Chapter 3

Stochastic processes

- Definitions
- A discrete time stochastic process : random walk
- Martingales
- Gaussian process

Definitions

- Stochastic process
- Distribution of a stochastic process
- Probability distribution
- Moments
- Possible properties of a stochastic process
- Strict statinarity
- Wide stationarity
- Stationary increments
- Independent increments
- Filtration
- Definition
- Filtration and stochastic process
- Example
- Stopping time
- Definition
- A particular stopping time : the barrier
- Example

Stochastic process

A stochastic process is a family of r.v., indexed by time

$$(X_t): \Omega \times T : (\omega, t) \mapsto X_t(\omega)$$

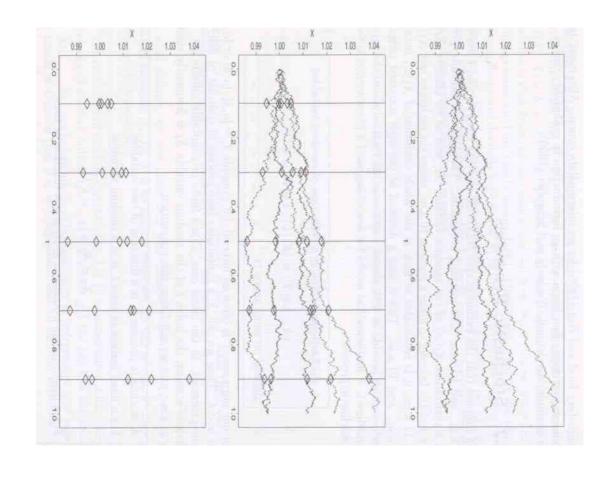
If the time set T is

- discrete, (X_t) is a discrete time stochastic process (= sequence of r.v.)
- continuous, (X_t) is a continuous time stochastic process

Let (X_t) be a stochastic process

- for any fixed $t \in T$, X_t is a r.v.
- for any fixed $\omega \in \Omega$, $X_t(\omega)$ is a path (trajectory) of the stochastic process

If $T=\mathbb{N}$ or \mathbb{Z} , the stochastic process (X_t) is a time series



Distribution of a stochastic process

Probability distribution

The probability distribution of a r.v. is given by $\Pr[X \in E]$ for any Borel set E

The finite-dimensional distribution of a stochastic process $\left(X_{t}\right)$ is the probability distribution of

$$\left(X_{t_1}, \dots, X_{t_n}\right)$$

for any $n \ge 1$, $t_1, \dots, t_n \in T$

Moments

- a) Expectation : $\mu_X(t) = E(X_t)$ $\forall t \in T$
- b) Variance: $\sigma_X^2(t) = var(X_t)$ $\forall t \in T$
- c) Covariance : $c_X(s,t) = cov(X_s,X_t)$

Property :
$$c_X(t,t) = \sigma_X^2(t)$$

Possible properties of a stochastic process

Indicate dependence structure

Strict stationarity

The stochastic process (X_t) is strictly stationary if, $\forall n \geq 1, \ t_1, ..., t_n \in T, \ h$ [such that $t_1+h, ..., t_n+h \in T$], then $(X_{t_1}, ..., X_{t_n})$ and $(X_{t_1+h}, ..., X_{t_n+h})$ have the same probability distribution :

$$\left(X_{t_1},\ldots,X_{t_n}\right)\triangleq\left(X_{t_1+h},\ldots,X_{t_n+h}\right)$$

Property : if the stochastic process (X_t) is strictly stationary, then

$$\mu_X(t) = \mu_X(0) \quad \forall t$$

$$\sigma_X^2(t) = \sigma_X^2(0) \quad \forall t$$

$$c_X(s,t) = c_X(|t-s|) \quad \forall s,t$$

Wide stationarity

(or "2nd order stationarity")

The stochastic process $\left(X_{t}\right)$ is stationary in the wide sense if

$$\mu_X(t) = \mu_X(0) \quad \forall t$$

$$c_X(s,t) = c_X(|t-s|) \quad \forall s,t$$

Property: if the stochastic process (X_t) is stationary in the wide sense, then

$$\sigma_X^2(t) = \sigma_X^2(0)$$
 Yt

Stationary increments

The stochastic process (X_t) has stationary increments (or is homogeneous) if

$$X_t - X_s \triangleq X_{t+h} - X_{s+h}$$
 $\forall s, t, h$

Independent increments

The stochastic process (X_t) has independent increments if, $\forall n \geq 1, \ t_1 < t_2 < \ldots < t_n \in T$, the r.v.

$$(X_{t_2} - X_{t_1}), (X_{t_3} - X_{t_2}), \dots, (X_{t_n} - X_{t_{n-1}})$$

are independent

Filtration

Definition

Let $(\Omega, \mathcal{F}, \Pr)$ be a probability space

A filtration is an increasing family of sub- σ -fields of ${\mathcal F}\,$:

$$\begin{cases} \mathbf{F} = \{\mathcal{F}_t \colon t \in T\} \\ s < t \Longrightarrow \ \mathcal{F}_s \subset \mathcal{F}_t \ (\subset \mathcal{F}) \end{cases}$$

Interpretation: \mathcal{F}_t is the collection of events representing the available information up to t (= the history up to t)

Note : generally, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and, in this case,

$$E(\cdot \mid \mathcal{F}_0) = E(\cdot)$$

We can now generalize the probability space when a time variable is present : $(\Omega, \mathcal{F}, \Pr, \mathbf{F})$

Filtration and stochastic process

a) Natural filtration of a stochastic process :

$$\mathcal{F}_t = \sigma(\{X_s : s \le t\}) \qquad \forall t$$

= the history of the stochastic process

b) A stochastic process (X_t) is adapted to a filtration ${\bf F}$ if

 $\forall t, X_t$ is \mathcal{F}_t -measurable

c) Conditional expectation w.r.t. a filtration : if X is a r.v., let define $M_t = E(X|\mathcal{F}_t)$

Property : $\{M_t: t\in T\}$ is a stochastic process, adapted to ${\bf F}$

Interpretation: M_t represents the mean estimation of X, taking into account the available information up to t

Example: tossing a coin 3 times

A (symmetric) coin is tossed 3 times, independently

Let us define X_t the number of "tail(s)" up to the t-th toss (t=0,1,2,3)

(a) We can, for each possible outcome, associate the value of these r.v.:

X_3	X_2	X_1	X_0	Ω
ω	2	1	0	TTT
2	2	1	0	TTH
2	1	1	0	THT
2	1	0	0	HTT
Ъ	1	1	0	THH
1	1	0	0	HTH
_	0	0	0	HHT
0	0	0	0	HHH

(b) Natural filtration of the stochastic process
$$\{X_t: t=0,1,2,3\}$$
 ?

$$\mathcal{F}_0 = \{\emptyset, \Omega\}$$

$$\begin{split} \mathcal{F}_1 &= \{\emptyset, \Omega, A_T, A_H\} = \sigma(\{A_T, A_H\}) \\ \text{with} \quad A_T &= \{TTT, TTH, THT, THH\} \\ A_H &= \{HTT, HTH, HHT, HHH\} \end{split}$$

$$\mathcal{F}_2 = \sigma(\{\emptyset, \Omega, A_{TT}, A_{TH}, A_{HT}, A_{HH}\})$$
 with
$$A_{TT} = \{TTT, TTH\}$$

$$A_{TH} = \{THT, THH\}$$

$$A_{HT} = \{HTT, HTH\}$$

$$A_{HH} = \{HHT, HHH\}$$

$$\mathcal{F}_3 = \mathcal{F} = \mathcal{P}(\Omega)$$

- (c) Conditional expectations of X_3 = number of "tail(s)" after 3 tosses?
- w.r.t. \mathcal{F}_0 : for any $\omega \in \Omega$,

$$\omega \mapsto 3 \cdot \frac{1}{8} + 2 \cdot \frac{1}{8} + \dots + 0 \cdot \frac{1}{8} = \frac{3}{2}$$

Note :
$$E(X_3|\mathcal{F}_0) = E(X_3)$$

 X_3 is independent of \mathcal{F}_0 (R3)

w.r.t. \mathcal{F}_1

$$\omega \in A_T \longmapsto 3 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} = 2$$

$$\omega \in A_F \longmapsto 2 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} = 1$$

- w.r.t.
$$\mathcal{F}_2$$

$$\omega \in A_{TT} \longrightarrow 3 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = \frac{5}{2}$$

$$\omega \in A_{TF} \longrightarrow 2 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{3}{2}$$

$$\omega \in A_{FT} \longrightarrow 2 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{3}{2}$$

$$\omega \in A_{FF} \longrightarrow 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{2}$$

$$\omega \in A_{FT} \mapsto 2 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Note 1:
$$E[E(X_3|\mathcal{F}_2)|\mathcal{F}_1] = E(X_3|\mathcal{F}_1)$$
 (R6)

Note 2 :
$$E(E(X_3|\mathcal{F}_2))$$

$$= \frac{5}{2} \cdot \frac{1}{4} + \frac{3}{2} \cdot \frac{1}{4} + \frac{3}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} = \frac{3}{2}$$
$$= E(X_3)$$

(R2)

- w.r.t.
$$\mathcal{F}_3$$

$$\omega = TTT \longrightarrow 3$$
$$\omega = TTF \longrightarrow 2$$

$$\omega = FFF \mapsto 0$$

Note:
$$E(X_3|\mathcal{F}_3) = X_3$$
 (R4)

Stopping time

Definition

A stopping time on $(\Omega, \mathcal{F}, \Pr, \mathbf{F})$ is a r.v. τ with values in $\overline{\mathbb{R}^+} = \mathbb{R}^+ \cup \{\infty\}$ such that

$$\forall t \in T, \qquad [\tau \le t] \in \mathcal{F}_t$$

Interpretation: a rule which tells when to stop, based only on the knowing of the history up to the instant of stopping

Property : if τ_1 and τ_2 are two stopping times, then $\min(\tau_1,\tau_2)$ and $\max(\tau_1,\tau_2)$ are also stopping times

Example: for the short-term interest rate r(t),

- the first time $\,r(t)\,$ is equal to $\,3\,\%$ is a stopping time
- the last time $\,r(t)\,$ is equal to 3 % is not a stopping time

A particular stopping time: the barrier

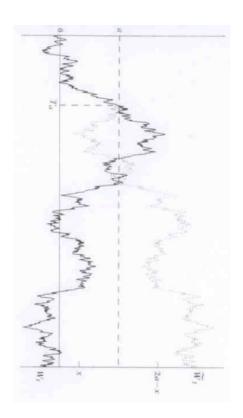
Let (X_t) be a stochastic process and ${\bf F}$ the natural filtration of (X_t)

$$\tau = \inf \left\{ t \in T \ : \ X_t \ge B \right\}$$

is a stopping time for the barrier $\,B\,$

It is possible to construct the associate stochastic process (Y_t) "stopped at B":

$$\vec{t} = \begin{cases} X_t & \text{if } t \leq \tau \\ B & \text{if } t > \tau \end{cases}$$



Example: tossing a coin 3 times

a) We stop tossing the coin when the first tail appears:

$$\tau = \min\{t: X_t = 1\}$$

T	X_3	X_2	X_1	X_0	Ω
\vdash	3	2	1	0	TTT
\vdash	2	2	1	0	TTH
\vdash	2	1	1	0	THT
2	2	1	0	0	HTT
\vdash	1	1	1	0	THH
2	1	1	0	0	HTH
3	1	0	0	0	HHT
8	0	0	0	0	HHH

$$[\tau=1] = \{\mathit{TTT}, \mathit{TTH}, \mathit{THT}, \mathit{THH}\} = A_T$$
 is $\mathcal{F}_1\text{-measurable}$

$$[\tau=2] = \{HTT, HTH\} = A_{HT}$$
 is $\mathcal{F}_2\text{-measurable}$

$$[\tau=3]=\{HHT\}$$
 is \mathcal{F}_3 -measurable

So, τ is a stopping time

Note :
$$[\tau = \infty] = \{HHHH\}$$

b) We stop tossing the coin at the last time tail appears:

$$\tau' = \min\{t : X_t = X_3\}$$

au'	X_3	X_2	X_1	X_0	Ω
3	3	2	\vdash	0	TTT
2	2	2	-	0	TTH
З	2	1	1	0	THT
သ	2	1	0	0	HTT
1	1	1	1	0	THH
2	1	1	0	0	HTH
3	1	0	0	0	HHT
8	0	0	0	0	ННН

$$[au'=1]=\{THH\}$$
 is not \mathcal{F}_1 -measurable

$$[\tau'=2]=\{TTH,HTH\} \text{ is not } \mathcal{F}_2\text{-measurable}$$

So, τ' is not a stopping time

A discrete time stochastic process : random walk

- General case
- Definition
- Properties
- Special case : symetrical probabilities

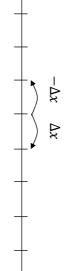
General case

Definition

Description : a particle (or an asset return, or a drunkar, ...)

- starts at time $\,t=0\,$ at the point $\,0\,$
- at each step, it moves by Δx with probability p and by $-\Delta x$ with probability q=1-p
- the duration of the steps is Δt
- the different moves are independent

In this model, $T=(\Delta t)\cdot \mathbb{N}=\{0,\Delta t,2\Delta t,...\}$



 $X_t\,$ is the position of the particle at time $\,t\,$

$$X_0 = 0 X_{\Delta t} \sim \begin{pmatrix} -\Delta x & \Delta x \\ q & p \end{pmatrix}$$

$$X_{2\Delta t} \sim \begin{pmatrix} -2\Delta x & 0 & 2\Delta x \\ q^2 & 2pq & p^2 \end{pmatrix}$$
 ...

Properties

Let us examine the situation after $\,n\,$ moves and denote $\,t=n\cdot\Delta t\,$

$$X_t = \sum_{k=1}^{n} Z_k$$
 $Z_k \sim \begin{pmatrix} -\Delta x & \Delta x \\ q & p \end{pmatrix}$

We have

$$E(Z_k) = \Delta x(p-q)$$

$$var(Z_k) = (\Delta x)^2 (q+p) - (\Delta x)^2 (p-q)^2$$

= $(\Delta x)^2 (1 - (p-q)^2)$
= $(\Delta x)^2 4pq$

,oS

$$E(X_t) = n \cdot E(Z_k) = (p - q) \frac{\Delta x}{\Delta t} \cdot t$$

$$var(X_t) = n \cdot var(Z_k) = 4pq \frac{(\Delta x)^2}{\Delta t} \cdot t$$

Special case: symmetrical probabilities

If
$$p=q=\frac{1}{2}$$
, we have

$$E(X_t) = 0$$

$$var(X_t) = \frac{(\Delta x)^2}{\Delta t} \cdot t$$

The evolution of the particle is such that the position

- is null in mean
- with a variance proportional to time

Martingales

- Definition
- Properties
- o Expectation of a martingale
- o Interpretation as a fair game

Definition

Let us consider a probability space $(\Omega, \mathcal{F}, \Pr, \mathbf{F})$

A stochastic process (X_t) is a martingale if

- $E(|X_t|) < \infty \quad \forall t$
- (X_t) is adapted to ${f F}$
- $E(X_t | \mathcal{F}_S) = X_S$ $\forall s, t \ (s < t)$

Note 1: A stochastic process may be a martingale w.r.t. a filtration \mathbf{F} , but not w.r.t. to another one \mathbf{G} . One use sometimes the notation (X_t, \mathbf{F})

Note 2 : The essential defining property $E(X_t|\mathcal{F}_s)=X_s \ \text{means "the best prediction of}$ $(X_t) \ \text{when we have information up to } s \ (\leq t) \ \text{is}$ $X_s"$

Note 3 : For discrete time processes, the essential defining property becomes

$$E(X_{n+1}|\mathcal{F}_n) = X_n$$
 $n = 0, 1, ...$

Example 1

Let Z_1,Z_2,\dots be independent r.v. with null mean, then the partial sums

$$S_n = Z_1 + \dots + Z_n$$
 $n = 1, 2, \dots$

is a martingale w.r.t. the natural filtration of (Z_n)

For the adaptation of the stochastic process,

$$\sigma(S_1, \dots, S_n) = \sigma(Z_1, \dots, Z_n) = \mathcal{F}_n$$

because they contain the same information:

$$\begin{cases} S_n = Z_1 + \dots + Z_n \\ Z_n = S_n - S_{n-1} \end{cases}$$

Furthermore,

$$E(S_{n+1}|\mathcal{F}_n) = E(S_n + Z_{n+1}|\mathcal{F}_n)$$

$$= E(S_n|\mathcal{F}_n) + E(Z_{n+1}|\mathcal{F}_n)$$

$$= S_n + E(Z_{n+1})$$

$$= S_n$$

Example 2

Let Z be a r.v. such that $E(|Z|)<\infty$ and a filtration ${\bf F}$. Then $X_t=E(Z|\mathcal{F}_t)$ defines a martingale

For any s, t such that $s \le t$,

$$E(X_t|\mathcal{F}_S) = E(E(Z|\mathcal{F}_t)|\mathcal{F}_S) = E(Z|\mathcal{F}_S) = X_S$$

Properties

Expectation of a martingale

The expectation function of a martingale is constant

For any s, t such that $s \le t$,

$$\mu_X(s) = E(X_s) = E(E(X_t | \mathcal{F}_s)) = E(X_t) = \mu_X(t)$$

Interpretation as a fair game

Let (X_t) represent the winnings (or the losses) up to time $\,t\,$ and suppose it is a martingale

If we have information up to time $s \ (\le t)$, the increment of winnings (X_t-X_s) during]s;t] is such that

$$E(X_t - X_S | \mathcal{F}_S) = E(X_t | \mathcal{F}_S) - E(X_S | \mathcal{F}_S)$$
$$= X_S - X_S = 0$$

Gaussian process

A stochastic process (X_t) is said to be gaussian if any finite-dimensional distribution of this process is multinormal: for any $n \geq 1, \ t_1, \dots, t_n \in T$

$$(X_{t_1}, \dots, X_{t_n})$$

is a multinormal random vector

In particular, if (X_t) is a gaussian process, then, $\forall t \in T$,

$$X_t \sim \mathcal{N}$$