Chapter 2

Probability theory

- Probability space
- Random variable
- Expectation and moments
- Classical probability distributions
- Independence
- Conditional expectation
- Stochastic convergences

Probability space

- Random situation
- Events
 - Intuitively
 - σ-field of events
- Probability
 - Axioms
 - Consequences
 - Probability space
 - Finite equiprobable model
Random situation

= physical situation for which several outcomes are possible

Set of possible outcomes : \(\Omega \)

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitively : any subset of (\Omega)</td>
</tr>
<tr>
<td>For an observed outcome (\omega \in \Omega), the event (A) occurs iff (\omega \in A)</td>
</tr>
<tr>
<td>Particular events</td>
</tr>
<tr>
<td>- the impossible event : (\emptyset)</td>
</tr>
<tr>
<td>- the sure event : (\Omega)</td>
</tr>
<tr>
<td>Taking any subset of (\Omega) as an event is not convenient</td>
</tr>
<tr>
<td>- mathematically : if (\Omega) is non denumerable, taking every subset of (\Omega) as an event may lead to some contradiction</td>
</tr>
<tr>
<td>- financially : it is sometimes useful to consider the set of events at time (t) as the available information up to time (t)</td>
</tr>
<tr>
<td>Furthermore, we have to authorize elementary set operations : “or” is (\cup), “and” is (\cap), ...</td>
</tr>
</tbody>
</table>
σ-field (or σ-algebra) of events

= Set \mathcal{F} of subsets of Ω such that
 - $\emptyset \in \mathcal{F}$
 - If $A \in \mathcal{F}$, then $\bar{A} \in \mathcal{F}$
 - If $A_1, A_2, \ldots, A_n, \ldots \in \mathcal{F}$, then

\[A_1 \cup A_2 \cup \ldots \cup A_n \cup \ldots = \bigcup_i A_i \in \mathcal{F} \]

Consequences
 - $\Omega \in \mathcal{F}$
 - $A_1 \cap A_2 \cap \ldots \cap A_n \cap \ldots \in \mathcal{F}$

Examples
 - $\mathcal{F} = \{\emptyset, \Omega\}$
 - $\mathcal{F} = \{\emptyset, \Omega, A, \bar{A}\}$
 - \ldots

Theorem

Given a subset (non necessarily a σ-field) \mathcal{G} of \mathcal{F}, there exist a unique smallest σ-field containing \mathcal{G} : the σ-field generated by \mathcal{G}, denoted $\sigma(\mathcal{G})$

Exercice : in the general case describe the σ-field generated by two events \{A, B\}

Note

For 2 σ-fields \mathcal{F} and \mathcal{G} on Ω, the relation $\mathcal{G} \subset \mathcal{F}$ means “the information in \mathcal{F} is finer (more precise) than the one in \mathcal{G}”
Probability

= measure, for an event, of its tendency to occur

Axioms (Kolmogorov)

(K1) \(\forall A \in \mathcal{F}, \Pr(A) \geq 0 \)

(K2) \(\forall A_1, ..., A_n, ... \in \mathcal{F}, \text{ if the events are (pairwise) disjoint,} \)

\[
\Pr \left(\bigcup_i A_i \right) = \sum_i \Pr(A_i)
\]

(K3) \(\Pr(\Omega) = 1 \)

Consequences

\(A \subset B \implies \Pr(A) \leq \Pr(B) \)

\(0 \leq \Pr(A) \leq 1 \)

\(\Pr(\emptyset) = 0 \)

\(\Pr(\bar{A}) = 1 - \Pr(A) \)

\(\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \)

Probability space

= probability triple: \((\Omega, \mathcal{F}, \Pr) \)

Finite equiprobable model

If \(\Omega \) is finite (\(\Omega = \{\omega_1, ..., \omega_n\} \)) and equiprobable (\(\Pr\{\omega_j\} = 1/n \ \forall j \)), then

\[
\Pr(A) = \frac{\#(A)}{n} = \frac{\#(A)}{\#(\Omega)}
\]
Random variable

- Definitions
 - Intuitively
 - Mathematically
 - Borel sets of \mathbb{R}
 - σ-field generated by a r.v.
- Probability law
 - Idealy
 - Cumulative distribution function
- Types of r.v.
 - Discrete
 - Continuous
 - Mixed
- Random vector
 - Borel sets of \mathbb{R}^m
 - Definition
 - Joint cumulative distribution function
 - Types of random vectors

Definitions

Intuitively: a variable whose value depends on the result of a random situation

$$X : \Omega \to \mathbb{R} : \omega \mapsto X(\omega)$$

Furthermore, expressions like "$X \in E$" must be, for "reasonable" E, an event

Mathematically, a r.v. is a function from Ω to \mathbb{R} that is \mathcal{F}-measurable: for every borelian set E of \mathbb{R},

$$X^{-1}[E] = \{\omega : X(\omega) \in E\} = [X \in E]$$

is an element of \mathcal{F}.

The support of a r.v. = the set of possible values of this r.v. :

$$X[\Omega] = \{X(\omega) : \omega \in \Omega\}$$
Borel sets of \mathbb{R}

= denumerable unions of intervals (bounded or not; closed, open or semi-interval) and their complementaries

Notation: \mathcal{B}

Property: \mathcal{B} is the σ-field on \mathbb{R} generated by

$$\{[a; b[: a < b\}$$

σ-field generated by a r.v.

= the smallest sub-σ-field of \mathcal{F} that contains every event of the form $[X \in E]$ with $E \in \mathcal{B}$

Notation: $\sigma(X)$

Probability law

Ideally, $\Pr[X \in E]$ for every $E \in \mathcal{B}$

Cumulative distribution function

$$F_X(t) = \Pr[X \leq t]$$

Properties:

- $0 \leq F(t) \leq 1$ for every t
- $F(t)$ is a non-decreasing function
- $\lim_{t \to -\infty} F(t) = 0$
- $\lim_{t \to +\infty} F(t) = 1$
- $F(t)$ is continuous to the right

Θ: it is possible to construct the probability law from the c.d.f.

![Cumulative distribution function graph](image-url)
Types of r.v.

Discrete

The support $X[\Omega]$ is finite or denumerable:

$$X \sim \left(x_1, \ldots, x_n, \ldots \right)$$

with $\Pr[X = x_j] = p_j > 0$ and $\sum p_i = 1$

Probability law: $\Pr[X \in E] = \sum_{i:x_i \in E} p_i$

C.d.f.:

Continuous

The support is a non denumerable set (generally an interval) and, $\forall x, \Pr[X = x] = 0$

The probabilities are continuously distributed via a density function $f_X(x) \geq 0$, with

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

$$\Pr[x < X \leq x + h] \approx f(x) \cdot h$$

Probability law: $\Pr[X \in E] = \int_E f(x)dx$

C.d.f.:

$$F(t) = \int_{-\infty}^{t} f(x)dx$$

is a continuous function and, if it is derivable,

$$F'(t) = f(t)$$
Mixed

Is a mix of discrete and continuous

Example: the r.v. C represents the cost for the company of an insurance policy

- for > 0 cost, it is easier to consider the cost as a continuous r.v.
- but, $\Pr[C = 0] > 0$

Random vector

Borel sets of \mathbb{R}^m

$= \text{denumerable unions of intervals (bounded or not; closed, open or semi-interval), like}$

$[a_1; b_1] \times \{a_2\} \times \cdots \times [a_m; +\infty[$

and their complementaries

Notation: \mathcal{B}_m

Property: \mathcal{B}_m is the σ-field on \mathbb{R}^m generated by

$$\prod_{j=1}^{m} [a_j; b_j[^{} = [a_1; b_1[\times \cdots \times [a_m; b_m[$$
Definition

A random vector \((X_1, ..., X_m)\) is a function from \(\Omega\) to \(\mathbb{R}^m\), that is \(\mathcal{F}\)-measurable: for every borelian set \(E\) of \(\mathbb{R}^m\),

\[
(X_1, ..., X_m)^{-1}[E] = \{\omega : (X_1(\omega), ..., X_m(\omega)) \in E\} = [(X_1, ..., X_m) \in E]
\]

is an element of \(\mathcal{F}\).

The support of a random vector = the set of possible values of this random vector:

\[
(X_1, ..., X_m)[\Omega] = \{(X_1(\omega), ..., X_m(\omega)) : \omega \in \Omega\}
\]

Joint cumulative distribution function

\[
F_{X_1,..,X_m}(t_1, ..., t_m) = \Pr([X_1 \leq t_1] \cap ... \cap [X_m \leq t_m])
\]

Properties

- \(0 \leq F(t_1, ..., t_m) \leq 1\) for every \((t_1, ..., t_m)\)
- \(F(t_1, ..., t_m)\) is a non-decreasing function of each variable \(t_j\)
- \(\lim_{t_j \to -\infty} F(t_1, ..., t_m) = 0 \quad (j = 1, ..., m)\)
- \(\lim_{t_m \to +\infty} F(t_1, ..., t_m) = 1\)

\(\oplus\) : it is possible to construct the probability law \(\Pr[(X_1, ..., X_m) \in E]\) for any \(E \in \mathcal{B}_m\) from the c.d.f.
Types of random vectors

- Discrete: the support \((X_1, ..., X_m)[\Omega]\) is finite or denumerable, with

 \[
 \Pr([X_1 = x_1] \cap ... \cap [X_m = x_m]) = p_{x_1, ..., x_m}
 \]

 (and \(\sum x_1 ... \sum x_m p_{x_1, ..., x_m} = 1\))

 Probability law: for any \(E \in \mathcal{B}_m\)

 \[
 \Pr[(X_1, ..., X_m) \in E] = \sum_{\{(x_1, ..., x_m) \in E\}} p_{x_1, ..., x_m}
 \]

- Continuous: the probabilities are continuously distributed via a density function

 \[
 f(x_1, ..., x_m)(x_1, ..., x_m) \geq 0, \text{ with }
 \]

 \[
 \int_{-\infty}^{+\infty} dx_1 ... \int_{-\infty}^{+\infty} dx_m f(x_1, ..., x_m) = 1
 \]

 and

 \[
 \Pr\left([x_1 < X_1 \leq x_1 + dx_1] \cap ... \cap [x_m < X_m \leq x_m + dx_m]\right)
 \approx f(x_1, ..., x_m) \cdot dx_1 ... dx_m
 \]

 Probability law: for any \(E \in \mathcal{B}_m\)

 \[
 \Pr[(X_1, ..., X_m) \in E]
 = \int ... \int f(x_1, ..., x_m) dx_1 ... dx_m
 \]

 (the integral is taken over the set \(E\))

Joint c.d.f.:

\[
F(t_1, ..., t_m) = \int_{-\infty}^{t_1} dx_1 ... \int_{-\infty}^{t_m} dx_m f(x_1, ..., x_m)
\]
Expectation and moments

- Expectation
- Moments
- Variance
- Shape parameters
 o Skewness
 o Kurtosis
- Covariance and correlation
- Moment generating function
- Inequalities
 o Jensen’s inequality
 o Markov’s inequality
 o Chebyshev’s inequality

Expectation

Generalization of the notion of integral

For every \(n \),
- subdivisions of \(\Omega : \{ A_1^{(n)}, A_2^{(n)}, \ldots, A_n^{(n)} \} \)
- choice of \(\omega_k^{(n)} \in A_k^{(n)} \) \((k = 1, 2, \ldots, n) \)
- \(p^{(n)} = \max \{ \Pr(A_1^{(n)}), \ldots, \Pr(A_n^{(n)}) \} \)

We then define

\[
E(X) = \int_{\Omega} X(\omega) \, d\Pr(\omega)
\]

\[
= \lim_{n \to \infty} \sum_{k=0}^{n} X(\omega_k^{(n)}) \cdot \Pr(A_k^{(n)})
\]

Interpretation: the expectation of a r.v. is a parameter localization (= weighted mean of \(X \))
Particular notation: mean = \(E(X) = \mu\)

For particular r.v.,
- Discrete r.v.: \(E(X) = \sum x_i p_i\)
- Continuous r.v.: \(E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx\)
- Positive r.v.: \(E(X) = \int_{0}^{+\infty} [1 - F(t)] dt\)

A common notation: \(E(X) = \int_{-\infty}^{+\infty} t dF_X(t)\)

Generalization: for any function \(g\),
\[
E(g(X)) = \sum g(x_i) p_i = \int_{-\infty}^{+\infty} g(x) f_X(x) dx
\]

Properties

a) The expectation is a linear operator
\[
E(aX + bY + c) = aE(X) + bE(Y) + c
\]
b) \(E(XY) = ?\)

Moments

Absolute moments
\[
\mu_k' = E(X^k) \quad k = 1, 2, ...
\]

Relative (or centered) moments
\[
\mu_k = E((X - \mu)^k) \quad k = 1, 2, ...
\]

In particular,
\[
\mu_1' = E(X) = \mu
\]
\[
\mu_1 = 0
\]
Variance

\[\text{var}(X) = \sigma^2 = \mu_2 = E((X - \mu)^2) \]

Developing,

\[\text{var}(X) = E(X^2 - 2\mu X + \mu^2) \]
\[= E(X^2) - 2\mu E(X) + \mu^2 \]
\[= E(X^2) - E^2(X) \]

Interpretation: the variance is a dispersion parameter

Properties

a) \(\text{var}(aX + b) = E\left(\left(\left(aX + b\right) - (a\mu + b)\right)^2\right) \)
\[= E((aX - a\mu)^2) \]
\[= a^2 \cdot \text{var}(X) \]

b) \(\text{var}(X + Y) = ? \)

Standard deviation: \(\sigma = \sqrt{\text{var}(X)} \)

Shape parameters

Skewness

\[\gamma_1(X) = \frac{\mu_3}{\mu_2^{3/2}} = \frac{E((X - \mu)^3)}{\sigma^3} \]

Interpretation: \(\gamma_1 \) is a number without dimension and its sign indicates the type of dissymmetry:

\[\gamma_1(a) > 0 \]
\[\gamma_1(b) < 0 \]
Kurtosis

\[\gamma_2(X) = \frac{\mu_4}{\mu_2^2} - 3 = \frac{E((X - \mu)^4)}{\sigma^4} - 3 \]

Interpretation: \(\gamma_2 \) is a number without dimension and its value is indicative of the fatness of the distribution tails:

\[\gamma_2(a) > \gamma_2(b) \]

Covariance and correlation

Covariance

\[cov(X, Y) = \sigma_{X,Y} = E((X - \mu_X)(Y - \mu_Y)) \]

Developing,

\[cov(X, Y) = E(XY - \mu_XY - X\mu_Y + \mu_X\mu_Y) = E(XY) - E(X)E(Y) \]

Interpretation: the covariance measures (with its sign) the degree of linear dependence between two r.v. \(X \) and \(Y \):

\[cov(X, Y) > 0 \quad cov(X, Y) < 0 \]
Properties

a) Linearity

\[cov(aX + b, cY + d) = ac \cdot cov(X, Y) \]

\[cov(X + Y, Z) = cov(X, Z) + cov(Y, Z) \]

b) \[E(XY) = E(X) \cdot E(Y) + cov(X, Y) \]

\[\text{var}(X + Y) = \text{var}(X) + \text{var}(Y) + 2 \text{cov}(X, Y) \]

Correlation coefficient

\[corr(X, Y) = \rho_{X,Y} = \frac{cov(X, Y)}{\sigma_X \cdot \sigma_Y} \]

Interpretation: the correlation coefficient is a number without dimension that has the same interpretation as the covariance

Properties

a) \(-1 \leq \rho \leq 1\)

b) \(\rho_{X,Y} = \pm 1\) iff there exists a perfect linear relationship between \(X\) and \(Y\)

\[\begin{array}{cc}
\text{coefficient de corrélation : 0,84} & \text{coefficient de corrélation : 1} \\
\rho = 0,84 & \rho = 1 \\
\hline
\text{coefficient de corrélation : -0,57} & \text{coefficient de corrélation : -1} \\
\rho = -0,57 & \rho = -1
\end{array} \]
Moment generating function

\[m_X(t) = E(e^{tx}) \]

For practical calculations,

\[m(t) = \sum_i e^{t x_i} p_i = \int_{-\infty}^{+\infty} e^{tx} f(x) dx \]

If we can derive “under the \(E \) sign”,

\[m_X^{(k)}(t) = E(X^k e^{tx}) \]

Property

\[m_X^{(k)}(0) = E(X^k) \]

Inequalities

Jensen’s inequality

If \(h \) is a convex function, then

\[E(h(X)) \geq h(E(X)) \]

[and the inverse inequality for a concave function]

Proof: for any \(x_0 \), there exists a straight line \(y = ax + b \) such that

\[\begin{cases} h(x_0) = ax_0 + b \\ h(x) \geq ax + b \quad \forall x \end{cases} \]

Replacing \(x \) and \(x_0 \) respectively by \(X \) and \(E(X) \), we get

\[\begin{cases} h(E(X)) = aE(X) + b \\ h(X) \geq aX + b \end{cases} \]

and then \(E(h(X)) \geq aE(X) + b = h(E(X)) \)
Markov’s inequality

If \(X \) is a positive r.v. with mean \(\mu \), then

\[
\Pr[X \geq k\mu] \leq \frac{1}{k} \quad \forall k > 0
\]

Proof:

\[
b = k\mu \cdot \Pr[X \geq k\mu] \\
\leq a + b + c \\
= \int_{0}^{+\infty} [1 - F(t)] dt \\
= \mu
\]
Classical probability distributions

- Uniform distribution
 o Definition
 o Cumulative distribution function
 o Moments
- Normal distribution
 o Definition
 o Moments
 o Properties
 o Moment generating function
- Multinormal distribution
 o Definition
 o Properties
- Log-normal distribution
 o Definition
 o Density function
 o Moments
- Binomial distribution
 o Definition
 o Moment generating function
 o Moments
- Poisson distribution
 o Definition
 o Moment generating function
 o Moments
- Exponential distribution
 o Definition
 o Cumulative distribution function
 o Moments
 o Property
Uniform distribution

Definition: \(X \sim \mathcal{U}(a; b) \) if \(X[\Omega] = [a; b] \), \(a < b \) and

\[
f_X(x) = \frac{1}{b - a} \cdot 1_{[a;b]}(x)
\]

Cumulative distribution function

\[
F_X(t) = \begin{cases}
0 & \text{if } t < a \\
\frac{t - a}{b - a} & \text{if } a \leq t \leq b \\
1 & \text{if } t > b
\end{cases}
\]

Moments

\[
E(X^k) = \frac{1}{b - a} \int_a^b x^k \, dx = \frac{b^{k+1} - a^{k+1}}{(k + 1)(b - a)}
\]

In particular,

\[
E(X) = \frac{a + b}{2}, \quad \text{var}(X) = \frac{(b - a)^2}{12}
\]
Normal distribution

Definition: $X \sim \mathcal{N}(\mu; \sigma^2)$ if $X[\Omega] = \mathbb{R}$, $\mu \in \mathbb{R}, \sigma > 0$ and

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

It is a density function (Poisson integral)

![Densité normale](chart.png)

![Densité normale](chart.png)

Moments

- **Moments of odd order**

$$E((X - \mu)^{2k+1}) = \int_{-\infty}^{+\infty} (x - \mu)^{2k+1} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} dx$$

$$= \frac{\sigma^{2k+2}}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} y^{2k+1} e^{-\frac{y^2}{2}} dy$$

$$= 0$$

Consequences

$$E(X) = \mu$$

(and then $E((X - \mu)^{2k+1}) = \mu_{2k+1}$)

$$\gamma_1 = 0$$
Moments of even order

\[\mu_{2k} = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} (x - \mu)^{2k} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \, dx \]

\[= \frac{\sigma^{2k+1}}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} y^{2k} e^{-\frac{y^2}{2}} \, dy \]

\[= \frac{\sigma^{2k}}{\sqrt{2\pi}} I_k \]

\[I_k = \int_{-\infty}^{+\infty} y^{2k} e^{-\frac{y^2}{2}} \, dy \]

\[= \int_{-\infty}^{+\infty} y^{2k-1} \cdot ye^{-\frac{y^2}{2}} \, dy \]

\[= \int_{-\infty}^{+\infty} y^{2k-1} \cdot (-e^{-\frac{y^2}{2}})' \, dy \]

\[= \left[-y^{2k-1} \cdot e^{-\frac{y^2}{2}} \right]_{y \to -\infty}^{y \to +\infty}
+ (2k - 1) \int_{-\infty}^{+\infty} y^{2k-2} e^{-\frac{y^2}{2}} \, dy
= (2k - 1) \cdot I_{k-1} \]

\[I_k = (2k - 1) I_{k-1} \]

\[= \ldots \]

\[= (2k - 1)(2k - 3) \ldots 1 \cdot I_0 \]

\[= (2k)! \cdot I_0 \]

\[\mu_{2k} = \frac{\sigma^{2k}}{\sqrt{2\pi}} I_k \]

\[= \frac{\sigma^{2k}}{\sqrt{2\pi}} \cdot \frac{(2k)!}{2^k k!} \cdot I_0 \]

\[= \sigma^{2k} \frac{(2k)!}{2^k k!} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \, dy \]

So,

\[\mu_{2k} = \frac{\sigma^{2k} (2k)!}{2^k k!} \]

Consequences

\[\text{var}(X) = \mu_2 = \sigma^2 \]

\[\mu_4 = \sigma^4 \cdot 3 \quad \Rightarrow \quad \gamma_2 = 0 \]
Properties

a) If $X \sim \mathcal{N}(\mu; \sigma^2)$, then

$$aX + b \sim \mathcal{N}(a\mu + b; a^2 \sigma^2)$$

(the normal law is stable)

b) $X \sim \mathcal{N}(\mu; \sigma^2) \iff Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0; 1)$

(standard normal r.v.)

Classical notations

$$f_Z(x) = \phi(x) \quad F_Z(t) = \Phi(t)$$

Moment generating function

$$m(t) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} e^{tx} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \, dx$$

$$= \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2\sigma^2}[x^2 - 2\mu x + \mu^2 + 2tx^2 - 2t\sigma^2 x]} \, dx$$

$$x^2 - 2\mu x + \mu^2 - 2t\sigma^2 x$$

$$= x^2 - 2x(\mu + t\sigma^2) + \mu^2$$

$$= x^2 - 2x(\mu + t\sigma^2) + (\mu + t\sigma^2)^2$$

$$- (\mu + t\sigma^2)^2 + \mu^2$$

$$= (x - (\mu + t\sigma^2))^2 - 2t\mu\sigma^2 - t^2\sigma^4$$

$$= (x - (\mu + t\sigma^2))^2 - 2\sigma^2 \left(t\mu + \frac{t^2\sigma^2}{2}\right)$$

$$m(t) = e^{t\mu + \frac{t^2\sigma^2}{2}} \cdot \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(\frac{x-(\mu+t\sigma^2)}{\sigma})^2} \, dx$$

$$m(t) = e^{t\mu + \frac{t^2\sigma^2}{2}}$$
Multinormal distribution

Definition

A random vector $X = (X_1, X_2, ..., X_m)$ is multinormal if any non trivial linear combination of its components is a normal r.v.:

For any $\alpha_1, \alpha_2, ..., \alpha_m$, (at least one α_k is $\neq 0$), then

$$\sum_{k=1}^{m} \alpha_k X_k \sim \mathcal{N}$$

Properties

a) A random vector X is multinormal if and only if there exist
 - a real vector μ
 - a positive defined matrix V

such that the joint density function is given by

$$f_X(x) = f_{X_1, X_2, ..., X_m}(x_1, x_2, ..., x_m) = \frac{1}{\sqrt{(2\pi)^m |V|}} \exp \left[-\frac{1}{2} (x - \mu)^t V^{-1} (x - \mu) \right]$$

where μ is the mean vector and V is the variance-covariance matrix:

$$\mu_k = E(X_k)$$

$$V_{jk} = cov(X_j, X_k)$$

b) The probability law of the random vector X is uniquely determined by the parameters μ and V
c) If the components of a multinormal random vector are uncorrelated, then they are independent.

Proof: consider the density with a diagonal matrix V.

d) If the components of a random vector are normally distributed, then the vector is non necessarily multinormal.

Counter-example: if X is a normal r.v., consider the random vector

\[
\begin{pmatrix}
X \\
-X
\end{pmatrix}
\]

Log-normal distribution

Definition: $X \sim \mathcal{LN}(\mu; \sigma^2)$ if $X[\Omega] = \mathbb{R}_0^+$, $\mu \in \mathbb{R}$, $\sigma > 0$, and

\[
\ln X \sim \mathcal{N}(\mu; \sigma^2)
\]

Density function

For $t > 0$,

\[
\Pr[X \leq t] = \Pr[\ln X \leq \ln t] = F_N(\ln t)
\]

And, for $x > 0$,

\[
f_X(x) = \left(F_N(\ln x)\right)'_x
\]

\[
= \frac{1}{\sqrt{2\pi} \sigma} \exp \left[-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma}\right)^2\right] \cdot \frac{1}{x}
\]

\[
f_X(x) = \frac{1}{\sqrt{2\pi} \sigma x} \exp \left[-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma}\right)^2\right] \cdot 1_{\mathbb{R}_0^+}(x)
\]
Moments

\[E(X^k) = \frac{1}{\sqrt{2\pi}\sigma} \int_0^{+\infty} x^k \exp \left[-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma} \right)^2 \right] \frac{dx}{x} \]

By using \(y = \ln x \),

\[E(X^k) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} e^{ky} \exp \left[-\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right] dy = E(e^{kY}) \]

where \(Y \sim \mathcal{N}(\mu; \sigma^2) \)

\[E(X^k) = m_Y(k) = e^{k\mu + \frac{k^2\sigma^2}{2}} \]

In particular,

\[E(X) = e^{\mu + \frac{\sigma^2}{2}} \]

\[E(X^2) = e^{2\mu + 2\sigma^2} \]

\[\Rightarrow \quad var(X) = e^{2\mu + \sigma^2}(e^{\sigma^2} - 1) \]
Binomial distribution

Definition: \(X \sim B(n; p)\) if \(X[\Omega] = \{0, 1, \ldots, n\}\), \(n \in \mathbb{N}\), \(p \in [0; 1]\) \((q = 1 - p)\) and

\[
\Pr[X = k] = \binom{n}{k} p^k (1 - p)^{n-k}
\]

It is a probability law (Newton formula)

Moment generating function

\[
m(t) = \sum_{k=0}^{n} e^{tk} \cdot \binom{n}{k} p^k q^{n-k}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} (pe^t)^k q^{n-k}
\]

\[
= (pe^t + q)^n
\]

Moments

Derivatives of the m.g.f.

\[
m'(t) = np e^t (pe^t + q)^{n-1}
\]

\[
m''(t) = np e^t (np e^t + q)(pe^t + q)^{n-2}
\]

\[
\ldots
\]

\[
\mu_1 = E(X) = m'(0) = np
\]

\[
\mu_2 = E(X^2) = m''(0) = np(np + q)
\]

\[
\ldots
\]

\[
E(X) = np
\]

\[
var(X) = npq
\]

\[
\gamma_1(X) = \frac{q - p}{\sqrt{npq}}
\]

\[
\gamma_2(X) = \frac{1 - 6pq}{npq}
\]
Poisson distribution

Definition: \(X \sim \mathcal{P}(\lambda) \) if \(X[\Omega] = \mathbb{N}, \ \lambda > 0 \) and

\[
\Pr[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}
\]

It is a probability law (expansion of \(e^\lambda \))

Moment generating function

\[
m(t) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!}
\]

\[
= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}
\]

\[
= e^{\lambda(e^t-1)}
\]

Moments

Derivatives of the m.g.f.

\[
m'(t) = \lambda e^t e^{\lambda(e^t-1)}
\]

\[
m''(t) = \lambda e^t (1 + \lambda e^t) e^{\lambda(e^t-1)}
\]

\[
\ldots
\]

\[
\mu'_1 = E(X) = m'(0) = \lambda
\]

\[
\mu'_2 = E(X^2) = m''(0) = \lambda(1 + \lambda)
\]

\[
\ldots
\]

\[
E(X) = \lambda
\]

\[
var(X) = \lambda
\]

\[
\gamma_1(X) = \frac{1}{\sqrt{\lambda}}
\]

\[
\gamma_2(X) = \frac{1}{\lambda}
\]
Exponential distribution

Definition: \(X \sim \mathcal{E}(\lambda) \) if \(X[\Omega] = \mathbb{R}^+ \), \(\lambda > 0 \) and

\[
f_X(x) = \lambda e^{-\lambda x} \cdot 1_{\mathbb{R}^+}(x)
\]

It is a probability law

Cumulative distribution function

\[
F_X(t) = (1 - e^{-\lambda t}) \cdot 1_{\mathbb{R}^+}(t)
\]
Moments

\[E(X^k) = \lambda \int_0^{+\infty} x^k e^{-\lambda x} \, dx = \frac{k!}{\lambda^k} \]

In particular,

\[E(X) = \frac{1}{\lambda} \]

\[var(X) = \frac{1}{\lambda^2} \]

Property

The exponential r.v. has “no memory” : for \(s, t > 0 \),

\[\Pr([X > s + t][X > s]) = \frac{\Pr[X > s + t]}{\Pr[X > s]} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = \Pr[X > t] \]

Independence

- Conditional probability
- Independence
 - o Independence of two events
 - o Independence of two sub-\(\sigma \)-fields
 - o Independence of two r.v.
- Properties
Conditional probability

Let A and B be elements of \mathcal{F}

Probability of A in the restricted set of possible outcomes B, denoted by $\Pr(A|B)$

\[
\begin{align*}
\Pr(A|B) &= k \cdot \Pr(A \cap B) \\
\Pr(B|B) &= 1
\end{align*}
\]

\[
\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}
\]

Independence

Independence of two events

The probability of A is not affected by the occurrence of B:

\[
\Pr(A|B) = \Pr(A)
\]

Definition: $\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$

Independence of two sub-σ-fields

Let \mathcal{F}_1 and \mathcal{F}_2 be two sub-σ-fields of \mathcal{F}

\mathcal{F}_1 and \mathcal{F}_2 are independent if, for every $E_1 \in \mathcal{F}_1$ and $E_2 \in \mathcal{F}_2$, E_1 and E_2 are independent:

\[
\Pr(E_1 \cap E_2) = \Pr(E_1) \cdot \Pr(E_2)
\]
Independence of two r.v.

The r.v. X_1 and X_2 are independent if $\sigma(X_1)$ and $\sigma(X_2)$ are independent.

Property

The r.v. X_1 and X_2 are independent if and only if

$$\Pr([X_1 \leq t_1] \cap [X_2 \leq t_2]) = \Pr[X_1 \leq t_1] \cdot \Pr[X_2 \leq t_2]$$

i.e.

$$F_{X_1,X_2}(t_1,t_2) = F_{X_1}(t_1) \cdot F_{X_2}(t_2)$$

Properties

(without proofs)

a) If X and Y are independent, then

$$\text{cov}(X,Y) = 0$$

$$E(XY) = E(X) \cdot E(Y)$$

$$\text{var}(X + Y) = \text{var}(X) + \text{var}(Y)$$

The reciprocal is not true:

- The two r.v. are not independent (why?)
- $E(XY) = E(X) \cdot E(Y) = 0$

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>1</td>
<td>.</td>
</tr>
</tbody>
</table>

- The two r.v. are not independent (why?)
- $E(XY) = E(X) \cdot E(Y) = 0$
b) The r.v. X_1, \ldots, X_m are independent iff

$$F_{X_1, \ldots, X_m}(t_1, \ldots, t_m) = F_{X_1}(t_1) \cdot \ldots \cdot F_{X_m}(t_m)$$

c) The r.v. X_1, \ldots, X_m are independent iff

$$f_{X_1, \ldots, X_m}(t_1, \ldots, t_m) = f_{X_1}(t_1) \cdot \ldots \cdot f_{X_m}(t_m)$$

d) If the r.v. X_1, \ldots, X_m are independent, then

$$m_{X_1+ \ldots+ X_m}(t) = m_{X_1}(t) \cdot \ldots \cdot m_{X_m}(t)$$

e1) If X_1, \ldots, X_m are independent r.v. with $X_j \sim B(n_j; p)$, then

$$\sum_{j=1}^{m} X_j \sim B(\Sigma n_j; p)$$

e2) If X_1, \ldots, X_m are independent r.v. with $X_j \sim P(\lambda_j)$, then

$$\sum_{j=1}^{m} X_j \sim P(\Sigma \lambda_j)$$

e3) If X_1, \ldots, X_m are independent r.v. with $X_j \sim N(\mu_j; \sigma^2_j)$, then

$$\sum_{j=1}^{m} X_j \sim N(\Sigma \mu_j; \Sigma \sigma^2_j)$$
Conditional expectation

- w.r.t. an event
 - Intuitively
 - Definition
 - Property
- w.r.t. a partition of Ω
 - Definition
 - w.r.t. a discrete r.v.
 - Property
- w.r.t. a σ-field (general case)
 - Definition
 - w.r.t. a r.v.
 - Rules for handling the conditional expectation
 - Projection property
- Conditional variance
 - Definition
 - Properties

w.r.t. an event

Let us consider a r.v. X such that $E(|X|)$ is finite

Intuitively

Let A be an event with $\Pr(A) > 0$

If X is discrete, we want to define

$$E(X|A) = \sum_k x_k \Pr([X = x_k]|A)$$

We can introduce the conditional c.d.f.

$$F_X(t|A) = \Pr([X \leq t]|A)$$

that has the same properties as the ordinary c.d.f. and “define”

$$E(X|A) = \int_{-\infty}^{+\infty} tdF_X(t|A)$$
Definition

Let us consider the indicator r.v. of the event A

$$1_A : \omega \mapsto \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

We define

$$E(X|A) = \frac{E(X \cdot 1_A)}{\Pr(A)}$$

Coherence with the intuitive definition for a discrete X?

$$X \cdot 1_A : \omega \mapsto \begin{cases} x_k & \text{if } \omega \in A \text{ and } X(\omega) = x_k \\ 0 & \text{if } \omega \notin A \end{cases}$$

so that

$$E(X \cdot 1_A) = 0 + \sum_k x_k \Pr([X = x_k] \cap A)$$

Property

$$E(X \cdot 1_A) = E(E(X|A) \cdot 1_A)$$

Proof

The r.h.s. is equal to

$$E(X|A) \cdot E(1_A) = E(X|A) \cdot \Pr(A) = E(X \cdot 1_A)$$
w.r.t. a partition of Ω

Definition

Let $\mathcal{A} = \{A_1, \ldots, A_n, \ldots\}$ a (discrete) partition of Ω with $\Pr(A_i) > 0 \; \forall i$

We define the conditional expectation as the r.v.

$$E(X|\mathcal{A}) : \omega \mapsto E(X|A_k) \quad \text{if } \omega \in A_k$$

Graphical representation for $\Omega \subset \mathbb{R}$:

X: _____________ $E(X)$: _____________ $E(X|\mathcal{A})$: _____________
Proof

Denoting \((k)\) the index values in the union \(A\),
the r.v. \(E(X|A) \cdot 1_A\) is defined by

\[\omega \mapsto \begin{cases}
0 & \text{if } \omega \notin A \\
E(X|A_k) & \text{if } \omega \in A_k \text{ for some } (k)
\end{cases}\]

And the r.h.s. is equal to

\[0 + \sum_{(k)} E(X|A_k) \cdot \Pr(A_k) = \sum_{(k)} E\left(X \cdot 1_{A_k}\right)\]

\[= E \left(X \cdot \sum_{(k)} 1_{A_k}\right) = E(X \cdot 1_A)\]
w.r.t. a r.v.

Let Y be a r.v.

We define the conditional expectation as the r.v.

$$E(X|Y) = E(X|\sigma(Y))$$

Note: as $E(X|G)$ is G-measurable, $E(X|Y)$ is a function of Y.

Rules for handling the conditional expectation

(R0) If $X \geq 0$, then $E(X|G) \geq 0$

(R0') If $X_1 \leq X_2$, then $E(X_1|G) \leq E(X_2|G)$

(R1) The conditional expectation is a linear operator:

$$E(aX + bY + c|G) = aE(X|G) + bE(Y|G) + c$$

Proof: for any $A \in G$,

$$E((aX + bY + c) \cdot 1_A)$$

$$= aE(X \cdot 1_A) + bE(Y \cdot 1_A) + cE(1_A)$$

$$= aE(E(X|G) \cdot 1_A) + bE(E(Y|G) \cdot 1_A) + cE(1_A)$$

$$= E((aE(X|G) + bE(Y|G) + c) \cdot 1_A)$$

(R2) $E(E(X|G)) = E(X)$

Proof: definition with $A = \Omega$
(R3) If X and \mathcal{G} are independent \([\equiv \sigma(X) \text{ and } \mathcal{G} \text{ independent}]\), then

$$E(X|\mathcal{G}) = E(X)$$

Proof: for any $A \in \mathcal{G}$,

$$E(X \cdot 1_A) = E(X) \cdot E(1_A) = E(E(X) \cdot 1_A)$$

(R4) If $\sigma(X) \subset \mathcal{G}$ [\(X\) is \mathcal{G}-measurable], then

$$E(X|\mathcal{G}) = X$$

(X is considered as a constant w.r.t. \mathcal{G})

Proof: X is a \mathcal{G}-measurable r.v. for which the definition is satisfied
(R5) Generalization of (R4) “taking out what is known”: if $\sigma(X) \subset \mathcal{G}$, then for any r.v. Y,

$$E(XY|\mathcal{G}) = X \cdot E(Y|\mathcal{G})$$

(R6) Tower property: if \mathcal{H} is a sub-σ-field of \mathcal{G}, then

$$E(E(X|\mathcal{G})|\mathcal{H}) = E(X|\mathcal{H})$$

Proof: for any $A \in \mathcal{H}$,

$$E\{E[E(X|\mathcal{G})|\mathcal{H}] \cdot 1_A\} = E\{E[E(X|\mathcal{G}) \cdot 1_A|\mathcal{H}]\}$$

$$= E\{E[E(X \cdot 1_A|\mathcal{G})|\mathcal{H}]\}$$

$$= E(E(X \cdot 1_A|\mathcal{G}))$$

$$= E(X \cdot 1_A)$$

But

$$E(E(X|\mathcal{H}) \cdot 1_A) = E(E(X \cdot 1_A|\mathcal{H}))$$

$$= E(X \cdot 1_A)$$

(R7) Generalization of (R3): if X is independent of \mathcal{G} and if Y is \mathcal{G}-measurable, then

$$E(h(X,Y)|\mathcal{G}) = E(E_X(h(X,Y))|\mathcal{G})$$

where $E_X(h(X,Y))$ means that

- we fix Y, and
- we take the expectation w.r.t. X

(without proof)
(R8) Jensen inequality: if \(h \) is a convex function, then
\[
E(h(X)|G) \geq h\left(E(X|G)\right)
\]

Proof: for any \(x_0 \), there exists a straight line \(y = ax + b \) such that
\[
\begin{cases}
 h(x_0) = ax_0 + b \\
 h(x) \geq ax + b \quad \forall x
\end{cases}
\]

Replacing \(x \) and \(x_0 \) respectively by \(X \) and \(E(X|G) \), we get
\[
\begin{cases}
 h(E(X|G)) = aE(X|G) + b \\
 h(X) \geq aX + b \quad \forall x
\end{cases} \quad (\ast)
\]

Taking conditional expectation of \((\ast)\),
\[
E(h(X)|G) \geq aE(X|G) + b = h\left(E(X|G)\right)
\]

Projection property

This property shows that \(E(X|G) \) is an “updated version of \(E(X) \)”, given the information in \(G \).

Let \(L^2(G) \) be the collection of r.v. \(Y \) such that \(\sigma(Y) \subset G \) and \(E(Y^2) \) is finite \(\) (more than \(E(|Y|) \) finite)

Projection property: If \(X \) is such that \(E(X^2) \) is finite, then \(E(X|G) \) is the element of \(L^2(G) \) which is closest to \(X \) in the mean square sense:
\[
\min_{Y \in L^2(G)} E((X - Y)^2) = E\left((X - E(X|G))^2\right)
\]

Proof: for any \(Y \in L^2(G) \),
\[
E((X - Y)^2) = E((X - E(X|G) + E(X|G) - Y)^2)
= E\left((X - E(X|G))^2\right)
+ E\left((E(X|G) - Y)^2\right)
+ 2E\left[(X - E(X|G)) \cdot (E(X|G) - Y)\right]
\]
But

\[
E[(X - E(X|\mathcal{G})) \cdot (E(X|\mathcal{G}) - Y)]
= E\{E[(X - E(X|\mathcal{G})) \cdot (E(X|\mathcal{G}) - Y)|\mathcal{G}]\}
= E\{(E(X|\mathcal{G}) - Y) \cdot E[(X - E(X|\mathcal{G})]|\mathcal{G}]\}
= E\{(E(X|\mathcal{G}) - Y) \cdot [(E(X|\mathcal{G}) - E(X|\mathcal{G}))]\}
= 0
\]

Thus,

\[
E((X - Y)^2)
= E\left((X - E(X|\mathcal{G}))^2\right) + E((E(X|\mathcal{G}) - Y)^2)
\geq E\left((X - E(X|\mathcal{G}))^2\right)
\]

And we have equality for \(Y = E(X|\mathcal{G}) \)

Conditional variance

Definition

\[
\text{var}(X|\mathcal{G}) = E\left(\left(X - E(X|\mathcal{G})\right)^2 \mid \mathcal{G}\right)
\]

Properties

- \(\text{var}(X|\mathcal{G}) = E(X^2|\mathcal{G}) - E^2(X|\mathcal{G}) \)

\[
\text{var}(X|\mathcal{G}) = E(X^2|\mathcal{G}) - 2E(X \cdot E(X|\mathcal{G})|\mathcal{G})
+ E(E^2(X|\mathcal{G})|\mathcal{G})
= E(X^2|\mathcal{G}) - 2E(X|\mathcal{G}) \cdot E(X|\mathcal{G})
+ E^2(X|\mathcal{G})
\]

- \(\text{var}(X) = E(\text{var}(X|\mathcal{G})) + \text{var}(E(X|\mathcal{G})) \)

\[
E(\text{var}(X|\mathcal{G})) = E(X^2) - E(E^2(X|\mathcal{G}))
\]

\[
\text{var}(E(X|\mathcal{G})) = E(E^2(X|\mathcal{G})) - E^2(E(X|\mathcal{G}))
= E(E^2(X|\mathcal{G})) - E^2(X)
\]
Stochastic convergences

- Definitions
 o Almost sure convergence
 o Convergence in quadratic mean
 o Convergence in probability
 o Convergence in distribution

- Properties
- Limit theorems and approximations
 o Law of large numbers
 o Central limit theorem
 o Approximations of the binomial law

Definitions

What does “\(X_n \to X \)” mean?

Almost sure convergence: \(X_n \xrightarrow{a.s.} X \)

\[
\Pr \left[\lim_{n \to \infty} X_n = X \right] = 1
\]

Convergence in quadratic mean: \(X_n \xrightarrow{q.m.} X \)

\[
\lim_{n \to \infty} E((X_n - X)^2) = 0
\]

Convergence in probability: \(X_n \xrightarrow{pr} X \)

\[
\forall \varepsilon > 0, \quad \lim_{n \to \infty} \Pr[|X_n - X| > \varepsilon] = 0
\]

Convergence in distribution: \(X_n \xrightarrow{d} X \)
(or convergence in law, or weak convergence)

\[
\forall t : F_X(t) \text{ continuous, } \lim_{n \to \infty} F_{X_n}(t) = F_X(t)
\]
Properties

(without proofs)

a) The convergence in distribution is equivalent to these two statements:

- For any continuous and bounded function \(h \),
 \[
 \lim_{n \to \infty} E(h(X_n)) = E(h(X))
 \]

- \(\lim_{n \to \infty} m_{X_n}(t) = m_X(t) \quad \forall t \)

b) \(X_n \xrightarrow{a.s.} X \quad X_n \xrightarrow{pr} X \quad X_n \xrightarrow{d} X \)

Limit theorems and approximations

(without proofs)

Law of large numbers

If \(X_1, X_2, \ldots, X_n, \ldots \) is a sequence of i.i.d. r.v. with finite mean \(\mu \), then, when \(n \to \infty \),

\[
\frac{X_1 + \cdots + X_n}{n} \xrightarrow{a.s.} \mu
\]

Particular case: let \(A \) be an event and \(f_n(A) \) the proportion of occurrences of \(A \) for \(n \) independent realizations of the random situation; then,

\[
f_n(A) \xrightarrow{a.s.} \Pr(A)
\]
Central limit theorem

If $X_1, X_2, \ldots, X_n, \ldots$ is a sequence of i.i.d. r.v. with finite mean μ and variance σ^2, then, when $n \to \infty$,

$$
\frac{X_1 + \cdots + X_n - n\mu}{\sqrt{n} \sigma} = \frac{1}{n} (X_1 + \cdots + X_n) - \mu
$$

\[\to \mathcal{N}(0; 1) \]

Interpretation: with the former hypotheses, if n is “sufficiently large”, then

$$
X_1 + \cdots + X_n \sim \mathcal{N}(n\mu; n\sigma^2)
$$

Approximations of the binomial law

a) Poisson approximation

If $n \to \infty$, $p \to 0$ and $np \to \lambda$ (>0), then

$$
\mathcal{B}(n; p) \xrightarrow{d} \mathcal{P}(\lambda)
$$

b) Normal approximation

If $n \to \infty$ and fixed p, then

$$
\frac{\mathcal{B}(n; p) - np}{\sqrt{np(1-p)}} \xrightarrow{d} \mathcal{N}(0; 1)
$$

Interpretation: with the former hypotheses, if n is “sufficiently large” and p not too close to 0 and 1, then

$$
\mathcal{B}(n; p) \sim \mathcal{N}(np; np(1-p))
$$