Chapter 4
Part Il

FINANCIAL APPLICATIONS Stochastic calculus

Brownian motion

4. Stochastic calculus

Stochastic integral
Stochastic differential
Change of probability measure

5. Option pricing models

6. Interest rate models



Brownian motion

Definition
o Argument
o Definition
Properties
o Elementary properties
o Quadratic variation of a SBM
o Regularity properties
Simulation of a SBM
Associated BM
o Arithmetic BM
o Brownian bridge
BM and martingales
o Examples of martingales
o Reciprocal
o Exponential BM
o Using BM as a “noise”
Hitting time for a SBM
o Definition and property
o Reflection principle
o Distribution of hitting time and maximum

Argument

Let us consider a (discrete time) symmetrical

Definition

random walk (X;)

—Ax Ax

n
Xt - Z Zk
k=1

with
-t=n-At

- independent moves

'XOZO

We know that

—A
Zk~< l
2
E(X;)) =0
2
var(X;) = (8x) t

At

v



We want to define
- a continuous time stochastic process
- with positive constant instantaneous variance
o if var(X;) — oo, too “explosive” : the
fluctuations will grow to infinity
o if var(X;) — 0, no more random

So, we have to
- let At tendto 0O
(Ax)?

- in such a manner that t->C-t

We can choose C = 1: if we want another
constant o, we will consider (aX;)

Thanks to the CLT, we have

n
X, = sz SN0 D)
k=1

Furthermore, a random walk has independent and
stationary increments ...

Definition

A continuous time stochastic process (W;) isa
standard brownian motion (SBM) if

-Wy=0

- (W;) has independent increments

(W;) has stationary increments

The notation “W” is for Wiener

Strictly speaking, a Wiener process on a
probability space (Q,F,Pr, F) isa SBM adapted
to the filtration F



Properties

Elementary properties
a) A SBMis a Gaussian process
b) If s<t, W, —W,) 2 W;_s~N(0;t—5)
c) Wehave E(W;) =0, var(W,) =t and
cov(W;, W) = min(s, t)
Proof : if s <t
cov(Ws, W) = cov(Ws, W, — Wy + W)

= cov(Ws, Wy — Ws) + cov(Ws, W)
=0+s

Quadpratic variation of a SBM

Let us consider a partition P, of the time interval
[0;t] (0=t,<t; <--<t,=t) suchthat

571 = max{tl - to, by — 89, .., by — tn—l}
tendsto 0 when n —» o

We define the quadratic variation of the SBM W,
associated with the partition %,,, by

0n(0) = ) (Wey ~ W,_,)"
i=1



q.m.
Property : when n — o, we have Q,(t) — t

Lemma : if X~N(0;02), then var(X?) = 20*

Since u, = 30*, we have
var(X?) = E(X*) — E?(X?) = 30* — (0?)?

Proof

. E(Q.(1) =X, E ((Wti - Wti—l)z)

=2t —ti—1)
—t

. var(Qn (t)) =y  var ((Wti — Wti—l)z)
=230 (t; — t;_q1)?
< 2671 Z?=1(ti - ti—l)
= 2t5,
-0

sothat E((Q,,(t) —t)?) -0

Regularity properties
a) The paths of a SBM are continuous
We have to prove that limpas_,g Wipnr = Ws

We give a proof for limit in probability. Let us
choose an arbitrary &€ > 0. We will prove that

Alir—r}o Pr[|Wisar — Wil > €] =0
Since (ChebysheV’s inequality)
1
Pr(|Wyar — W — 0] > hv/At] < P
we have

At
Pr|Wisar — Wil > €] < 27 0



b) The paths of a SBM are nowhere derivable
Werae = We ~ NV (0; At) £ VAt - Z
with Z ~ N (0;1)

Wesae =W, , 2

A

At VAt

that tends to +o0, depending on the sign of Z

Interpretation of this property : a SBM is
unpredictable over short time intervals

c) A SBM has unbounded variations. More
precisely (with the same notations as for
guadratic variation),

|Wti - Wti—ll = 400 a.s.

n
=1

Ve = sup
Pn

l

If V; were finite (= C, say), then, for any
partition 7,

Qn(t) = ?zl(Wti - Wti—1)2

< X W, = W, |- lax |ij Wy,

oM

]:

< C- max |Wtj — Wtj_1

j=1,..,n

and the 2" factor tends to 0 by continuity of the
paths of the SBM. This is incompatible with the
property of quadratic variation: Q,(t) = t



d) Self-similarity of a SBM
(= scaling effect = “fractals” property)

By definition, a stochastic process is H-self-similar
if, forany n>1, t4,...,t, €T and 1> 0,

(X/ltll ---;XAtn ) = (AHth, ...,AHth )
H is the Hurst index of the stochastic process

Property : a SBM is %—self—similar ;

(Wi, oes Wi ) 2 (VAW ..., VAW, )
Proof (for n = 1):
Wi ~ N (0; At) =VA-N(0; t) ~VA- W,
Interpretation : the pattern of any path of a SBM

has a similar shape, independently of the length of
the time interval

Simulation of a SBM

It is easy to obtain pseudo-random values for the
law of X from U(0; 1) pseudo-random values :

F;lU) 2 X

Pr[Fy 1(U) < t] = Pr[U < Fy(t)] = Fx(t)

Densité exponentielle (1/3)

04 -

03 1

02 -

0,1 1

0 2 4 6 8 10 12

f.r. exponentielle (1/3)

08

06

04

02 1




For simulating a path of a SBM, we discretize the
time variable : let the time interval [0; t] be
partitioned in n sub-intervals of length At :
t=n-At

We know that

Wae, Waae = Wae)s o Whae = Wen—1)at)
arei.i.d.rv. ~N(0; At)

Algorithm :

- Generate n pseudo-random values uq, ..., U,
valuesofa U(0;1) r.v.

- Take the reciprocal of these values to obtain
pseudo-random normal values

Wine = Wij—nyae = Fy (w5 0, At)
- Cumulate these values
Wiar = Z?=1(WjAt - W(j—l)At)

- Using continuity of the path, connect the

points by line segments

Simulated standard brownian motion

T T T T \‘
0,06 0,08 01 0,12 0, #




Associated BM

Arithmetic BM

An ABM with drift a (€ R) and volatility
o (> 0), associated to the SBM (I/,), is a
stochastic process (X;) defined by

Xt - (Xt+O'Wt

Properties
- An ABM is a Gaussian process
- Moments:
px(t) = at
oZ(t) = ot

cx(s,t) = o2 min(s, t)

This process can be generalized for beginning at a
value x, instead of O :

Xt=x0+0(t+O'Wt

Brownian bridge

A Brownian bridge over the time interval [0; 1],
associated to the SBM (W,), is a stochastic
process (X;) defined by

Xt = Wt - th
Properties
- A Brownian bridge is a Gaussian process
- Xo = Xl - 0
- Moments:

px(t) =0
oz(t) =t(1—1t)
cx(s,t) = min(s,t) — st

For the covariance function,

cx (s, t) = cov(W, — sWy, W, — tW;)
= min(s,t) — smin(1,t)
—tmin(s, 1) + st min(1, 1)
= min(s,t) — st



Brownian motion and martingales

Let us consider a probability space (L, F, Pr, F)
where F is the natural filtration of a SBM (W,)

(In this section, we will suppose 0 < s < t)
Examples of martingales
a) (W,) isamartingale
EW|Fs) = EW, — Wy + W |F)
= E(W, — W|Fy) + E(W|F)

= E(W; — Wy) + E(W|F)
=0+ W,

b) (W72 —t) is a martingale

E(W¢ —t|F) = EWE — W& + W2 F) —t
= E(W¢# — WE|F,)
+E(WE|F,) —t
= E(W?Z — W2|Fs) + W2 —t

But, W2 — W2 = (W, — W,)? + 2W,(W, — W;)
so that

E(Wtz - W52|Ts)
= E((W, — W,)?|Fs) + 2E(W;(W, — WI|F)
= (t —s)+ 2W; E(W, — W,|F)
=(t—s)+2W; E(W; — W)
—t—s

and we have

EWE:—t|F)=((t—s)+W2—t
:]/VSZ—S



c) Counter-example: (W;®) is not a martingale Exponential Brownian motion
We know that An EBM is a stochastic process (X;) defined by

E((W, —We)P|F) = E((W, — Wp)®) =0 o’t

Xt — eO'Wt— 2

0= E(W — 3WZW; + 3W, W — W3 |F)
= EW3|Fs) — 3W,E(WZ|F,)
+3WZE(W,|F) — W3
= E(WE|F,) — 3W,E((W? — t) + t|F,)
+3WIW, — W
oW, — o(We=Ws) . goWs
— E(Wt3|j::g) _ 3VVS[(VV52 _ S) + t] + 2”/53 E(e tlj::s) E(e t e |‘7::S')

_ oW, . W, —W,
= E(W3|F,) — W3 + 3W,(s — t) = e - E(e? | E,)
= eO-WS . E(eo-(Wt_WS))

with 0 > 0

Property : an EBM is a martingale

a2 (t-s)
so that oWy 2::
E(WEIF,) = W — 3Ws(s — t) # W3

so that

E(X;|%) =E (e“Wt‘T

Reciprocal (without proof)

If a stochastic process (X;) issuchthat (X;) and oWs . e—a—
(X2 — t) are martingales, then (X,) isa SBM = X,



Particular case : if s =0,

Using BM as a “noise”

Obijective : express a stochastic process (X;) as
the “superposition” of

- a deterministic function f;

- a non predictable “noise” (= martingale)

We can use

a) a SBM as an additive random noise :
Xt - ft + O_Wt

b) An EBM as a multiplicative random noise :

2

o2t

— ., OW———
Xe=fi-e 2

In both case, E(X;) = f;

Hitting time for a SBM

Definition and property

For any fixed a > 0, we define the hitting time T,
as the first time the SBM W, hits the value a:

min{t €T : W; = a}
(and +oo if W, +a VteT)

Property : the hitting time is a stopping time



Reflection principle
By symmetry, knowing that T, < t, the events
[W; > a] and [W; < a] have the same

probability :

Pr([W; > a]|[T, < t]) = Pr([W, < a]l|[T, < t])
1

2

.

w N

Wi 2 . . ?
WA :

Distribution of hitting time and maximum

¢ By total probabilities formula,

Pr[W, > a] = Pr([W; > a]
+ Pr([W; > a]
= ~Pr{T, <t

|
|

D Pr[T, < t]

|
| D Pr(T, > t]

T, <t
T, >t

So,
Fr (t) = Pr[T, < t]
= 2 Pr[W, > a]

-2(1-0(3)
-20(-2)

o If we define M; = max{W, : 0 < s < t},

Pr[M; > a] =Pr[T, <t]=2® (— %)



Stochastic integral

- Definition
o Motivation
o Classical Riemann integral
o Stieltjes-Riemann integral
o Generalization ?
o Choice of a definition
o Definition
- Properties
o Conditions of existence
o Properties

Definition
Motivation

- The definition of the integral of a function
f(x) is concerned with small variations of the
variable x

- The definition of the differential of a function
f (df (x) = f'(x) - dx) is also concerned
with small variations of the variable x

Here, we will look at the time variations “through
a SBM”, which has

- unbounded variations

- non differentiable paths

The convergence being no more defined in the
classical way, we have to give new definitions



Classical Riemann integral

fix)1

a b X
Let P, be a partition of [a; b]

a=t0<t1<'”<tn_1<tn=b

with
ti—tiog = 4

671 = maX(Al, Az, A )

w8y

and let choose
u; € Jtiq; tl

The Riemann integral is defined by

n

b
| raau=jim Y fao-a
a 6n,—0 i=1

It can be prove thatif f is sufficiently “regular”
(continuous by parts e.g.), this integral

- exists

- isindependent of P,

- isindependent of the choice of u; in

Iti—1; til



Stieltjes-Riemann integral

This is the same notion as ordinary Riemann
integral, but the measure along horizontal axis is
no more the length of segments, but the length
through another function g

b
[ ra aga

P NI ORI EFICEY)

6n—0 i=1

This integral has the same properties as the
ordinary Riemann integral (with, furthermore,
regularity conditions for g)

Example
+ 00
j u dFy(u)
_oo .
= nl_i)l’_poo z u; - Pr[ti_l <X < ti]
6n—>0 i=1

= E(X)

Note : from now on, the interval of integration
becomes [0; T] instead of [a; b]



Generalization ?

Let (X;) be a stochastic process and (W;) a SBM.

How can we define fOTXu aw,, ?

Problems

a) Convergence “point by point” is the
convergence a.s. (incompatible with the
unbounded variation of the SBM)

=>» Solution : give a definition with another
convergence mode (g.m.)

b) The definition is no more independent of the
choice of u; in]t;_q; t;[

=» Solution : make a choice for u;

Let us examine the particular case of

T n
TR T
0 6n—0 i=1

We will need the following lemma

a(b—a) =5[(b*-a®) - (b — a)?]

N =N -

b(b—a) ==[(b?>—a?®) + (b —a)?]

e First choice: u; = t;_4

n T n
Jy W, aw,

= limn-+e Z?=1 Wtz—1 ) (Wti - Wti—1)
6n—0

=1 lim ¥ {(WE - W2,) - (W - W,

n—+eo
6n—0

3 dim, (W7 = 0u(D)

n—-+oo
6,—0

=~ (W#-T)

(this last convergence is in g.m.)



® Second choice: u; = t;

=§<W%+T>

ti—1t+t;

¢ Third choice: u; = .

It can be shown that
r 1
HJ m/u dVVu n — _W'Zg
0 2

Note
- First choice : It6 integral

- Third choice : Stratonovich integral

Choice of a definition

e Stratonovich integral give the same result as in
the deterministic case : if f(0) = 0, by integrating
by parts,

T 1
[ raar@ =52
0

® |t0 integral has two interesting properties

a) Non-anticipativity : for the i-th interval
1t;_1; t;[, the integrand X, is known at time
ti—1

b) We know that the stochastic process
(WZ — t) isamartingale ; so is the Itd integral

=>» 1t0 integral is chosen for applications in
finance



Definition

Let (X;) be a stochastic process adapted to the
natural filtration of the SBM (I/;). We define

T
Ip = j X, dW, = lim  I{"
0 6n—0
where

n
17(‘n) = Z Xy (Wti - Wti—1)
i=1

More precisely, it can be prove that there exists a
r.v. I+ such that

Jim, E[(57 1) ] =0
6,0

so that I;n) converges in g.m. to I

Note : the hypothesis implies that X; _ is
independent of (Wti — Wti—l)

Properties

Condition of existence

If (X;) isa stochastic process adapted to the
natural filtration of the SBM (/;), then

T
j X, dW,
0

exists if
- paths of (X;) are continuous

- E(fOTXu du) is finite



Properties
a) fOT (/11X1(¢1) + AZX152)) dW,
T T
= /11] ngl) aw, + Azj X152) dW,
0 0
T
b) E(fy X, dW;,) =0

Proof :

E (Xti_l (Wti _ Wti—1))

=E(X;_,) E(Wy, —W,_,)

c) var (fOTXu qu) = fOTE(Xﬁ) du

Proof :

var (fOTXu qu) =E l(foTXu qu)Z]

6n,—0 =
& - th 1(Wti Wti—l
w2m ) ) F
Sp—0 i=1 j=1 R (Wtf — Wy

But

and the first term is equal to fOTE(Xﬁ) du

Furthermore, for i <,

-0 3, )

= £ (Xti—1 (Wti - Wti—l)Xt]'—l) E (Wtf - Wtf‘l)

=0



d) The stochastic process (I;) for t € [0;T] isa EU|F) =1, +E (th-1 (Wtj _ Ws) |g:s)

martingale <
+ Z E (Xti—l(Wti o Wti—1)|T5)
For s <t, o (x

+E (th—1 (Wt o Wtk—1)|j:5)

QIR = Jim ) E (X, (W, — W, )IF) =L+ (@ + (1) + ()

6n—0 i=1
(@) = X;,_, - E (W, - W;I%)
o |f s, t € ]tk—l; tk] = th—l -F (Wtj - VVS)
b st t '

(b): E (Xti—1 (Wti o Wti—1)|j:5)
E(Ie|Fs) = Is + E (Xy,_, (We = Wo)I) = 5 (X, (W~ We,))
= I+ Xy, E W, = WLIF) T T
=Is+ X, EW, — W)
= I

=E (Xti—1) B (Wfi — Wti—1)

oIf s €1ti_y; t;]and t € Jty_y; ti] with j <k (c) =0 : samereasoningas (b)

! ! ! ! ! ! > e) The stochastic process (I;) has continuous
paths (without proof)



Stochastic differential

Definition

o In the deterministic case

o In the stochastic case
Properties

o Formal multiplication rules

o Properties
Examples

o Simple examples

o Arithmetic Brownian motion

o Geometric Brownian motion
Use of the stochastic differential

o Evolution of financial variables

o Classical stochastic differentials in finance

Definition
In the deterministic case

dX(t) = f(t) - dt
= X(®) =X(0) + [, f(wdu

Generalization ?
- One term with “dt” (trend)
- One term with “dW,” (noise)

In the stochastic case

If the stochastic processes (a;) and (b;) are
integrables and adapted to the natural filtration of
the SBM (W,), we define

dXt =at'dt+bt'th
by
t

Xt:XO-l_j

t
ay du+j b, dW,
0 0



Properties

Formal multiplication rules

We will neglect terms smaller than dt (= o(dt))
e (dt)? =0

o dt X dW,; = 0

E(dt-dW,) =dt-E(dW,) =0
var(dt - dW,) = (dt)? - var(dW,) = (dt)3

o (dW,)? =~ dt

E((dW,)?) = var(dW,) = dt
var((dW,)?) = 2(var(dw,))” = 2(dt)?

1 AW, dt

1 1 AW, dt
dw, | dw, | dt 0
dt dt 0 0

Properties

a) Linearity:if (Xt(l)) and (Xt(z)) are defined
w.r.t. the same SBM (IW,),

d (2% + 2,%2) = 2, dx(P + 2, dx

b) Product : if

dx® =a® ar+b® aw, (k=12

then

d(xPx®)

=xVdx? + xPax® + bPbPdt



Proof

Taylor formula for n variables x = (xq, ..., x,,)

n 1 n n
dfC) = ) fhdxi+5 > > ity dx dx
i=1 [

appliedto f(xq,x,) = x,.x, give

d(xPx®)

= xPax® + xPax® +2-2(ax® - dx?)

and

dxV - dx®

= (aat + bV aw;) (aPat + bPaw,)

= bV (dW,)?

c)

If

Compound function (= It6’s lemma)

dX; = a;-dt + b, -dW; andif f(t,x) isa

deterministic function, derivable (one time w.r.t. t

and twice w.r.t. x), then

df(t, Xt)

2
= <ft’(t' Xe) +af (X)) + %t x () Xt)) - dt
+bef (t, X¢) - AW,

Proof : by Taylor,

df (t, X¢)

= f¢ dt + f¢ dX;
+2 [ (dE)? + 2f5% (dt)(dX,) + fix(dX,)?]
= f; dt + f{ dX, + fix(dX,)?

and

(dX.)? = (a; - dt + b, - AW,)? = b? dt
t t t t t



Examples
Simple examples
a) f(t,x)=g{t)x and X, =W,
d(g(OW,) = g'(OW, dt + g(t) dW,

[ dgOw,) = g(TWy
=[5 g'(OW, dt + [] g(t) dW,

T T
| 9 aw, = gmwy - | g'@w, ae
0 0

(= integration by parts)

b) f(t,x) =x? and X, = W,
1
[FdW2) =Wz = [ dt+2[ W,dw,
0 t - T — Jo 0 t t
T 1
0

c) f(t,x) =e* and dX; = a; dt + b, dW;

d(e*t) = (at eXt +bz—"g eXt )dt + b, eXt dW,
= eXt [(at + b?’?) dt + b, th]

= ee[dx, + % dt]



Arithmetic Brownian motion
Definition : X; = Xy + at + oW,

dX, = a dt + o dW,

Geometric Brownian motion
Definition : S, = S, e#ttoWe
f(t,x) =S, ettt9% and X, = W,
o2
dS; = <,uSt + 75}) dt + aS; dW;

= 55{: dt + O_St th

2

with 6=u+%

So, the GBM can be written

g2

S, =S, e<6 > >t+0'Wt

2
5-Z)erome
Moments : e( 2 being a log-normal r.v.,

2 2
o o°t
—>t+—

E(S,) = S, (-7t _ S, %t

0-2
var(S,) = S¢ 92(6_7)t+62t(e“2t - 1)

— Sg eZSt(eazt _ 1)



Use of the stochastic differential

Evolution of a financial variable

dXt = at dt + bt th

is an equation that describe the evolution of a
financial variable

- For an equity, we have solved the equation :

GBM

- For an option, we will solve it

- For ayield curve, the evolution of a state
variable 7 will be describe by a stochastic
differential and we will deduce R;(s)

However, we will not study the techniques for
solving a general SDE

Classical stochastic differentials in finance

For an It0 stochastic differential, the stochastic
processes (a;) and (b;) are deterministic
functions of t and X;

Here, these functions do not depend explicitly on

the time variable t
a, = a(X;) by = b(X;)

Arithmetic Brownian motion
dX; = adt+odW;

Geometric Brownian motion
dXt = 5Xt dt + O_Xt th

Ornstein-Uhlenbeck process

Square-root process
dXt - 5(0 - Xt) dt + O-—\/Xt th



Change of probability measure

- Radon-Nikodym theorem
o Discrete case
o General case
- Girsanov theorem
o Girsanov theorem
o Generalization

Radon-Nikodym theorem

Discrete case

Let Q = {wy, Wy, ..., Wy, ...} be the set of
possible outcomes in a random situation with
probability measure Pr:

Pr({w;}) = p; Epi=1)

Let Q be another probability measure for this
random situation :

Q({wi}) = g; Qqa=1
Ther.v. L is defined by
L(w) = &

l



This r.v. has the following properties General case
- L positive
- Ep(L) = ZZ_E p; =1 Let Pr and Q be two probability measures on
- Foranyr.v. X, (@, )

; We say that @ is absolutely continuous w.r.t. Pr
E,(X) =X X(w;)q; :ZX(wi)Z_ipi =E,(L-X)

(Q < Pr) if
and, in the particular case where X = 1,, VAEF, (QA)=0 = Pr(4)=0
Q(A) = E,(L-1,) If Q << Pr and Pr « Q, the two measures are

said equivalent



Radon-Nikodym theorem

Q is absolutely continuous w.r.t. Pr
if and only if there exist a positive r.v. L such that

VAeEF, Q(A) = J L(w) dPr(w)
A

or, equivalently,

Q(A) = Eg(1,) = Ep,(L-1,)

L is named Radon-Nikodym derivative and one
writes
dqQ

L=—
dPr

Property : by putting A = (), we have

1= Q@) = f L(w) dPr(w) = Epe(L)

Q

Girsanov theorem

Girsanov theorem

The definition of a SBM depends heavily on the
probability measure : independent and stationary
increments, normal distribution, ...

Let us consider a SBM (IW;) on (Q,F,Pr) for the
time interval [0; T].

The stochastic process (Wt), defined by
W, = W, + qt, is an ABM, but no more a SBM :

E(W,)=qt#0

2¢
The EBM L, = e ™™z s a positive stochastic

process, martingale, with E,(L;) = 1. We will use
it as a Radon-Nikodym derivative



Girsanov theorem

® The function

0(4) = f Lr(@) dPr(@) (A€ F)

A

is a probability measure

e The Q measure is equivalent to the Pr
measure

e Under Q, (W,) is a SBM, adapted to the
natural filtration of (IW;)

The @Q measure is the equivalent martingale
measure

Generalization

Let (W;) beaSBMon (Q,F,Pr) forthe time
interval [0;T] and (W,) the associated ABM
with drift u and volatility o :

Wt — Mt + O-Wt

Then, (Wt) is an ABM with drift v and volatility
o under the probability measure

0(4) = j Lr() dPr(0)  (AEF)

A

where




