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Initial discrete structure

The 3 curves

- Price, at time 0, of a zero-coupon bond paying
1 at maturity s (>0): Py(s)

- Yield : Ry(s)
)
Po(s) = (1 + Ro(s))
- The yield combines short-term interest rates

r(1), r(2),..., r(s) forthe respective
periods [0; 1], [1; 2], ..., [s — 1, s]

(14+Ro(s)) = (1+7(D) .- (1 +7(5))

Link between the different curves
We can express one of the different curves

{P,(t):t=0,..,5}
{Ry(t): t=0,..,s}
AT.OAWV U= O\ .:.Mw

from the other two

For example,

_ (1+r@)(14r(s-1)-(1+7(s))
1+7(s) = (147(1)) s (147 (s-1))

_ (1+ wo@vvm
A+ Ry(s— D)
. Po(s — 1)

B Py(s)




Example : let us consider the yield structure Evolution of the discrete structure

S Ry (s) The 3 curves
1 6.0 % |
2 6.6 % _o ) . "
3 7.0 %
4 7.3 % . . .
5 759 - Price, at time t, of a zero-coupon bond paying
6 76% 1 at maturity s (>t): P:(s)
0,08 - Yield : mﬁﬁhv
0,07 »\0\0|||0
0,06 \
—(s—t)
0,05 wﬁﬁ.m.v = A”_, + mﬁﬁhvv
0,02 - The yield combines short-term interest rates
oot r(t+1), r(t+2),..., r(s) forthe
0 1 : 3 4 5 6 7 respective periods [t;t+ 1], [t+ 1;t+ 2], ...,
[s —1; 5]

Calculate the two other curves

(1+R()) =1+t +1D) - (1+7())

(14Re(s))" "
(1+Re(s—1) 17"

sothat 14+ 7r(s) =



Evolution of the yield structure

P.(s) =

_oH¢-wAﬁ+.va..:.AH.TQAMVV_|H
—?iSZix?cv.....?i@v -1

1+7r(t)

—(s—-t+1)

AH + mTH@vv
(1+ R (®)

Pi_1(s)

P._4(t)

P._5(s)/Pr_p(t — 1)

P._5(t)/Pr_p(t —1)
Pi_5(s)
P._,(t)

Whatever u may be (u < s),

R (s)

Pi(s) = P.(0)

Example : for the same data, calculate R,(5) and

P> (5)

Continuous time structure

Time set: [0; +oof

Continuous yield

- in the discrete time,

P = (1+RE)

- in the continuous time,

so that

NUH. A.m.v — Nlﬁmlﬁvmmﬁrm,v

R.(s) =1n T + mm@vv
1+ R&(s) = eRe(®)



Short-term interest rate ?

Interest rate relative to the interval [ty;t;]:

r(ty, t2)

Instant-term interest rate at time t : mean of
r(ty,t;) where t;y =t and (t, —t;) very short

H S
r(t) = lim

r(t,u) du
sot+ §S—t A v

t

Moreover, if r(t1,t,) isa continuous function
(we will suppose it here),

r(t) = m_wmﬂﬁﬁﬁ S)

Link between the different curves

Rewriting the “discrete” formula

(1+R4®)

1+7r(s) =

for s—1~s and s ~»s + As:

T + R&(s + As)

? +RY(s — :%-Z

vM+>m|~

(L+7(s;s+ P&vﬁ =

By Taylor expansion,

(1+RA®)

G + As-r(s;s + Pév . T + mm@vaﬁ

~ AH + R4(s + As)

Vm+>m|ﬁ



H S

r(s;s + As) - T + mm@vvhlr R.(s) =

—(1+ mm@vvi

r(u) du

T + R%(s + Dmvvﬁ%#

~

As s
ﬁﬂﬁ.m.v — mlAmlﬂvwﬁﬁhv — ml.b‘. r(u) du

and by taking the limit for As — 0,

!

—? + mm@vvi_

ﬁm%v = s—t >
(1+R))
s—t\1’
= [m((1+ri) )]
m((1+rE0) )],
=|Gs -6 m(1+RES)]
S
=[(s = t) *Re ()15 Stochastic modelling ?
S _ - For option models, C; =r.v. depending on
r(w) du = [(u -0 R iime ¢ ﬁ
t
= (s —1t) R:(s) - Foryield curves, R;(s) =r.v. depending on 2

So, time variables



Objective, hypotheses and general scheme

Hypotheses

a) 1 isa stochastic process, driven by a SDE
&w\.ﬂ ”Q\H.QHI_IWH.QS\H

b) P:(s) and R;(s) can be considered
o either as stochastic processes, because
they are functions of 7;
o or as ordinary functions of (t,7)
(s will generally be fixed, the important
time variable being the duration s — t)

Objective

For different specified SDE driving the spot rate,
obtaining (deterministic) functions (P;(s) and)

R:(s)

Approach

Here, we will only consider the arbitrage approach

The general scheme will be

1) Evolution of the spot rate (= state variable)

dry = a; - dt + by - dW,

2) Portfolio of 2 bonds with different maturities
with proportions such that the portfolio
has no risky component

3) Arbitrage free reasoning :
return = risk-free rate
— the market price of risk A; is

independent of the maturity
— PDE (= structure PDE equation)
4) For different choices of (a;, bs, A¢), solving
the structure equation
— Merton model
— Vasicek model
— Cox, Ingersoll & Ross model



Structure equation

- The market price of risk
- Structure equation

The market price of risk

P:(s, 1) is considered as a function of the two
variables (t,r) with

dry = a; - dt + by - dW,
where
- a; = average instant return of the spot rate
- b; =average instant volatility of the spot rate

Applying 1t6’s lemma to P;(s,1:), we have

dP(s,r)

@N
_ m+$&+% ') - dt + bP! - dW,

The return of this bond is given by

! / @N 1)
&wﬁﬁ.mﬁﬂ.vlwﬁl_lgﬁwﬁl_lwﬁwﬁﬁ Qﬂl_lmuﬂm\
P.(s,7) J2 P

= s (s,r) - dt — o.(s,r) - dW;

* QS\N\.



where

WN
_ PitacPr+fPyy
- .ZHA.W\ \w.v — P
= average instant return of the bond
b¢Py
- or(s,r) = —

w
= average instant volatility of the bond

Let us construct at time t a portfolio by
- buying X unit(s) of a bond with maturity s;
- selling 1 unit of a bond with maturity s,

The value of this portfolio is

Vi = XPi(s1) — Pe(S3)
and

dv,
= X dP(s1) — dP(s2)
= X[P:(s1) pe(sy) - dt — Pe(s1) 0¢(s1) - AW, ]
—[Pe(s2) ue(s3) - dt — Pe(s3) 0p(s) - AW, ]
= [XP:(s1) pe(s1) — Pe(sz) pe(sz)] - dt
—[XP(s1) 0.(51) — Pe(s2) 0¢(s2)] - AW,

The return of this portfolio is given by

avy . XP;(s1) pe(s1) — Pe(sz) pe(s2)
Vi B XP.(s1) — Pi(s3)
IXFQHV 01 (51) — Pe(sz) 0¢(s2)
XP.(s1) — Pi(s3)
=a-dt+p-dW;

dt

We chose X such that this portfolio has no longer
random component

By arbitrage free principle, the return of this
portfolio is equal to the risk-free rate r:

=0 = a=r
We have, for these two equations,
XP(s1) 0:(s1) = Pe(s2) 0¢(s2)

XP.(s1)(ue(s1) — 1) = Pe(s2) (e(sz) — 1)

dw,



Eliminating X, we obtain

pe(sy) —r _ pe(sz) —r

o¢(s1) 0¢(s2)
and so,
B Us(s,r) —r
&.ﬁﬁ.mﬁ ﬂ.v - qﬂ.ﬁhﬁ \w.v

does not depend on s

Ae(r) = % is the market price of risk
t\o

= risk premium
= excess return w.r.t. spot rate, per unit of risk

Structure equation

He—T
M\ﬂ” M.ﬁ
!/ ! @W r
ﬁn + Qn@ +q T
= w 7
_bFH
P
! ! @W 144
wﬂ +Q\Hwﬁ. +M ﬂ:\lﬁ.w
B |®ﬂwﬂ.\

and we obtain the structure equation

@N
P! + (a, + A;b,)P! +MNw ) _rP =0

with the limit (terminal) condition P,(s,r) =1

We will have to solve this PDE for different choices
of (ag, by, A¢)



Merton model

Definition
Arithmetic Brownian motion
Solution of the structure equation
Consequences
o Average instant return of the bond
o Yield curve

Definition
- (r;) is driven by an ABM

dry = a-dt +o-dW;
where
o a isthedrift (a € R)
o o is the volatility (o > 0)

- () =0



Arithmetic Brownian motion

The solution of the SDE
dry = a-dt +o-dW,
Is given by
e =1y +at +ocW;

This stochastic process is such that
a) E(@y)=ry+at
b) wvar(r,) = ot
c) 1rn~N

So, this stochastic process
- is a straight line in mean
- has a variance tending to +oo
- has potential negative values

Conclusion : ABM is not a credible process for the
behavior of the spot rate. But, historical interst ...

Solution of the structure equation

2
Structure equation: P{ + aP’ + qﬂ ) —1P =0

Its solution is

P.(s, 1)

2
a o
H@% IAmISﬁIMQISN +ﬂ@l$w

The terminal condition P.(s,r) = 1 isclearly
satisfied and

P/ =exp[...]" Aﬁ +a(s—t)— q%@ - SNV
P’ =exp[...]" AI@ — Sv
By =exp[...] - Almm — Svm

so that the l.h.s. is equalto 0

Note : when (s —t) — +oo, the price also tends
to infinity !



Consequences Yield curve

Average instant return of the bond R.(s,7) = I|_:Amx1 D
XN O N2
1 g Iﬁ+NAm t) m@ t)
(s, r) = 7 P, + aP. +M
Properties
=>rP P
P
=T a) Ri(s,r)=r
Cne : | .
Note : this instant return is constant ! b)  lim(s_¢)rpen Re(5,7) = —

Modéle de Merton (alpha = 0,07 ; sigma = 0,08)
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Vasicek model Definition

- Definition - (ry) is driven by an Ornstein-Uhlenbeck
- Ornstein-Uhlenbeck process process
o “Mechanical” property
o Solution of the SDE dry =6(0 — 1) -dt + o - dW;
o Properties
- Solution of the structure equation where §,60,0 > 0
- Consequences o 6 is the force of recall
o Average instant return of the bond o 0 is the average value
o Yield curve o g is the volatility

- A¢(ry) is a positive constant

Vasicek, O. (1977) An equililbrium characterization
of the term structure, J. Financial Economics, 5,
177-188

Note : the structure equation is also from this
reference



Ornstein-Uhlenbeck process

“Mechanical” property

The drift coefficient is such that the trend is to
“recall” r; tothe average value 8 when it seems
to diverge :

n» = 0-1,<0

<K => 06-1r>0

This behavior is much more adapted than the
ABM to model an interest rate evolution

Solution of the SDE
dry =6(0 — 1) -dt + o -dW;
The objective is to write
e = Y; + noise;
such that
- noisey, = 0 and E(noise;) =0
- Y; isnonrandom (andso E(ry) =Y;)
¢ The solution of the (non stochastic) DE
dY, = 6(6 —Y,) - dt

is given by

Y, = Ype 9t + (1 — e™%)



Proof

dY, = (—6Y,e %t + 05e~°%) dt
=§(-Yoe " —0(1—e%)+0)dt

e Write noise, = e %7,

ﬂ.ﬁ - %ﬁ + ml%ﬂNﬁ

QNN\. == Q Am%ﬁﬁﬂ.ﬂ - %ﬂvv
= §e%(r, — Y,) dt + e%t(dr, — dY,)
== %m%ﬂﬁ\\.ﬂ - %ﬂ.v QN\.
+e%t[8(8 — r)dt + adW, — §(0 — Y,)dt]

= gedt dW,
and
t
NﬂﬁlNOv == Q..\‘ m&,: Q—\_\‘g
0

® The solution of the SDE
&\3_‘. = %A%lw\.ﬂv.&ﬁl_IO..&—\_\ﬂ

is then

t

r, =107 +0(1—e7%) + Qmuﬁ% e dW,
0

Properties

a) E(r) =re % +6(1-e%)
b) wvar(r,) = g?e 20t hmﬁmmuzvaz
_ MC — e28%)

c) 1n~N

because

N—>+o00
6n—0 i=1

t
\ e dW, = lim M edti-1- (W, — W,,_.)
0



So, this stochastic process has the following
behavioral properties
In mean, it is the (weighted) average of the
initial value 71y and the average value 6

Its variance is an increasing function of time,
N

268
It is not incompatible with negative values of

but is bounded : var(r;) <

1¢, even if the recall force of the drift term is
such that this case is not frequent

Conclusion : the Ornstein-Uhlenbeck process is a
credible process for the behavior of the spot rate
(maybe except for the last remark)

Solution of the structure equation

Structure equation

2

o
m+38|3+>&®\+ﬂ ) —rP =0

Its solution is

—(s — Dk + <L ? — e706-D)

P.(s,r) = exp
AH _ p—8(s— cv

\&w

O.N

where k = m+||%

The terminal condition P,(s,7) =1 is clearly
satisfied and

k + Q« —1)(—e706)
P/ = exp[...]" (s
ﬁ ~ 7 () (e D)



P! = exp[..]- Alwﬁ...vv Consequences

144

. 2 Average instant return of the bond
i = expl]- (-3 ()

1 ’ ! o? 7
.:ﬁmm‘w.v = MAﬁw +6(0 — )P +M Sav

so that the l.h.s. is equal to
Q = L(rP — A0R)
Nu

—rlol
k— (k — ﬁvmlm@ ) 4 %mlmﬁmlaﬁ:.v =r+ mxtﬁ 0.
expl|...] _ st
AS|3+ VA :a% )P = l%ﬂ?é (s-0))
= exp[...] (e =) + o5 N% A ) This instant return in an increasing but bounded
AQ —7r)+ v (...) function such that
_ B (A _ Ao
|mxﬁﬁuﬁv M ﬁn_nm%w 0+r %W _EMAM.\\.V = r
=0

Ao

(s— _n_vwmw+8 twﬁm ﬂ.v =Tt M



Yield curve

R.(s,7) = — w_:?xz.: D

| ww iw
=k =52 c?lm )

| N
+§w@ 5 (1-e70¢9)

Properties
a) Ry(s,r)=r

1—e—8(—b 1—e—8(s—))?
~1 and ( )

because ﬂ o

_uv :EAMISIV+8 mﬁmm, w.v =k

c)  The analysis of the variations of R.(s,7)

w.r.t. s —t shows that the yield curve
N

-.. ingif 0 < r ||
isincreasingif 0 <7 <k —

N

- mm:c:)__omo_:ﬂwl%AﬁAw+%

Taux au comptant

is decreasing if r =

0,08

0,06

0,04

Modeéle de Vasicek (delta = 0,3 ; théta = 0,08 ; sigma = 0,07 ; lambda = 0)
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Cox-Ingersoll-Ross model Definition

- Definition - (1) is driven by square root process
- Square root process
- Solution of the structure equation dry = 6(0 — 1) - dt + q/\ﬂﬁ - dW,
- Conseqguences
o Average instant return of the bond where 6,0,0 > 0
o Yield curve o 0§ is the force of recall

o 0 is the average value
o o is the volatility

Cox, J., Ingersoll, J., Ross, S. (1985) A theory of the

term structure of interest rates, Econometrica, 53, - () = w T,

385-408

where ¥y > 0



Square root process Solution of the structure equation

- The “mechanical” property of the drift term is Structure equation
the same as the one of Ornstein-Uhlenbeck
process ) , ohr
P+ (66 —1) +yr)P +q L —rP =0

- Negative values of r; are incompatible with
the square root process : if 1 decreases to 0, Its solution is

then the SDE becomes
Pi(s,7) = x.(s) - YT

dr, = 80 - dt
where

256
and 1, goes to strictly positive values with o 0N o2

probability 1 xe(s) = z¢(s)

2(eks=0—1)

s)=——

Ye () ()

z:(s) = (6 —y + k) (eks™D — 1) + 2k
k=.(8-y)?+ 202

The terminal condition P,(s,7) = 1 is clearly
satisfied and it is easy to verify the structure
equation ...



Consequences

Average instant return of the bond

H ! !/ 2 144
.:nﬁm,ﬁv = MA%a + &.Am - w.vmx + qqﬁm%v
= w@% — yrPB’)
= ﬁﬁ +§\%va

Yield curve

Ri(s,1) = Il_sﬁxﬁm@ e SA&J
- |ﬂ@: xt(s) — ye($)r)

These curves have the same kind of properties as
the Vasicek ones



