play against the hazard)
- insurance
(consumer pays to get rid off the hazard)



c) Classification life vs non-life

Non-life Life
Period 1year (very) long
Contract standard mmmn:n_n
(function of age)
unknown generally known (in

Intervention

(claim amount)

the contract)

Nb of claims

any positive integer

Oor1l

Chapter 7

Specific tools

d) Here : non-life insurance, even if some topics

are also adapted to life insurance

Convolution
Random sums
Counting process
Markov chains




Convolution

Definition
- Definition The problem is to determine the probability
- For the m.g.f. distribution of the sum of independent r.v.
- For discreter.v.
o Case of positive integer r.v.
o Case of Poisson r.v.
- For the c.d.f. For the m.g.f.
- For continuous r.v.

- Generalization

If X and Y areindependentr.v.,

My 4y (£) = mx(t) - my(t)

Proof

m.AmnCm+<vv — m.AmﬁX ) mﬂxv

= E(eX) - E(e)



For discrete r.v.

Case of positive integer r.v.

Consider two independent r.v.
o 1 .. n ..
X~ )
Po P1 - Pn -
Ve A O 1 .. n v
9 91 -« 9n -
Forany k €N,

PriX +Y =kl =Y Pr(IX =jIn[Y =k —j]
= %_o PrlX = j] - Pr[y = k — J]
- MwuoP. Qk—j

Case of Poisson r.v.

Consider two independent Poisson r.v.

XN\(,\NVA\\F.V ~”H~N

Forany k €N,
A I
— — A1, A T2
PriX; + X, = k] IMm H\._ e NQalb_
Jj=0
1 < k
_ i k—j
— ¢ ?inMOvﬁ Pl
j=0
k
_ pmlytay A+ )"
k!
So,

NH +XN\(%A\\~H+\HNV



For the c.d.f.

T.X+<AN.V = MUH%X + %q m ﬁg
= m.??txmsv
=E AMAH?+<m£_va

But, by (R7),

m.?tmi\mz _Xv = mAm.M\AH:\mTﬁV_Nv

so that,

Fy.y(t) = E Amw‘ﬁru\mﬁlﬁvv
= m.Cﬂ\Q - va

+00

Fyav () = \ Fy(t — x) dFy (%)

— 00

= [ RC-nar

— 00

= (Fx * Fy)(t)

For continuous r.v.

Fyyy(8) = h_.owo Fy(t — x) fx(x) dx
= [ dx £y [ fr () dy

and, by derivation w.r.t. t,

fear(©) = \ GO fy (¢ — ) dx

= ) fxE =) fy(y) dy
= (fx * fy)(®)

In particular, if the two r.v. are positive,
t
(i FO = [ FrGOfy(e =) dx
0

t
- h Felt =M fr () dy



Generalization Random sums

For more than twor.v,, Definition

Cumulative distribution function

Fyyy+z(8) - Moment generating function
= Fx1y)+z(t) - Moments
= Fxyv+2)(t) o Expectation
= (Fx * Fy * F7) (1) o Variance

and, if X;,X,,...,X,, arei.i.d., then

Fx 4. 4x,(8) = quH * ok m.xzvﬁv = Fx"(¢)



Definition Example
a) Tossing 2 coins (N = number of tails)

A random sum is a sum of r.v. with a random b) Throwing N dice
number of terms - S =sum of the points of the dice
i i 0 1 2 1 2 3 4 5 6
Consider a sequence of i.i.d. r.v. Xj,...,X,, ...and N1 1 7)) X~z T 1 1 1 1
a positive integer r.v. N, independent of the X’s 2 2 2 6 6 6 6 6 6
S=yN_1Xk sle]={0,1,2,..,12}
lllustration : if the random situation has a finite Pr[S = 0] = Pr[N = 0] = w
number of possible outcomes Q = {w;, w,, w3} Prs = 1] = Pr([N = 1] n [X, = 1]) = 11
and if the probability law of N and the X}’sis 2 6
given by Pr[S=2]=Pr([N =1]n[X; =2])
+Pr([N =2]n[X; =1]n[X, =1])
~ 11,111
N X1 X, X3 X4 26 4 6 6
w1 1 X11 | X21 | X31 | X1
W3 2 X12 | X22 | X3z | X42 o 1 2 3 4 5 6 7 8 9 10 11 12
ew w .unHw .X.Nw .X.ww .X.\*w MZAW m m m H|m w H|.N h M F P h Pv
144 144 144 144 144 144 144 144 144 144 144 144 144
S(w1) = x11 7 217
S(wy) = %15 + X590 E(S) =3 var(S) =2

S(w3) = x93 + x23 + X33



Cumulative distribution function Moment generating function

Fs(t) = _uH.TmH + o+ Xy < t] §MA$ — mﬁmnﬁxp+...+x2vv
= m.AHTmH+.1+N2MEV =F AW.AQaCﬁ*.#XZV_ZVV
=F AMAHHXH*.%me&_Zvv —FE A§XH+...+XZASV
But, by (R7), =E ?& Sv
— WAQZ.ESV%SV
m.AHUmH+.:+NZME_\<v = m.Am.XAHUmH+.:+NZMZV_ZV = SZA—: skﬁﬁvv
= Fy" (t)
so that
Fs(t) = E (F(0))
Then,

Fs(t) = ) Fg¥(t) -Pr[N = k]



Moments
Expectation

E(S) =E(E(Xy + -+ XyIN))
=E(N-EX))
= E(N)-E(X)

Variance

var(S) = m?aﬁ@_zvv + cpim@._zvv
= E(N -var(X)) + var(N - E(X))
= E(N) - var(X) + var(N) - E2(X)

Counting process

- Counting process
- Poisson Process
o Definition
o Probability distribution
o Time between 2 occurrences




Counting process

= “pure jump process”

Let us assume that “events” occur during time
(accident claims for an insurance portfolio e.g.)

v

0 71 75 13 T4 Tg Tg time

= representation of one outcome (w)
T, = epoch of the k-th event

Let N; denote the number of occurred events up
to time t (in the example, N; = 5)

Sample path :

v

0 11 1 13 T4 Tg Te time

Poisson process

Notation

f(h) =0(h) & wﬁﬁ%” 0

(f(h) tendsto 0 more rapidly than h itself)

Definition

Let us consider a counting process {N; : t = 0}
such that

- Ny=0
(N;) hasindependent and stationary

increments

No multiple occurrences
Pr[Neyn — Ne 2 2] = o(h)
Occurring with rate 4 (> 0)
Pr[N;y, — N, =1] = Ah + o(h)

Consequence :



Probability distribution ® p,(t+h)=p,(t) Pr[Nip — N; = 0]
+ Pp-1(t) " Pr[Neyp — Ny = 1]

For n=0,1,2,.
" + M Pn—k(t) Pr[Nespn — Ne = k]
p,(t) = Pr[N, = n] = e™* QM_V: — ?@.v (1= 2h+ o(h))
. + Ppoa(®) - (AR + 0(R)) + o(h)
Proof (by induction)
Palt w PO 1pa(©) + Apua(6) + oma
° po(t +h) = po(t)  Pr[Neyp, — Ne = 0]
=po(t) - (1 —Ah +o(h)) -
(O = —a(®) + 1 e
po(t + \N Po(t) = _apy(t) + 22 QQD
Q&.vslu
At / - -
pb(6) = —Apy(0) et (@ +Apn(0) = 2 Dt
= Ampnﬁsﬁﬁvv
po(t) =e™*-C
t ’ An t B
po(t) = e h Ama?@v ds = ah s"tds

A t" (A"
At -0 —— — =
e“pn(t) (n—1! n n!




Time between 2 occurrences +oo (et-Dx\' yn-1
L1 = .‘. dx

0 t—-1 (n—-1)!
T, T, Ts T, e(t-Dx  yn-1 +
>SS <> — .
N L “ 1 > — t—2 QTS__O
0 11 1 13 Tn-1 _ Tn _ time n—2
I N (AP FE A 9
t t+h t—2+0 (n-2)!
-1
Prit <1, <t+h] At n
=F (t+h) —F,(t) = G- In-3
= Pn—1(t) - Pr[Nepp — Ny = 1] =
= pp_1(©) - (Ah + o () = % 1,
= pp-1(t) - Ah + o(h) _ 1 T (t-Dx
= Ao %o e dx
1
F. (t+h)—F_(t) o(h) = —Q
£ n d = Apn-1(t) + " =0
So,
\\*. n
-t M (8) = My, (6) = (5=
— — n,—At n 1 n A—t
for©) = Apua(§) = We M s
A
In particular, m, (t) = — and
+ 00 1 A—
m, () = [, e™f,(x) dx t
n—1
— n +8mQ|\Sx d dx n
Ho (n-1)! Mmr, 4.y, (£) = Asﬁm vi
= NS‘ - N\:IH

(t<A)



Then, Ty, T,, ... arei.i.d. r.v. with Markov chains

fr(®) = f;,(t) = e (t>0) Stochastic matrices

Homogeneous Markov chains

= exponential distribution with parameter A o Definitions
o Properties
H H ore
E(T) = - var(T) = = V=2 v, = 6 o Reachability
A A - Classification of states

o Definitions
Densité exponentielle (0,8 - 1 - 1,6) o _u_.o_um_.ﬂmm

N
|

Regular Markov chains
o Definition

——Ilambda = 0,8 .
14 —lambda - 1 o Properties

——lambda = 1,6

Note : a sequence of i.i.d. r.v. representing
successive durations is a renewal process

A Poisson process generate an exponential
renewal point process, and reciprocally



Stochastic matrices

¢ Definition : real square matrix P such that

0  Vij

=
J

® Property : the product of two stochastic
matrices is a stochastic matrix

Proof : every (PQ);; are positive and

MQu@:. = MM Dik9kj
J j k

= MB:«MS&.
k J
HMP.w
k

=1

e A stochastic matrix is regular if there exists
k € N, such that every elements of P¥ are
strictly positive (and then, that is true for

P! vl > k).

® Example
. 05 05
P=1|02 08 .
07 . 03

0,45 0,40 0,15
P?=(0,16 0,74 0,10
0,21 0,35 0,44

P (and P?)is stochastic
P isregular



Homogeneous Markov chains

Definitions

® Context
- Discretetimeset: T ={0,1,2, ...}

(Xp) : Xo, Xy, 0, Xpn,
- Finite state space :
S={ij,..} = C X,[Q]
t=0

- Ateachtime t € T, the “system” isin one
(and only one) state

- Between two successive times, the “system”
moves from a state to a state

« At time n, the systemisinstate i »: [X,, =]

® Markov property: Vn €N, Vi,j, k,l €S

Pr([Xne1 =l [Xn =11 N [Xpnoy = k] 0o [Xo = 1))
= _uH.QNS+H = : Tm: =1i])

Interpretation : the probability of a future event,
knowing the present and the past, does not
depend on the past 2 modelling a dependence
phenomenon with a first order memory

® Homogeneity : the Markov property is
independent of n.

¢ Definition : an homogeneous Markov chain is a
stochastic process described by the previous
« context » and

- satisfying the Markov property ;

- homogeneous

In the sequel, « MC » = homogeneous Markov
chain



® Probabilities

- state probabilities : p;(n) = Pr[X,
- initial probabilities : p;(0) = Pr[X,
- transition probabilities :

HQ

~.
—

bij = Pr([Xp41 = Jjll [Xy = i)

= vector p(n)

=  matrix P
® Example
05 05

02 08 .
07 . 03

P

0,7 0,5
03 (73 1 [ 2 L Dogs
0,5

0,2

Properties

a) The transition matrix is stochastic

> by =) Pr(Xner = 11 X = 1)
J J

= Pr([Xn+1 € S| [Xn = i])
=1

b) Evolution of the state probabilities :

pin+1) = pi(n) - P

(p*(m) - P);
= M F.Q&Fg.

= M PriX, = i] - Pr([Xp+1 = jl| [X, = iD

= Pr[Xni1 =]



c)The m-step transition matrix P("™ d) We have

P = Pr([Xnsm = J1I [Xn = i]) P = >
Is equal to P™. Then, it is stochastic.
p*(m+n) =pt(n) - P™
P = Pr([Xnsz = j1| X, = i])
= > Pr(lXnsz =10 Dy = K[ Xy = 0D
k

Reachability
_ M Pr([Xpi2 =JjI 0 [Xpy = k]I 0 [X, =i])
K PriX, =] The state j is reachable from i if there exists
N PrlXn,s = k10 [Xn = e n > 0 such that BQ@ > 0
Pr([Xn+1 =kl N [Xy = i])
= Pr(l¥pss = KlIXy = iD) Notation': i ]
- ;

—Uﬁgvm:+m = \.:Cm:+u =k]n Cm: =i])



Classification of states

Definitions

Starting in state i, the probability that i is
« visited » at least once is denoted by f;

Starting in state i, the probability that there are
infinitely many occurrences of i is denoted by

\MmooV

The state i is recurrent or transient according
wether f; =1 or f; <1

Note : the probability that, starting in state i, the
event A occurs is denoted by

Pr(A|[X, = il) = pi(4)

Properties

a) If the state i isrecurrentand i — j, then j is
recurrent

* p;(we will eventually reach i) = 1 for iff not,

[ would not be recurrent: f; <1
In particular, j — i
¢ \We define

a = p;(we will return to i
without ever hitting j)

a <1 because j =i

p; (we will make n return visits to i
without ever hitting j) = a™

p; (we will eventually reach j)
= lim,,,, (1 —a™) =0



® Summarizing, starting in J,

- we are certain to reach i

- we are certain to come back to j
so, j isrecurrent

b) Corollaries,

- i is recurrent iff h.ASV =1
- Starting in a recurrent state, we must always
remain in recurrent states

c) Starting in a transient state i, we must
eventually reach a recurrent state

p;(we will never returnto i) = 1— f;

p;(we will return to i exactly n times)

= ffA-1f)
p; (there are only a finite return visits to i)

=Y ffa-fy=1
k=0

So, starting in a transient state, the set of
transient states is visited (with Pr 1) only a finite
number of times. Then, we must eventually reach
a recurrent state

d) Corollaries
- 1 is transient iff mASv =0
- There are at least one recurrent state in a
Markov chain



Properties
Regular Markov chains

a) Inaregular Markov chain, every states are

Definition recurrentand, Vi,jES, i > ]
A Markov chain is regular if its transition matrix is b) For aregular Markov chain, we have
regular

- limy, e PO =11
where the rows ©! of II are identical and
with strictly positive elements

- 1 is the stationary probability vector :

independently of p(0),
lim p™ =1

n—-0o

- 1 is the unique solution of the system
nt(P —I) = 0 with strictly positive elements
having a sum equal to 1

(without proof)



® Example

P =102
0,7

0,45
P? =(0,16
0,21

0,5 05
0,8 .
0,3

0,40 0,15
0,74 0,10
0,35 0,44

0,2373 0,5931 0,1696
Pl¢ =(0,2372 10,5934 0,1694
0,2374 0,5929 0,1697

Moreover, the solution of

-1,0 0,5 0,5
[T1 m, m3]] 0,2 —0,2 . |=[0 0 0]
0,7 —-0,7

with Ty +m, + 3 =1

is

14

— =0,237288
59

35 _ 0,593220
59

10 _ 0,169492
59 '



