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Stochastic process

A stochastic process is a family of r.v., indexed by
time
X)) : AXT : (1) = X (w)

If the timeset T is
- discrete, (X;) is a discrete time stochastic
process (= sequence of r.v.)
- continuous, (X;) is a continuous time
stochastic process

Let (X;) be a stochastic process
- foranyfixed t €T, X; isar.v.
- forany fixed w € Q, X;(w) is a path
(trajectory) of the stochastic process

If T =N or Z, the stochastic process (X;) isa
time series




Distribution of a stochastic process

Probability distribution

The probability distribution of a r.v. is given by
Pr[X € E] for any Borel set E

The finite-dimensional distribution of a stochastic
process (X;) is the probability distribution of

(Xe,rn X))

forany n=>1, t,...,t, €T

Moments

a) Expectation: uy(t) =E(X;,) VteT
b) Variance: o7(t) = var(X,) VteT
c) Covariance : cy(s,t) = cov(Xs, X;)

Property : cx(t,t) = o2(t)

Possible properties of a stochastic process

Indicate dependence structure
Strict stationarity

The stochastic process (X;) is strictly stationary
if, y/n>1, t;,....t, €T, h

[such that t; + h,...,t, + h € T], then

Qmﬁi ..:XH:V and Cm?it ..:X?ib have the

same probability distribution :

Akf, .:.Nn:v = AX?+:, ....Nn=+wv

Property : if the stochastic process (X;) is strictly
stationary, then

ux(t) = pux(0) Vvt
ag(t) = 0¢(0) vt
cx(s,t) =cxy([t—s|) Vst



Wide stationarity
(or “2" order stationarity”)

The stochastic process (X;) is stationary in the
wide sense if

ux(t) = pux(0) Vvt
cx(s,t) =cx([t—s]) Vst

Property : if the stochastic process (X;) is
stationary in the wide sense, then

o2(t) = 02(0) Vvt

Stationary increments

The stochastic process (X;) has stationary
increments (or is homogeneous) if

xﬂ. - Xm W Mmqﬂ.+w~ - X.wn*.r. <.m.- ﬁ\}\

Independent increments
The stochastic process (X;) has independent

incrementsif, Vvn>1, t; <t, < ..<t, €T,
the r.v.

Cmnw — va, anw o NWNV " me: o .N?THV

are independent



Filtration
Definition
Let (£, F,Pr) be a probability space

A filtration is an increasing family of sub-o-fields
of F :

M F={F:teT}
s<t= FcF (cF)

Interpretation : F, is the collection of events
representing the available information up to ¢
(= the history up to t)

Note : generally, Fy = {@,Q} and, in this case,
E(|Fo) =E()

We can now generalize the probability space
when a time variable is present : (), F, Pr, F)

Filtration and stochastic process

a) Natural filtration of a stochastic process :
Fe=0({Xs:s<t}) Vt
= the history of the stochastic process

b) A stochastic process (X;) is adapted to a
filtration F if

Vt, X is Fy-measurable

c) Conditional expectation w.r.t. a filtration : if
X isar.v, let define M; = E(X|F;)

Property: {M; : t €T} is a stochastic
process, adapted to F

Interpretation : M, represents the mean
estimation of X, taking into account the
available informationup to t



Example : tossing a coin 3 times (b) Natural filtration of the stochastic process
{X,:t=0,1,2,3} ?
A (symmetric) coin is tossed 3 times,

independently Fo = {0, 0}
Let us define X; the number of “tail(s)” up to the Fi=1{0,0A;, Ay} =0c({Ar, Ay}
t-thtoss (t = 0,1,2,3) with Ay = {TTT,TTH, THT, THH}

Ay ={HTT,HTH,HHT,HHH}
(a) We can, for each possible outcome, associate

the value of these r.v. : Fy =0({D,Q Arr, Ary, Aur) Aun })
with Arr ={TTT,TTH}
Q |TTT |TTH |THT | HTT |THH | HTH | HHT |HHH Ary ={THT, THH}
Xo | 0 0 0 0 0 0 0 0 Ayr = {HTT,HTH}
X, |1 1 1 0 1 0 0 0
X, | 2 | 2 | 1|11 1]0] o0 Ayy = {HHT,HHH}
X; | 3 2 2 2 1 1 1 0

Fy=F =P(Q)



(c) Conditional expectations of X5 = number of - wr.t. F,

“tail(s)” after 3 tosses ? 1 1 5
em\wuﬂﬁlw.MLlN.M”M
: 1 1 3
- w.r.t. Fy :forany w € Q, WEApp 2 —+1===
2 2 2
1 1 1 3 EA 2 H+H 1_3
8 I ' — D — = —
W3 =424+ 0 === Fr 2 2 2
8 8 8 2 1 1 1
€A 1 =4+0-=—==
WEArr = Lyt 0 573
Zo.ﬁm . m.AXw_Quov - mﬁxwv
X3 isindependent of F, (R3) Note 1: E[E(X5|F)|F.] = E(X3|FL) (R6)
- wert. By Note 2 : E(E(X5|F,))
5 H+w H+w H+H 1 3
H H H H [ — —_—— —_ —_— = —
WEA — 3 =+2-2+2-2+1-=2=2 2 4 24 24 24 2
4 4 4 4 = E(X3)
1 1 1 1
Sm\:u_lN.Mn_nH.Nn_nH.Mn_nO N”H (R2)
- w.rt. Fs
w=TTT — 3
w=TTF — 2
w=FFF—0

Note : m.ﬁkw_,ﬂn.wv = Xw :NN_.V



Stopping time

Definition

A stopping time on (£, F,Pr,F) isar.v. T with

valuesin Rt = R* U {0} such that
vteT, [T <t] € F

Interpretation : a rule which tells when to stop,
based only on the knowing of the history up to the
instant of stopping

Property : if T; and 7, are two stopping times,
then min(z,,7,) and max(t4,7,) are also
stopping times

Example : for the short-term interest rate r(t),
- the first time r(t) isequalto 3% isa
stopping time
- the last time r(t) isequalto3 %is nota
stopping time

A particular stopping time : the barrier

Let (X;) be a stochastic process and F the
natural filtration of (X;)

t=inf {teT : X, > B}
is a stopping time for the barrier B

It is possible to construct the associate stochastic
process (Y;) “stoppedat B”:

M\Imkﬁ if t<t
t7 B if t>1



Example : tossing a coin 3 times

a) We stop tossing the coin when the first tail

appears :
T =min{t : X; = 1}

Q |TTT |TTH |THT | HTT |THH |HTH | HHT |HHH
Xy 0 0 0 0 0 0 0 0
X4 1 1 1 0 1 0 0 0
X, 2 2 1 1 1 1 0 0
X3 3 2 2 2 1 1 1 0
T 1 1 1 2 1 2 3 o)

[t = 1] = {TTT,TTH, THT, THH} = A;

is F,-measurable

[t = 2] = {HTT,HTH} = Ay

is F,-measurable

[t = 3] = {HHT} is F3-measurable

So, T is a stopping time

Note: [t = o] = {HHH}

b) We stop tossing the coin at the last time tail

appears :
7' = min{t : X; = X3}

Q |TTT |TTH |THT | HTT |THH |HTH | HHT |HHH
Xy 0 0 0 0 0 0 0 0
X, | 1 | 1] 10100 o0
X, | 2 | 2 | 1] 1] 1] 1]0]o0
X3 3 2 2 2 1 1 1 0
T’ 3 2 3 3 1 2 3 o)

[t" = 1] = {THH} is not F;-measurable

[t" = 2] ={TTH,HTH} is not F,-measurable

So, 7' is not a stopping time




A discrete time stochastic process :
random walk

- General case
o Definition
o Properties
- Special case : symetrical probabilities

General case

Definition

Description : a particle (or an asset return, or a
drunkar, ...)

starts at time t = 0 at the point 0

at each step, it moves by Ax with probability
p and by —Ax with probability g =1 —p

the duration of the stepsis At

the different moves are independent

In this model, T = (At) - N = {0, At, 2A¢t, ... }

—Ax Ax

X; is the position of the particle at time t

—Ax Ax

I

0 At q p
—2Ax 0 2Ax
xNEzA > 2pq @Nv



Properties

Let us examine the situation after n moves and

denotet = n- At
- Ax A
—Ax X
NHMN NZA v
t k k q p
k=1

We have
E(Zy) = Ax(p — q)

var(Zy) = (Ax)*(q + p) — (Ax)*(p — @)?
= (Mx)*A-(@-9?)
= (Ax)*4pq
So,

Ax
E(X)) =n-E(Z,) = @l:ﬂ.ﬁ

(Ax)?
var(X;) = n-var(Z,) = &3% “t

Special case : symmetrical probabilities

:ﬁnmnw\ém:mé

EX;)=0
2
var(X,) = % t

The evolution of the particle is such that the

position
- is null in mean
- with a variance proportional to time



Martingales

- Definition

- Properties
o Expectation of a martingale
o Interpretation as a fair game

Definition
Let us consider a probability space (£, F, Pr, F)

A stochastic process (X;) is a martingale if
- E(|X¢]) <0 vt
- (X;) isadaptedto F
- EX(|F) =X, Vs, t (s<t)

Note 1 : A stochastic process may be a martingale
w.r.t. a filtration F, but not w.r.t. to another one
G. One use sometimes the notation (X;, F)

Note 2 : The essential defining property

E(X:|F;) = X; means “the best prediction of
(X;) when we have informationupto s (<t) is
X.W\\

Note 3 : For discrete time processes, the essential
defining property becomes

EXpailF) =X, n=01,.



Example 1

Let Z4,Z,, ... be independent r.v. with null mean,
then the partial sums

Spn=2Z1+-+Z7Z, n=1,2,..
is @ martingale w.r.t. the natural filtration of (Z,))
For the adaptation of the stochastic process,
o(Sy,...,8,) =0(Zy,..,Z,) =F,
because they contain the same information :
m,w: =Z1++Z,

Zn =5, — S
Furthermore,

m.ﬁ.m.3+p_.ﬂ.3v =E(Sy, + N:+H_.ﬂ=v
= E(Sy|Fy) + E(Zp41|Fy)
=S, + E(Zns1)
= .m,ﬁ

Example 2

Let Z bear.v.suchthat E(|Z]) < « and a
filtration F.Then X; = E(Z|F;) defines a
martingale

Forany s,t suchthat s <t,

E(X¢|Fs) = E(E(ZIF)|Fs) = E(Z|Fs) = X



Properties

Expectation of a martingale

The expectation function of a martingale is
constant

Forany s,t suchthat s <t,

ux(s) = E(Xs) = E(E(X¢|Fs)) = E(Xy) = pux(t)

Interpretation as a fair game

Let (X;) represent the winnings (or the losses) up
to time t and suppose it is a martingale

If we have information up to time s (< t), the
increment of winnings (X; — Xs) during ]s; t] is
such that
E(X; — Xs|Fs) = E(X¢|Fs) — E(Xs|F)
=X;—X;=0

Gaussian process

A stochastic process (X;) is said to be gaussian if
any finite-dimensional distribution of this process
is multinormal : forany n>1, t4,...,t, €T

(Xe,s 0 Xe,)
is @ multinormal random vector
In particular, if (X;) is a gaussian process, then,

VtET,
Xﬁ)xé:




