Chapter 5

Option pricing models

Objective and hypotheses

Objective and hypotheses

Fundamental theorem of risk-neutral
valuation

Black & Scholes : a martingale approach
Black & Scholes : an arbitrage approach

Objective

Give a rigorous proof of Black & Scholes formula
for an European option on equity

Perfect market

No investor is dominant (no market maker)

Investors are rational (prefer more to less)

Assets infinitely divisible
No transaction costs

No tax

Short sales allowed

Risk-free asset

Existence of a constant, continuous risk-free rate
r, the same for borrowing and deposit




Arbitrage-free market Fundamental theorem of risk-neutral

valuation

= “no free lunch”

- Self-financing strategy and contingent claim
Underlying asset o Trading strategy

o Self-financing strategy
- The underlying asset is an equity, paying no

dividend in the duration of the contract

- The evolution of the underlying asset is driven valuation
by a GBM o Discounted value for the equity

o Discounted value for the portfolio
o Fundamental theorem

o Link with a contingent claim
- Fundamental theorem of risk-neutral
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Delbaen, F. and Schachermaeyer, W. (1994) A
general version of the fundamental theorem of
asset pricing, Math. Ann., 300, 463-520



Self-financing strategy and contingent claim

Trading strategy

Let consider two assets

a) An equity whose value is driven by a GBM
dS; = 6S;-dt + aS; - dW;

b) Arisk-free asset B, for which B, = Bye™ or,
more generally,

&mﬁ - w\.mﬂ . &ﬁ

A trading strategy is a couple (a;, b;) for
constructing a portfolio with

- a; units of the equity

- by units of the risk-free asset
(at, by € R)

The value of the portfoliois V; = a;S; + b:f;

Self-financing strategy

A self-financing strategy is a trading strategy for
which the variations of the portfolio value comes
only from changes of the prices of S; and f;

So, the portfolio value shows
- no decrements by consumption
- no increments by paying dividends

For a self-financing portfolio, we have

Q~\H = Qﬁ ﬁm.m.ﬂ + @ﬁ Qhﬁ



Link with a contingent claim Black, Scholes and Merton reasoning :
- after investing this rational amount of money,

We are searching for the value of a contingent we can manage the portfolio (equity; risk-free)
claim at time t, knowing the pay-off of this according to a self-financing strategy, for
contingent claimattime T (>t) : h(St) obtaining the same pay-off h(Sy) asif the

contingent claim has been purchased
[For an European call option, h(S7) = (S; — K)*] - if the contingent claim were offered at any

price other than this rational value, there
A contingent claim is a “game” at time t with would exist an arbitrage opportunity
reward equal to the pay-off h(S;) attime T

So, the value of the contingent claim is

The rational fee (at a financial point of view) for
playing this game is the price (premium) of the M V: = a;S¢ + by at time t

contingent claim Vi = h(Sr) attime T



Fundamental theorem of risk-neutral Discounted value for the portfolio

valuation

For the self-financing portfolio,

Discounted value for the equity
ﬁm<ﬁ - Q‘ﬁ ﬁmrm.ﬁ + @ﬁ Qmﬁ
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Apply Ité’s lemmato f(t,x) =e "'x
ﬁ\% - ml,\.ﬂﬁ\ﬁ
dS; = (—re S, + 6S;e ")dt + oS,e” "t dW,
= S7[(=7 + 8)dt + o dW,] Apply 1t6’s lemmato f(t,x) = e "tx
= oS5 d (2t +w,
‘ : o v L dvy = [-re "V, + (a,6S; + byrB)e "] dt

= oS, dW, +a,oS,e "t dW,
= e "[(-ra.S; + a;6S,)dt + a,0S; dW;]
a;S{[(—r + &)dt + o dW,]
a,S;o dW,
=a, dS{

where Q\»_(\L is a SBM w.r.t. the equivalent
martingale measure (@

So, the solution of this SDE is a GBM with 0 drift :
The solution of this SDE is given by

o oW,
* —_— o
St =Spe 2 t . . ~
<~*H<o+%aza,wmn_\o+Q\ a, S, dWw,
0 0



Fundamental theorem

Under the martingale equivalent measure Q
defined in Girsanov’s theorem, W, is a SBM
adapted to the natural filtration of (W;)

Then, the integral in the solution for V" is an It6
stochastic integral, and so, it is a martingale

m.o VrlF) = V¢
But
ﬁ\ﬂ - %Iﬁﬂﬁ\ﬂ - Nlﬂ.ﬂ}om.ﬂv
e "V, = Eq (e "Th(S)|Fr)

And, by introducing T =T — t,

Ve = m|3m© (h(S)IFe)

Black & Scholes : a martingale approach

The price of a contingent claim is equal to the
discounted value of the (conditional) expectation
of its final value w.r.t. the risk-neutral measure

- Pricing of a general contingent claim with
underlying GBM
o For the underlying equity
o For the contingent claim
- Black & Scholes model for an European call
option

Harrisson, M.J. and Pliska, S.R. (1981) Martingales
and stochastic integrals in the theory of
continuous trading, Stoch. Proc. Appl., 11, 215-260




Pricing of a general contingent claim with

underlying GBM

For the underlying equity

Under the risk-neutral measure, the underlying
equity behavior is, in mean, the same as the risk-
free rate [Chapter1: E;(S;) = So(1+ Rp) ]

The (conditional) expectation is taken w.r.t. Q.
We have then to use the (I¥;) SBM :
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This last formula (at time t and at time T) leads

to

a2

S, =S, mAﬂlqv +o(Wr—Wp)

For the contingent claim

Ve = mlﬁaMQ@aﬂv_,ﬁb

g2

ﬁ||v,n+qc\ﬂ\ﬂl<ﬂ\nv

”mlﬁﬂma N\w rm.ﬂ NA 2 ...Nuﬂ.

- S; is Fi-measurable (and is then considered
as a constant in the conditional expectation)

- (W — W,) isindependent of F, (and for the
exponential, the conditional expectation is an
ordinary expectation)

Moreover, (W — W,)~V'(0; 1), so that

Wr — W,

7 ~V(0; 1)
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Black & Scholes model for an European call C(t,S;)

3 Q.N
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with

C(t,S,) =S, - ®(dy) — e~ 'K - d(d,)

Note 1 : the martingale approach is also called
- Risk-neutral approach
- Probabilistic approach
- “change of numeraire” approach

Note 2 : The formula for a put is easily obtained
from the call-put parity relation

P(t,S;)
=-S5, +C(t,S;) +e™ 'K
—S;+ S, -d(dy) —e 'K -d(d,) + e 'K
= =S;(1—-®(dy)) + e "K(1 — d(dy))
= —S,®(—d,) + e KD (—d,)

Black & Scholes : an arbitrage approach

From the SDE to the PDE
From the PDE to the heat equation

o Change of variables
o Heat equation
o Limit conditions

Solving heat equation
o Heat equation
o Limit conditions
Black & Scholes model
o Development of the solution of heat

equation
o Reverse change of variables
Final note

Black, F. and Scholes, M. (1973) The pricing of
options and corporate liabilities, J. Political
Economy, 81, 635-654




From the SDE to the PDE

Starting with the GBM
ﬁmrm‘ﬁ - %..WH b QH + O..m.ﬂ * ﬁm—\_\ﬁ
and applying 1t6’s lemma to C(t,S;), we have

dC(t,S;)
a2SE

2

Let us construct at time t a portfolio by
- buying X unit(s) of the equity
- selling 1 unit of the call option

The value of this portfolio is
<~. == X.Wﬁ - QAH~ .Wm.v

We chose X such that this portfolio has no longer
random component

By arbitrage free principle, the return of this
portfolio is equal to the risk-free rate 7 :

if
dV;
Vi
then,
=0 = a=r
We have
dV;

= X dS, — dC(t,S,)

= X[8S; dt + oS; dW,]

025t
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— || C{ + 6S:Cs + Cs | dt + 0S.CidW,




And the return of the portfolio is equal to

ag2S?
av, X85, - A& + 85,04+ L2 n@ )
= t
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= adt+ B dW,

From the system of equations

=

I
o

we eliminate X :
=0 = X=C(§
22
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C. +7S,Ci + Cl —rC(t,S,) =0

is a PDE, with three limit conditions

- Terminal condition : C(T,S;) = (S — K)*

- Boundary condition1: C(t,0) =0

- Boundary condition 2 : when §; >,
C(t,S,) ~S, —e K

Note 1 : the parameter § is no more present in
this equation (just like the historical probability in
the binomial model)

Note 2 : the proportion X = C¢ for the portfolio
with no random component can be interpreted as
the “delta hedging” : the portfolio with
- a short position of 1 unit of call
- along position with Cg = A unit(s) of the
underlying equity
is non risky (= is hedged)



From the PDE to the heat equation Heat equation

Change of variables The partial derivatives of C in the PDE are given
by
The variables/unknown (z,S; C) are replaced by C{=Co 0t +Cyrxi
new variables/unknown (6,x;u)
Cs =Cp- 05+ Cy x5 = Cy v x5

2

. g
We also introduce the constant m = r — - )
Css = Aﬁme xm + Cx - (x5)s
_ . . LAl 1o,
= (Cy xm m Yx Rmv Xs + Cx " Xgs
new < old old « new — A \VN +CL-x!
2 2 2 2 - Yxx .X..m. X .X..m.,m.
0 =2m°t/o T=00“/2m
2m a?(x—0)
X=5 A_sﬁwv+§ﬁv S=K-e 2m But,
u=e-C C = mlﬂmo.m\mw:m ‘U
rog? 2
- ro )]
Ch =e 2m? AI u+u v
Q NSN %
réo rog?
I __ - 2 . ! o __ - 2 . 143
ﬁ.xlm 2m= s Uy xx — € 2Mm° " Uyxy
2m?
6 = —
t o2
X! = 2m? X! = 2m Xl = 2m
t — o2 S o2S SS — 0252



I 2 I _ r_ !
Ci = - e 2m 72 U—Ug — Uy
2m _rfg?
ﬁi =——¢ 2m? -/
2
" 2m Iﬁmo.m 2m 7 !
= 2m _ —
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Uy, =0

The coefficient of u; being equal to 0, the PDE
becomes
:w = Uy

= 1D heat flow equation with length (x) and time
(@) variables

Limit conditions

a) Terminal condition: C(T,Sy) = (S; — K)*

When t =T (or T = 0), then

2

6=0 and Syp=K-ezm

u(0,x) =C(T,S;) =K -

When x < 0, we have u(0,x)

When x = 0, we have u(0,x)

So,

o%x

u(0,x) = K-(ezm — 1

= initial condition for u (6, x)

o%x
e2m — 1

=0

= K:-[em — 1

A+ (x) = v(x)



b) Boundary condition1: C(t,0) =0
When S — 0, then x » —o0, and

lim u(@,x) =0

X——00

c) Boundary condition 2 :
whenS >, C(t,S)~S—e K

When S = 40, then
x> 4+ and C(t,5) =S —e 'K

u(@,x) =e" (S — e "K)

=e"'S—K
ﬂmq NARIS
= 2m — Nﬂ
0
_ mN§ x—6+1 v 1

ZWQNS

Solving heat equation

The question is to solve the problem
ro_
Ug = Uy

with  1C:  u(0,x) = v(x)
BCl: lim,,_,u(8,x)=0

Q.NR

BC2: if x >, then u(f,x)~Kezm

Heat equation

_(x=»*
e 406

u(f,x) = N/\I\\ v(y)—— NG dy

The variables 8 and x are presentonly in

_(x=)*
e 46

S\A%..&v = #



=92 [ (x — y)?
f G x—y)* 1

W = 7=¢ 107 20
1 _G=p? A 2(x — Ev
w.=—e¢ 46 [ _727
* e 40
y 1 (x=y)? 2(x —vy) 2 9
Wy = —=E¢€ 40 — —_—

Jo 40 40

and we have w, = wy)

Note : by using the substitution z = NoTL the

solution of the heat equation can be written

_(x=y)?
w(0,x) = 5= [ v 5 —dy
72
= W%wowo v(zV20 + x) e zdz
=FE A@ANQ + va

where Z~N(0; 1)

Limit conditions
a) Initial condition: u(0,x) = v(x)

u(0,x) = m?@d = v(x)

b) Boundary condition1: lim,__, u(6,x) =0

_(x=y)?
lime 46 =0

X—>—00

c) Boundary condition 2 :

2

if x>, then u(f,x)~Kezm

u(@,x) =E ?Awa + xvv
8m?O®v

D.NX

= K-[emm —1) - 1p+(x)

O.NX

~ Kez2m



Black & Scholes model

Development of the solution of heat equation

With the specific expression for v(y), we have

(x=y)?
o0 a0
u®,x) == v —5—dy

o’y (=2

ezm —1)e 46 dy

K
Imaso

2 2
400 O u\ _&=»
= g%@ e 2m 46 dy

(x- EN

— 7o dy

=hL -1

The exponentin I, is equal to

1 2002
Im—G\NINﬁ\+xJI Mu\_
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__1 y — AX n ﬁv . Ammqg N 200%x
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and we have

h =37
2
+00 1 0c?
e (-3(-(+22) )y
And, with the substitution
2
(e 5)
7 =
V20
_ . 3%%@. +2mx)  +®
I, =K -ex %Aiﬁv\je@vaw
+®QN
. SNO@Q +2mx) | _ A
=K-es 1-0 NeT
2 0o?
. $Am9N+N§xv . X+—
= K- e4 0 NeTd



On the other hand, with the substitution Reverse change of variables

anlx a)
20 2
We have V20 Mzw (85? + 2mx)
_ o? 2 4m? N
o ey = 2m T + — A_: Axv + Sﬁv
I, = Ce a0 d
CamL Y =5 e+ (-5)s
= K- z)dz
hx\gsﬁ =In Amv +rt
—r.(1= _ X
=K T J vi
— K. X so that
=Ko (55)
O.N
Finally, K - emm2(097+2mx) _ . exp T: Amv + 3_
— . (2. T
) (802 +2mx) R+ﬁ =k Aw € v
_ . pam2 og°+2mx . m — pI'T .,
u(6,x) = K - eam? d 76 e't-S

~ Ko (55)



b)

0o? 2m

V26 2m T

Finally,

u(0(z,5),x(z,5)) = €S - ®(dy) — K - ®(d;)

And then,

mlﬁﬂ. U
e (7S - d(dy) — K - d(dy))
§-@(dy) —e™K - @(dy)



Final note

The general scheme used in the arbitrage
approach

1) Evolution of the underlying equity : GBM
2) Portfolio (+X-S—1-C):
with X such that the portfolio has no
risky component
3) Arbitrage free reasoning :
return = risk-free rate — PDE
4) Solving the PDE

is quite general for the pricing of different assets
in stochastic finance



